
An Integration of Reduction and Logic
for Programming Languages

David A. Wright

A thesis submitted in

partial fulfillment

of the degree of

M.Sc (Applied Computer Science)

To Mom and Dad

Acknowledgements

Professor Dennis Riordan, my thesis supervisor, deserves my thanks for his

critical assessment and advice during the preparation of this thesis. Also thanks

to the team of "reviewers" who read an early paper on REDLOG which served as

the foundation of this thesis.

My sincere thanks go to my parents for the tremendous support and

encouragement that they have given me from the very beginning.

Thanks go to

tribulations that

my fiance, Merridy, who more than anyone knows the trials and

occurred in the shaping of this work. Thanks for helping me to

maintain my faith in it!

Thanks to tbe Rhodes Computer Science team for all that I have learnt from them

over the past five years.

I was supported fmancially by Rhodes University and the Council for Scientic and

Industrial Research during this year and owe them my thanks.

ABSTRACT

An Integration of Reduction and Logic
for Programming Languages

David A. Wright

A new declarative language is presented which captures the expressibility of both

logic programming languages and functional languages. This is achieved by

conditional graph rewriting, with full unification as the parameter passing

mechanism. The syntax and semantics are described both formally and informally,

and examples are offered to support the expressibility claim made above. The

language design is of further interest due to its uniformity and the inclusion of a

novel mechanism for type inference in the presence of derived type hierarchies.

CONTENTS

1.
2.
3.
3.1.
3.2.
3.3.
3.4.
3.5.
4.
5.
6.
7.
8.
8.1.
8.2.
8.2.1.
8.2.2.
8.3.
8.4.
8.4.1.
8.4.1.1.
8.4.1.2.
8.4.2.
8.4.2.1.
8.5.
9.
9.1.
9.2.
9.3.
9.4.

10.
10.1.
10.2.
11.
11.1.
11.2.
11.3.
11.4.
11.5.
12.
12.1
13.
14.

Introduction
Discussion of Related Work
An Informal Introduction to RED LOG
Familiar Examples
Higher Order Equations
Data Structure Manipulation
Examples from Artificial Intelligence
Typing
Equation Syntax
Object Representation
Informal Operational Semantics
The Scope Rules
The REDLOG Type System
Basic Concepts
Type Variables and Functionality
Other Type Constructors
Examples
Abstract EBNF Syntax Definition of Type Derivations
Type Inference
Type Inference Rules
Direct Type Inference
Type Inference in the Presence of Derived Type Hierarchies
Implementation
Type Inference in the Presence of Derived Type Hierarchies
A Method for Type Specification
Formal Semantics of REDLOG
Abstract Syntax
Semantic Algebras
Valuation Functions
Limitations of the Definition
Implementing REDLOG in REDLOG
Type Specification of REDLOG
Implementing the Rules
Other Areas of Language Design Interest
Reduction Order
The Unification Algorithm
The MetaLanguage and Tools
Existing Implementation
Parallel Languages
Conclusion
Future Directions
Appendix: EBNF Syntax DefInition
References and Bibliography

1. Introduction

Declarative languages are a source of

tills being partly due to the simple

great interest to many computer scientists

mathematical properties and foundations of

these languages. These properties are the

mathematical formalisms; the potential for manual

verification of programs written in the declarative

expressive power inherent

and automatic manipulation

language; and the potential

in

and

for

parallel execution of programs due to the minimal control of flow embodied in the

declarative language. Tills thesis concentrates on the issues of expressivity and

efficiency over and above those of verification and parallelism.

Research in the field over the past ten years has split into two directions. The

first of these. based on the functional language (represented by languages such as

LISP [7]. Miranda [10]. Hope [3] and FP [2. 11]). claims that the use of higher-

order functions, lazy evaluation with associated infinite data structures, and

deterministic execution

to conduct verification

logic languages (such

strategy, along with

provides expressive power,

and implement parallelism.

as Prolog [12]). claims that

the use of logical variables

while making it relatively easy

The second direction, based on

a goal directed problem solving

yield significantly more elegant solutions to certain

to the solutions which can be achieved with

Furthermore, parallelism and verification of programs

remain some as yet languages although there do

[25], Gregory [23] and Kowalski [36]).

and non-deterministic

important

purely

are also

unresolved

problems,

functional

possible

problems

execution

compared

languages.

with logic

(see Wise

Functional languages are renowned for their simple semantics, while logic

languages have tended to have considerably more complex semantics. An important

reason for tills IS that a logic program is, in general, less specific than the

corresponding functional program. In a functional language all parameters must be

ground, i.e. contain no unbound variables, and there may not be more than one

definjtion for any particular set of parameters to a function. In languages such as

Hope and Miranda tills is reflected in the insistence on the principle of non

superposition, In wlllch the left hand side of equations defIDing a function must

be disjoint, and In fact may not even contain repetitions of variables. The

advantage of these restrictions is that functional languages can be executed very

1

efficiently. The disadvantage is that some algorithms are more naturally expressed

when these restrictions are not present. To insist on writing such algorithms in a

purely functional fashion leads to obscure and non-declarative solutions. There is

thus a trade-off between language efficiency

secret of good language design is to find the

and language expressiveness. The

best balance between these factors,

and in this thesis the balance sought for REDLOG is exemplified.

