242 research outputs found

    Reducts of structures and maximal-closed permutation groups

    Get PDF
    Answering a question of Junker and Ziegler, we construct a countable first order structure which is not ω-categorical, but does not have any proper nontrivial reducts, in either of two senses (model-theoretic, and group-theoretic). We also construct a strongly minimal set which is not ω-categorical but has no proper nontrivial reducts in the model-theoretic sense

    The random graph

    Full text link
    Erd\H{o}s and R\'{e}nyi showed the paradoxical result that there is a unique (and highly symmetric) countably infinite random graph. This graph, and its automorphism group, form the subject of the present survey.Comment: Revised chapter for new edition of book "The Mathematics of Paul Erd\H{o}s

    All reducts of the random graph are model-complete

    Full text link
    We study locally closed transformation monoids which contain the automorphism group of the random graph. We show that such a transformation monoid is locally generated by the permutations in the monoid, or contains a constant operation, or contains an operation that maps the random graph injectively to an induced subgraph which is a clique or an independent set. As a corollary, our techniques yield a new proof of Simon Thomas' classification of the five closed supergroups of the automorphism group of the random graph; our proof uses different Ramsey-theoretic tools than the one given by Thomas, and is perhaps more straightforward. Since the monoids under consideration are endomorphism monoids of relational structures definable in the random graph, we are able to draw several model-theoretic corollaries: One consequence of our result is that all structures with a first-order definition in the random graph are model-complete. Moreover, we obtain a classification of these structures up to existential interdefinability.Comment: Technical report not intended for publication in a journal. Subsumed by the more recent article 1003.4030. Length 14 pages

    The Reducts of the Homogeneous Binary Branching C-relation

    Full text link
    Let (L;C) be the (up to isomorphism unique) countable homogeneous structure carrying a binary branching C-relation. We study the reducts of (L;C), i.e., the structures with domain L that are first-order definable in (L;C). We show that up to existential interdefinability, there are finitely many such reducts. This implies that there are finitely many reducts up to first-order interdefinability, thus confirming a conjecture of Simon Thomas for the special case of (L;C). We also study the endomorphism monoids of such reducts and show that they fall into four categories.Comment: 39 pages, 4 figure

    NIP omega-categorical structures: the rank 1 case

    Full text link
    We classify primitive, rank 1, omega-categorical structures having polynomially many types over finite sets. For a fixed number of 4-types, we show that there are only finitely many such structures and that all are built out of finitely many linear orders interacting in a restricted number of ways. As an example of application, we deduce the classification of primitive structures homogeneous in a language consisting of n linear orders as well as all reducts of such structures.Comment: Substantial changes made to the presentation, especially in sections 3 and
    • …
    corecore