44 research outputs found

    Hilbert Mathematics Versus Gödel Mathematics. IV. The New Approach of Hilbert Mathematics Easily Resolving the Most Difficult Problems of Gödel Mathematics

    Get PDF
    The paper continues the consideration of Hilbert mathematics to mathematics itself as an additional “dimension” allowing for the most difficult and fundamental problems to be attacked in a new general and universal way shareable between all of them. That dimension consists in the parameter of the “distance between finiteness and infinity”, particularly able to interpret standard mathematics as a particular case, the basis of which are arithmetic, set theory and propositional logic: that is as a special “flat” case of Hilbert mathematics. The following four essential problems are considered for the idea to be elucidated: Fermat’s last theorem proved by Andrew Wiles; Poincaré’s conjecture proved by Grigori Perelman and the only resolved from the seven Millennium problems offered by the Clay Mathematics Institute (CMI); the four-color theorem proved “machine-likely” by enumerating all cases and the crucial software assistance; the Yang-Mills existence and mass gap problem also suggested by CMI and yet unresolved. They are intentionally chosen to belong to quite different mathematical areas (number theory, topology, mathematical physics) just to demonstrate the power of the approach able to unite and even unify them from the viewpoint of Hilbert mathematics. Also, specific ideas relevant to each of them are considered. Fermat’s last theorem is shown as a Gödel insoluble statement by means of Yablo’s paradox. Thus, Wiles’s proof as a corollary from the modularity theorem and thus needing both arithmetic and set theory involves necessarily an inverse Grothendieck universe. On the contrary, its proof in “Fermat arithmetic” introduced by “epochĂ© to infinity” (following the pattern of Husserl’s original “epochĂ© to reality”) can be suggested by Hilbert arithmetic relevant to Hilbert mathematics, the mediation of which can be removed in the final analysis as a “Wittgenstein ladder”. Poincaré’s conjecture can be reinterpreted physically by Minkowski space and thus reduced to the “nonstandard homeomorphism” of a bit of information mathematically. Perelman’s proof can be accordingly reinterpreted. However, it is valid in Gödel (or Gödelian) mathematics, but not in Hilbert mathematics in general, where the question of whether it holds remains open. The four-color theorem can be also deduced from the nonstandard homeomorphism at issue, but the available proof by enumerating a finite set of all possible cases is more general and relevant to Hilbert mathematics as well, therefore being an indirect argument in favor of the validity of Poincaré’s conjecture in Hilbert mathematics. The Yang-Mills existence and mass gap problem furthermore suggests the most general viewpoint to the relation of Hilbert and Gödel mathematics justifying the qubit Hilbert space as the dual counterpart of Hilbert arithmetic in a narrow sense, in turn being inferable from Hilbert arithmetic in a wide sense. The conjecture that many if not almost all great problems in contemporary mathematics rely on (or at least relate to) the Gödel incompleteness is suggested. It implies that Hilbert mathematics is the natural medium for their discussion or eventual solutions

    Explicit substitutions and all that

    Get PDF
    Explicit substitution calculi are extensions of the λ-calculus where the substitution mechanism is internalized into the theory. This feature makes them suitable for implementation and theoretical study of logic based tools as strongly typed programming languages and proof assistant systems. In this paper we explore new developments on two of the most successful styles of explicit substitution calculi: theλσ and λse-calculi

    Higher Order Unification Revisited: Complete Sets of Transformations

    Get PDF
    In this paper, we reexamine the problem of general higher-order unification and develop an approach based on the method of transformations on systems of terms which has its roots in Herbrand\u27s thesis, and which was developed by Martelli and Montanari in the context of first-order unification. This method provides an abstract and mathematically elegant means of analyzing the invariant properties of unification in various settings by providing a clean separation of the logical issues from the specification of procedural information. Our major contribution is three-fold. First, we have extended the Herbrand- Martelli-Montanari method of transformations on systems to higher-order unification and pre-unification; second, we have used this formalism to provide a more direct proof of the completeness of a method for higher-order unification than has previously been available; and, finally, we have shown the completeness of the strategy of eager variable elimination. In addition, this analysis provides another justification of the design of Huet\u27s procedure, and shows how its basic principles work in a more general setting. Finally, it is hoped that this presentation might form a good introduction to higher-order unification for those readers unfamiliar with the field

    An integration of reduction and logic for programming languages

    Get PDF
    A new declarative language is presented which captures the expressibility of both logic programming languages and functional languages. This is achieved by conditional graph rewriting, with full unification as the parameter passing mechanism. The syntax and semantics are described both formally and informally, and examples are offered to support the expressibility claim made above. The language design is of further interest due to its uniformity and the inclusion of a novel mechanism for type inference in the presence of derived type hierarchie

    Ramified higher-order unification

    Get PDF
    While unification in the simple theory of types (a.k.a.\ higher-order logic) is undecidable, we show that unification in the pure ramified theory of types with integer levels is decidable. But the pure ramified theory of types cannot express even the simplest formulas of logic. The impure ramified type theory has an undecidable unification problem even at order 2. However, the decidability result for the pure subsystem indicates that unification should fail to terminate less often than general higher-order unification. We present applications to two expressive subsystems of second-order Peano arithmetic, \mbox{ACA}_0 and \Pi^1_{k}\mbox{-CA}_0
    corecore