The language that is proposed m this thesis may be thOUght of as an equational

programming language 1D which an equals IS substituted for all other equals. This

can be seen as a natural generalisation of functional programming, in which an

equals is substituted for a necessarily unique equals. The full power of logic

programming is incorporated, mainly through the insistence on uniformity during

the design process. This leads naturally to the inclusion of variables as fIrst class

objects in the language and thus produces the need for unification amongst terms.

Unification is the central feature in logic programming. Although the syntax of

REDLOG is deliberately made concise, the syntax of the language Prolog forms a

naturally occurring subset of RED LOGs syntax, i.e. the fonn of all 'pure' Prolog

programs are RED LOG programs! This is obviously of benefit as far as portability

is concerned. For teaching, REDLOG is also of value as it is possible to write

programs m a purely functional or logical style or in the more powerful combined

style. It is thus possible to teach the functional and logic programming paradigms

as a subset of the equational paradigm while only usmg a single language

implementation!. The design aim of regularity has resulted in the determination of

a well structured, regular domain over which RED LOG operates. This lead to the

RED LOG typing system and the resultant type inference and checking mechanism,

which form an important part of the language and thesis.

Chapter 2 IS a discussion of related work to illustrate the motivation for the

thesis and provide a background for comparative purposes. Chapter 3 introduces

RED LOG informally with examples and appropriate explanations ..

Chapter 4 describes the complete

other syntactic facets of RED LOG

aspects of classes and modules.

Appendix.

syntax of REDLOG equations, but avoids many

such

These

as lists, numbers,

are covered

2

scope and the

more completely

syntactic

in the

Chapter 5 introduces the important notion of a

chapter 6 deals informally with the reduction

unusual scope rules of REDLOG are dealt with in chapter 7.

canonical form for RED LO G

process used in REDLOG.

and

The

Chapter

universe

8 deals with the

and the REDLOG

REDLOG type universe, type derivations within that

type inference and checking system. Chapter 9 provides

a formal

REDLOG

REDLOG

REDLOG.

description, III the style of a denotational

equations. Chapter 10 describes a circular- (or

and Chapter 11 discusses a number of issues

Lastly, Chapter 12 discusses the conclusions

from the RED LOG experiment.

3

seman tical specification, of

meta-) implementation of

in the implementation of

which have been drawn

2. Discussion of Related Work

There are numerous recent papers on languages which investigate consolidating

functional and logic programming styles. The purpose of this chapter is to set

RED LOG in this context. The chapter takes the form of a series of brief language

summanes, and then a short discussion. Mention is made of the form of the

typing system of each language if such a system exists.

The Equational Programming Language of Hoffman and O'Donnell [4] is equivalent

to a restricted form of RED LOG. The restrictions include non-superposition, no

repeated variables on the left-hand-side of equations (no concept of failure) and

no backtracking. An Equational Programming Language program can be directly

translated into a REDLOG program, but a RED LOG program may have to be

considerably expanded upon during a translation to the Equational Programming

Language. Typing facilities are limited to an ALGOL-like declaration of variable

types.

AppLog (Cohen [16]) IS a language integration along more traditional lines, as it

is simply the union of two existing languages (Prolog and LISP). While gaining the

advantage of sophisticated development environments available for one of the

languages (LISP), AppLog suffers most from the disparate programming

methodologies inherited from its parent languages. AppLog is untyped.

Eqlog (Goguen and Meseguer [18]) is a conceptually comprehensive language which

uses a many-sorted logic to derme first-order functions as equality axioms, and

employs an operational semantics based on nalTowing (see Reddy [42]). Narrowing

IS a general method for reasoning about equations, and allows equational

inversion. Although this is an appealing feature, it introduces efficiency overheads

and restrictions which rule out a delayed evaluation scheme and, 1U EqLog also

prevents the use of negation and higher-order objects. Furthermore, most

equations III practice are written with the intention that their ultimate value be

dependant on the right-hand side of the equation. EqLog does not have a type

inference mechanism, but does have useful facilities for subtyping, allowing the

definition of polymorphic operators and, interestingly, coercive overloading.

4

LEAF (Barbuti, Bellia, Levi and Martelli [15]) is a language with a distinct logical

component and a purely functional component. The integration of these two

components is achieved by using the functional language as a metalanguage for

the logical component (cf. chapter 8). This leads to a number of unwanted

restrictions. These restrictions include the principle of non-superposition; the

parameters to functional components may not appear in head terms of logical

equations; only fIrst order functions are allowed; and calls to logic clauses cannot

be made from within a functional clause. In the special case that the inputs to

the logic clause call are all in the inputs to the functional clause then this

restriction is removed. Although not discussed in their paper [15], Barbuti et al

indicate that a polymorphic type system does exist, although no mention is made

of a type inference system.

FunLog (Subrahmanyam and You [21]) achieves the integration of logic and

functional languages through the notion of "semantic unifIcation" (which IS

incomplete). This is a potentially costly mechanism because reductions are

initiated by repeated attempts at uoification (Chapter 11 suggests an alternative

way in which the benefIts sought by the designers of FunLog may be obtained).

FunLog also incorporates (in an informal way) infInite data structures, lazy

evaluation and non-determinism. FunLog is untyped.

TabLog (Malachi and Waldinger [20]) uses a restricted version of a deductive

tableau proof system (see Manna and Waldinger [39]) . TabLog includes negation,

but does not include higher-order functions. The restricted proof system IS

incomplete. The deductive-tableau proof system represents an interesting design

alternative to that described in this thesis, however the execution process of

TABLOG is considerably more complex than that of REDLOG and implementations

of the language have so far suffered from performance penalties. TabLog is

untyped.

Many of these

should be two

equational) in

optimise the

computationally

proposals

(or more,

(FunLog, LEAF, EqLog, AppLog) propose that there

see EqLog) distinct subsystems (e.g. functional, logical,

This, it IS argued, will allow the programmer to one language.

efficiency of a program through judicious use of the more

expensive components. The integration of the subsystems is

5

achieved with a marked variation in sophistication. That of AppLog is the least

satisfactory, the best is probably that of EqLog.

In contrast, REDLOG has only one system, but with the efficiency of a functional

system available through a compiler optimisation under certain conditions. It is

felt that having a single system is superIor to having many, as there can be a

free, full-feature, mixing of programming styles without the hindrance of

conforming to different rules depending on which system one is using. Functional

and logic programming styles are inherently part of RED LOG, rather than

additions to it.

Another approach has been to incorporate unification (or a subset of it) within a

functional framework (see Lindstrom [6], Darlington, Field and Pull [17] and

Abramson [1]). However, incorporation of full unification into a functional

programming language leads to a non-functional language, with the result that

systems such as that proposed by Abramson adopt a restricted one-way

unification. It should be remarked that the inclusion of variables as first-class

citizens into these languages, as is done in REDLOG, could lead to a programming

style which is essentially functional in nature, but with much of the power of full

logic programming.

Although issues such as the uniformity of the language vary widely in these

proposals, from the point of view of this thesis the most important difference

between them is their individual semantics. It IS felt that the simplicity of the

RED LOG evaluation mechanism proposed below has much to recommend it to

programmers. The combination of this simplicity with design regularity and type

security should result in a system capable of producing high programmer

productivity.

6

3. An Informal Introduction

The aim of this chapter is to illustrate the expressiveness of REDLOG. Most

examples presented are from papers in the literature, to allow easy comparison

with other proposals regarding expressivity. All examples have been executed on

the test compiler for RED LOG.

3.1. Familiar Examples

First, the factorial program, presented in a functional style:

OJ =: 1.

NI ;;: N * (N - 1)1 if N > O.

Note the use of operator notation for "!". ";;:" is the RED LOG semantic equality

operator (see chapter 6). The form of the program IS that of a specification of

the functional behavior of the "!" operator, closely paralleling the style used in

mathematics. The ij N > a conditional term in the second equation is not strictly

necessary in a sequential execution context (with left-most selection rule) for

REDLOG and the equation is defmed to operate on the natural numbers.

the factorial example above would be as follows:

(DEFUN (FAC N)

(COND

((EQNO) 1)

((GT N 0) (PRODUCT N (FAC (DIFFERENCE N 1))))))

It is important to stress at this point that REDLOG IS much more

In LISP

than a

syntactic IIsugaring" of any functional or logic language. It has a fundamentally

different semantics which will become apparent 10 later examples and be shown in

later chapters on semantics. For example, the factorial equation above could be

used in a non-ground mode by calling it with an unbound variable.

Next, the well known qu.ick-sort algorithm of CA.R. Hoare (see Tablog [20]). The

implementotion of this in RED LOG shows a clear mixing of functional and logical

7

styles:

qsort n " n·
qsort [Xly] " qsort L + + [Xl + + qsort U where partition (X, Y, L, U).

partition (X, n, n, [J).

partition (X, [FlY), [FI L), U) if X > F and partition [X, Y, L, U).

partition[X, [FlY), L, [FI U)) if X" F and partition[X, Y, L, U).

The first two equations provide an apparently functional specification of quick

sort, but note the use of the unbound variables L and U in the call to partition

which is clearly non-functional. This allows the returning of two resuits from the

logically specified partition auxiliary. Partition is specified exactly as it would be

10 Prolog, apart from syntactic variations for "if' and "and" (the syntactic

variations are allowed III REDLOG for standardisation reasons, see the Appendix).

Note the use of "where" as a further syntactic variation for lIif'. The symbol 11+ + 11

IS the list append function, again illustrating the use of 6perator notation. As a

comparison with a well known language, the Prolog definition of the two "qsort"

equations is:

qsort([),[J).

qsort([X IY),Z) :-

partition(X, Y, L, U),

qsort(L, LS),

qsort(U, US),

append(LS, [XI US], Z).

The equivalent LISP or functional program would involve two functions ("10'.

and "highpart", say) 10 place of the call to partition, introducing unwanted

inefficiency. These could be defmed in LISP by the functions below:

(DE FUN (LOWPART VAL LIST)

(COND ((NULL LIST) NIL)

((LT VAL (CAR LIST)) (CONS (CAR LIST) (LOWPART VAL (CDR LIST))))

[T (LOWPART VAL (CDR LIST)))))

8

(DEFUN (HIGHPART VAL LIST)

(COND ((NULL LIST) NIL)

((GE VAL (CAR LIST)) (CONS (CAR LIST) (HIGHPART VAL (CDR LIST))))

(T (HIGHPART VAL (CDR LIST)))))

3.2. Higher Order Equations

To illustrate the higher· order capabilities of REDLOG, a functional· style list

iterator can be written as follows:

map (F, []I :; [J.

map (F, [X IYII :; FX: map (F, Y).

Notice the first class status of functors in the above equation. An emulatation of

this in Prolog would require the use of the meta-logical "call" predicate. This type

of programming is also interesting because modules and classes can be passed to

equations which can perform operations on them

Another example of higher-order capabilities IS

functional used to capture the

list:

reduce ([] , F, A) :; A.

reduce ([XILj, F, A) :; F (X, reduce (L, F, A)).

sum L == reduce (L, + 10).

product L == reduce (L, *, 1).

notion

3.3. Data Structure Manipulation

of using a

(see chapter 11 section 3).

reduce (Henderson [33]), a

binary operator over a whole

To illustrate the use of negation and data constructors (as will be described in

chapter 8, "data constructors" is an acronym for "named types"), a queue (FIFO

structure) can be specified as:

9

empty newq .

...... emptyadd (Item, Queue).

read add (Item, Queue)

== Item if empty Queue

== read Queue.

delete add (Item, Queue)

== newq if empty Queue

== add (Item, delete Queue).

For comparison purposes, the classic address translation example, as first seen in

Warren [49] can be written in REDLOG as follows:

translate In == trans (In, Table, 1).

trans ([], _, J " [J.

trans ([det Alln], Table, N) [asgn(A,N)I trans (In, Table, N + t)] if asgn (A,N)

in Table.

trans ([use Alln], Table, N) [use Addr I trans (In, Table, N)]

in Table.

Ain [AIX].

Ain [BIX] itAinX.

Here we see the extensive use of the logical variable

backpatching of address labels, and the use of the "don't care"

translate will be something similar to [def a, use a, use b, def

result [asgn (a,l), use 1, use 3, asgn (c,2), asgn (b,3)].

3.4. Examples from Artificial Intelligence

it asgn (A,Addr)

to do automatic

variable. Input to

c, def b], with

To exemplify the use of generate-and-test type programs with a mixed functional

and logical style, the classic "eight queens" problem can be solved as:

eight_queens" q8 (8, [J).

I q8 (0, Board) " Board.

q8 (Row, Board) " try (q8 (Row-t, Board), generate (t, 8)).

try (Board, Col) -= CoI:Board if no_conflict (Board, Col, 1).

to

no_conflict ([], Col, Add).

no_conflict liB I Board], Col, Add)

generate (Lower, Upper)

if Col ~ Band

Col + Add ~ Band

Col - Add ~ Band

no_conflict (Board, Col, Add + 1).

{ '" Lower

== generate (Lower + 1 ,Upper)

} if Lower" Upper.

The eight queens problem is also solved in Cohen [16]. Notice that, apart from

the equations for "no_conflict", the whole program is specified in a functional

style. Of course, the semantics are radically different. This is an extremely

compact solution to the eight queens problem (try it in LISP or Prolog!), and is

also a remarkably lucid explanation of one method of solving it.

In the definition of the generate equation the use of braces to alter the scope of

the cond term IS depicted (see chapter 7). The possibilities for exploitation of

parallelism within such an equation is apparent. This aspect of REDLOG was not

available In the test compiler and thus the example executed on that compiler did

not make use of the altered scope rule, but was otherwise identical.

A concise solution to the towers of Hanoi problem can be written:

hanoi Disks '" move (Disks, [] , [J).

move ([), M, R) '" ([) , M, R).

move ([Disk I L], M, R) '" move (NewM, NewL, [Disk I NewRll

where (NewL, NewR, NewM) = move (L, R, M).

This last example, written entirely in a functional style, could be

very efficient form by a clever compiler for REDLOG using

instead of unification and simple term rewriting in place of the

reduction mechanism. This does of course depend on all equations

compiled into a

pattern matching

normal RED LOG

being functional

in nature (it is more than simply a matter of whether or not a conditional is

11

used!). It IS interesting to compare this example with "quicksort" which makes use

of logical variables. Also note that only one result (apart from refinement VIa

unification) is ever returned from a functor call, the result of "move" being a

tuple of values (see Chapter 8) .

The missionaries and cannibals problem (see Goguen [18]), a simple search

problem, is solved by:

solve [state (O,O,right) I States] = [state (O,O,right)I Statos].

solve [S I States] solve [NM, SIStates] if NM

States .

newmove state (M1,C1,Side) ;:;;;: state (M2,C2,other Side)

jf C = move M and

M " Ml and

ok (O,J.

C .. Cj and

M2 = Mj · M and

C2 = Cj-Cand

ok (M2,C2).

ok (NumM, NumC) if NumM)- NumC

moveD = 1

= 2

move 1 =0

=1.

move 2 =0.

other left == right.

other right == left.

goal salvo [state (3,3,left), start].

12

newmove Sand not NM in

3.5. Typing

Having read this far many readers may have assumed that REDLOG is an untyped

language. This IS not, however, the case: REDLOG IS in fact a polymorphic,

strongly typed language m the sense of Milner [41]. REDLOG has a useful

notation for defIDing the type of an equation and also for defIDing (or deriving)

new types. The REDLOG compiler also features a mechanism similar in some

respects (see chapter 8) to that of Milner [41] for automatically generating type

information, although it is still good practice to explicitly include some type

information for documentation purposes. As an example, the type of the "solve"

equation can be automatically deduced by the REDLOG compiler to be:

solve:: (states] --+ [states].

states:: = state (num, num, side) I start.
/

side :: = left I right.

The type defInition for solve can be read: "solve is an equation which transforms

a list of states into a list of states". The type of the towers of hanoi solution

can similarily be defmed as follows:

hanoi:: [T] ---([TI,[T] ,[T]).

move :: ([T],[T],[T]) ([T],[T],[T]).

This type could be further refmed by the addition of a goal statement. The typing

system of RED LOG and the meaning of the above defmitions will be expanded on

in chapter 8.

In the examples presented in this chapter there is much that has been tacitly

assumed, these facets of RED LOG will be revealed and explored in the subsequent

chapters.

13

4. Equation Syntax ,

This chapter is intended to act as a reference for the syntactic terminology of

RED LOG used in the reading of the rest of the thesis.

The REDLOG alphabet is A = {D, V, F}, where:

D is a set of Data Constructor symbols,

V is a set of Variable symbols and

F is a set of Functor symbols.

A constant symbol is a O-ary data constructor application.

The canollical order of REDLOG is the set of data terms.

A data term is:

(a) a constant symbol,

(b) a variable symbol,

(c) a tuple of the for (t1, ... ,tn), where t1> ... ,10 are data terms,

(d) a data constructor application of the form d t, where d E D and t are data

terms.

A match data term is:

(a) a data term or

(b) a functor symbol application of the form f t, where f E F and t are data

terms.

A term is:

(a) a data term,

(b) a data constructor application of the form d t, where d E D or d E V and

tare terms.

(c) a tuple of the for (t1> ... ,tn), where t1> ... ,tn are terms,

(d) a functor symbol application of the form f t, where f E F or f E V and t

are terms.

A head term is a match data term.

A result term is a term.

14

A cond tenn is:

(a) a term,

(b) a conjunct of the form c1 and c2 or, equivalently, cl,c2, where cl and c2

are cond terms or

(c) a disjunct of the form c1 or c2, where cl,c2 are cond terms.

An equation is:

(a) a fact A. where A is a head term,

(b) a functional equation

A "' B.

where A is a head term and B is a result term,

(c) a relational equation

A ifB. or

A:- B. or

A whereB.

where A is a head term and B is a cond term,

(d) a conditional equation

A - Bife. or

A '" B :-e. or

A - B where C.,

where A is a head term, B is a result term and C is a cond term,

(e) a conditional equation with alternatives

A "' B.

where A is a head term and B is an alternative term or

(I) a conditional equation with alternatives

A ifB. or

A:- B. or

A where B.

where A is a head term and B is an alternative term.

An alternative term is:

(a) a result or cond term,

(b) B '" A.

where B and A are alternative terms or

15

(c) B if A. or

B:-A.or

BwhereA.

where B and A are alternative terms.

Negative equations are deliberately restricted to:

(a) negative facts of the form

-A.

where A is a fact and

(b) negative relational equations of the form

- A ifB. or

- A:- B. or

- AwhereB.

where A is a head term and B is a cond term.

Aprogram is a set of equations and a distingwshed goal expression.

The complete syntax for modules, classes and types is given in the Appendix.

16

5. RED LOG Object Representation

This chapter serves as an introduction (albeit at a low-level) to the use of the

principle of design regularity which has been adhered to during the construction

of RED LOG.

In REDLOG all objects (variables, equations, lists, tuples, numbers, classes,

modules and other dermed objects) are first class in the sense that unification

may be attempted between any two objects; all objects may be returned as results

of equations and expressions; all objects may be used as substitutions and passed

as parameters. This IS achievable in the context of general unification (which

insists on equality being first-order decidable, as Goldfarb [31] reduced Hilbert's

tenth problem to that of the decision problem for second-order unification) by

building all objects from an identical representation, which is exactly what the

principle of design regularity would indicate! The representation chosen IS outlined

below.

The representation consists of names and ordered groupings (or tuples) of names.

All meanings attached to these and all reductions performed on these are entirely

a function of the abstract REDLOG machine as dermed in chapters 6, 9 and 10.

Note that

merely a

the fact that variables may be bound is not a special

function of the unification algorithm and interpretation of

machine. We adopt the following notation for groupings:

o is the null grouping,

(Gl, .. ~GN) is a grouping, where N } 1 and G1, ... ,GN are names or groupings.

Using groupings, representations for the various objects known to

abstract machine can be chosen:

(a) atoms are names.

(b) variables are groupings of the form 01, VAR) where VAR

representing the variables name,

(c) terms are groupings of the form (T, T1 , ... ,TN) where T IS

constructor symbol and T1, ... ,TN are the arguments to the term,

17

property, but

the abstract

the REDLOG

is an atom

a functor or

(d) equations are groupings of the form (E, HT, AT, CT) where HT is the head

term grouping, RT IS the result term grouping and cr is the cond term

grouping,

(e) modules are groupings of the form (M, Mod Name, Provides, Uses, Eqns)

where ModName is the module name, Provides 15 a grouping of names,

Uses is a grouping of names and Eqns is a grouping of equations,

(f) classes are groupings of the form (C, ClassName, AKO, Uses, Eqns) where

AKO (A-Kind-Of) identifies the type of the class.

All other entities, such as lists, numbers, trees and tuples, can be constructed

from the groupmg notation. However, for efficiency reasons a particular

implementation of REDLOG might choose to implement something like numbers in

a form corresponding to an underlying hardware representation.

To conform with the syntax of REDLOG given ill chapter 4 and the Appendix, the

following syntactic "sugarings" are adopted:

(a) T Arg for terms,

(b) lIT '" RT :- cr for equations (see chapter 4 and the Appendix for further

syntactical abbreviations and forms),

(c) see the Appendix for the syntax of modules and classes.

18

6. Informal Operational Semantics of REDLOG

The purpose of this chapter is to provide an English description of the reduction

process used in evaluating a RED LOG expression, for those readers who only wish

to get an informal understanding of this aspect of REDLOG.

In RED LOG, computation can be viewed as essentially the reduction of an

expression to canonical order, and the return of an environment consisting of

variable bindings used in obtaining the reduced form. In a functional language

(such as Miranda) only the reduced expression is returned, and III a logic

programming language (such as pure Prolog) only the environment is returned. The

integration of these two result types motivated both the title of the thesis and

the choice of the language's name. Languages such as EqLog, FunLog and TabLog

fit the model of logic programming languages, computing their reduced expression

purely as a side effect of their proof procedures. This side effect is achieved by

introducing special cases into the proof procedures for handling functions. In

LEAF the opposite occurs: the functional ccmponent is the metalanguage for the

logic programming component

execution mechanism thus

component

such as

at some stage

AppLog and full

and

may

in the

LISP

the result of execution is a reduced term, the

have used the

determination of

have a semantics

separate logic programming

the reduced term. Languages

intimately tied to the large

passive store model of the ALGOL type languages (indeed, a recent incarnation of

LISP, Scheme3 [9], acknowledged itself as an algorithmic language ill the vein of

ALGOL-60). RED LOG's simple integration of logic and functional programming

results III a single, uniform execution mechanism with much more pleasing

semantics than that of the other languages.

Currently, the usual Church-Rosser property does not hold in its normal form for

RED LOG as the reduced expression is not necessarily unique. To insist on

uniqueness would have forced the introduction of restraints on expressiveness,

such as non-superposition. In a parallel context the reduction process returns sets

of results, and this set will indeed be unique, irrespective of

. Church-Rosser property). In a sequential context, answers are

time (possibly through the use of backtracking if depth first

evaluation

produced

evaluation

order (the

one at a

is used)

with subsequent answers in the set available on request. Thus, the result of the

19

process for each answer is a reduced form and a new environment created by the

answer substitutions, which were set up by the unification parameter passing

mechanism. Note that the Church-Rosser property is still not attained In the

sequential implementation as the results are returned as an ordered sequence, and

not as an unordered set as is the case in the parallel context. Some sequential

implementations may in fact be deterministic, and then their sequentially produced

sequences of results will have the property.

Given a goal expression to translate to its canonical order, the RED LOG system

will first attempt to unify the expression with a head term of some equation

already specified to it. To do this it must rewrite any arguments of the goal

expression to canonical order (which is simply a recursive application of the

process outlined here). Reducing all arguments of the goal expression may be

wasteful of effort if the particular equation unified with the goal expression does

not utilise all of its parameters. This could be achieved through a delayed

reduction scheme, or a compiler optimisation (see Chapter 11).

Once it has translated the arguments of the goal expression to canonical order,

the revised goal expression is unified with the head term of an equation in the

program. If this IS unsuccessful then another equation head must be tried.

Assuming success, the bindings set up from the unification are permanent

(although not necessarily ground) for the duration of the rewrite.

Even though syntactically a fact does not appear to have a result term or a cond

term (see chapter 4 for definition), semantically it does, both of them being the

constant symbol TRUE (a negative fact has the constant symbol FALSE as result

term). Similarly a functorial equation has a hidden cond term equal to TRUE a

a relational equation has a hidden result term equal to TRUE (a negal,._

relational equation has a hidden result term of FALSE). Thus every equation has a

cond term and a result term, which provides a pleasing uniformity and simplified

semantics in REDLOG.

The

fust

term)

cond term of the selected equation IS

cause individual conjuncts and disjuncts

to be reduced. To do this the terms

20

then selected for reduction. This will

(if any, there may be just a single

within the conjuncts and disjuncts are

selected

of the

as goal

RED LOG

expressions. Each such

world. Four cases can

term can, of course, return any element

be identified: under a sequential semantics

the term in a conjunct or disjunct returns

1)

2)

the atom TRUE and a set of conditional bindings.

the atom FALSE. This indicates that the

return the atom FAlL (for the purposes

present goal is invalid and so we

of this discussion, see Chapter 8

for an alternative representation) as the result of the equation.

3) FAIL .. This indicates that the present set of bindings are invalid or that an

incorrect choice of equation was made. If there are any other equations

which can be unified with the goal expression then they are chosen for

reduction. If there are no more choices of equations left then the

conditional bindings must be re-evaluated and the term retried (i.e.

backtracking is initiated). If the conditional bindings cannot be altered

(because all other terms return FAlL on backtracking) FAlL is returned as

the rewrite of this equation.

4) anything other than the above three atoms. This IS an error or exception

condition, and the user of the REDLOG system will receive appropriate

notification. The REDLOG type checking system, if installed, will eliminate

the chance of this happening at run-time by producing a compile-time

error (see Chapter 8).

Under a parallel semantics each term may return sets of results (in a pipeJined

fashion) from the above four cases. Given sufficient processing elements,

backtracking would be unnecessary.

Once the cond term has returned the value TRUE through evaluation of the

conjuncts and disjuncts, evaluation of the result term can proceed in the context

of the fixed initial bindings and the conditional bindings just selected. The result

term is just treated as another goal expression and reduction proceeds as before.

The resulting canonical term is returned as the rewrite of the equation, along

with the environment derived.

Should this

recomputed

rewrite be rejected, the

(probably most efficiently

conditional

if done

21

bindings will then be

in stages). Under the

released and

new bindings

the result term is

previous rewrite, trus

bindings are again

returned.

again re-evaluated

is then returned

recomputed, until

and if the result is different

as the fmal result Failing that,

all choices are consumed and

from any

conditional

FAIL IS

Chapter 9 provides a more formal specification of the intended semantics for

REDLOG and Chapter 10 contains a simple definition of REDLOG semantics using

RED LOG itself as the metalanguage_

22

7. Scope Rules

The traditional scope rule for functional and logic programming languages has

been the current function, functional abstraction or clause (see Henderson [33]

and Kowalski [36]). This may prove restrictive in large scale programming as

values or environments computed in one part of the program (possibly with

considerable effort) may be valid in another. Although a reasonably clever

compiler can usually detect this and make the appropriate optimisation, the

programmer IS still forced ei ther to repeat code segments in the text or, more

likely, to worsen the proliferation of the number of parameters that tend to occur

in large programs written in functional or logical languages.

To solve this problem a pre·reduction environment is proposed. None of the other

languages reviewed proposed such a mechanism, and REDLOG only adopts a simple

version to be shown below. In order to denote the altered scope rules RED LOG

introduces the following constructs to alter the default, equation only, scope rule:

(a) The PostCondition Rule

This takes the syntactical form:

{<Equations>} <Neck_Symbol> <Cond_Term>

where < Equations> is one or more of <Equation> or further nested scope rules. A

restriction is that the environments set up by evaluating the cond term and any

unifications of the goal expression and the head term of an equation, must be

disjoint.

The intended operational semantics of this construct are, after unification has

been successful achieved with one of the head terms, the < eond Term> will be

reduced to obtain an extended environment. The full form of this scope rule is

not included in REDLOG, but only the restricted form below.

The restricted form IS that only the scope of alternative parts of an equation may

be modified:

23

<Head_Term> {<Alternative_Part> } <Neck_Symbol> <Cond_Term>

The previously mentioned restriction obviously does not apply in this case. An

example of the use of this scope has already been seen in chapter 3.

(b) The PreCondition Rule

This rule has not been included in the definition of REDLOG eitber, but is

presented here for completeness. It takes the syntactic form

if < Cond_ Term>

{ < Equations> }

{elsif < Cond_Term >

{ < Equations> } }

[else

{ < Equations> } J

end if

The operational semantics of this construct is that the

evaluated in the current environment, with the intention of

<eond_Term>'s are

picking an applicable

equation set. The disjoint environments restriction for post-conditions is removed.

24

8. The REDLOG Type System

The ann of this chapter is to describe and motivate the use of the RED LOG type

system and its associated type inference mechanism. The foundation of the work

on type inference are the seminal papers by Milner [41] and Hindley [34]. These

papers dealt with direct type inference only, and in this thesis the mechanism is

extended to allow type inference in the presence of derived type hierarchies.

REDLOG is defined to operate over a single universal domain U, subsets of U and

certain ordered groupings of elements of U which are also included in U (ordered

groupings can also be represented as sets, of course) . Even the equations which

are presented to the RED LOG compiler are in reality just shorthand for sets of a

certain type of ordered grouping of elements of U, called a pair. The term

mapping will be used for this set (which is presented to the REDLOG reduction

engine, at least conceptually) so as not to cause confusion with the shorthand

notation. Background can be obtained from Tennent [46] (Chapter 3), but for

completeness and to introduce the notation the basic concepts are included here.

Of course, the structure of U IS particular to REDLOG and therefore the section

on basic concepts should be read.

The particular U chosen IS a pragmatic issue. For instance, on a machine which

represents integers in 16 bits one may chose to exclude all integers other than-

32768 to 32767 from U and in a version of RED LOG to be used in Physics, the

complex numbers may be included. However, certain sets of objects are required

to be present in U by the RED LOG engine. These are the variables, the booleans

and the empty set.

The concepts of the REDLOG type system are built up In this chapter In sections

8.1 and 8.2. Section 8.3 contains an extract from the Appendix, listing the syntax

rules for type derivation. Section 8.4 describes the REDLOG type inference system

and section 8.5 closes the chapter with a discussion of a potential development

methodology which makes use of the REDLOG type system.

25

8.1. Basic Concepts

Definition

A type is a subset of U.

Definition

A tuple is an ordered grouping whose elements may belong to different types.

The notation

(to,···,t~

is used to denote a tuple.

Definition

A pair is a tuple witb exactly two elements.

Definition

A map is a pair whose first element belongs to the argument type of the mapping

and whose second element is a set of elements of the result type of the mapping.

Note: if the second element (the result element) is the empty set then the

REDLOG reduction engine will interpret this as implying failure.

Definition

A mapping is a set of maps belonging to the same type such that the first

element of all maps within the mapping are different.

Note: a mapping is itself a type.

26

Definition

A typing is a set of mappings and a type.

Note: this is commonly known as an abstract data type.

8.2. Type Variables and Functionality

Definition

A type variable is a symbol used to represent an element belonging to any type.

Type variables are a useful means of providing for generic or polymorphic

functional abstractions in a programming

the modern functional languages ML [8]

(as used in ML and Miranda), a type

denotes any type as indicated by the

this notion of a type variable has to

language and

and Miranda

variable (written

above definition.

be complicated

are an

[10]. In

T· 1 in

Later,

if it is

important feature of

the simplest scheme

this chapter, i). 0)

it will be seen that

to support the full

power of the REDLOG type system. Type variables are used to classify mappings

with a similar type structure together. The term functionality will be used for

this classification. As an example, construct U using N (the natural numbers)as a

basis, then in RED LOG the functionality

TO --+ TO

(where .. -+ .. is the symbol denoting a mapping. Note that this symbol is simply a

syntactic sugaring for a mapping, i.e. a set of maps of the same type, but with

different first elements) represents the type

{(O,m. (O,{O)), (O,{l}), ... , (O,{n}), ...

(O,{O,O}), ...

(I,m. (l,{O)), ...

«O),m. «O)),{O)), ...

27

((n.m •...).{})

... }.

the representation

infix use of the

being a little simpler in a purely functional language. Note

symbol " -> " In common with the whole of RED LOG.

the

type

constructors are defined to take exactly one argument. the use of an infix symbol

being allowed for a parr as a special case.

The REDLOG equation

succ n - n + 1

which has the functionality TO -> TO. but has the type

{(O.{l}). (1.{2}). (2.{3}) }

as its mapping.

generalisation or

equation and its

The functionality of an equation can thus be seen as a

abstraction of the semantic information contained by the

mapping (of course. an equation and its mapping represent the

same information although expressed in a different form).

8.2.1. Other Type Constructors

Apart from parrs and mapprngs there are a number of other useful type

constructors provided in RED LOG:

Definition

A union of two types TO and Tl IS a type consisting of aU the elements of TO

and Tl'

The infix symbol "I" is used to represent the union of two sets.

28

Definition

A list of type T is an ordered grouping whose elements all have the same type T.

A list is thus a singly typed tuple, and the notation:

is chosen to distinguish it from a normal tuple.

Definition

A record is a named type.

The notation

rnT

is used to denote a named type, where

as a generalisation of the constructor

.Miranda. The naming of a "null·typeu is

rn IS the record name. This can be seen

sugarmg for a type variable which

simply only write down the record

of languages like Prolog and LISP [7].

ranges

name.

of languages such as

also allowed. A null-type

over U. The syntactic

Such objects correspond

Prolog [12] or

is a

sugaring

to the

syntactic

is to

lIaton"._

A suitable

being the

representation for a named type

name and the second element

might be a

the type. The

pair with

empty set

fIrst element

would then

represent the null-type.

The generality of named types IS such that it forms a convenient structure with

which to represent all of REDLOG! For example, the equation:

Slice n - n + 1.

can be represented as the named type:

29

'" (succ n, + (n, 1))

whose type is then a named tuple of a named variable, whose type IS a number,

and a named tuple of a variable, whose type is a number, and a number.

Definition

A restriction of a type T is all elements of T which satisfy a specified predicate.

The notation

T~C

is used to denote a restriction.

Definition

A type is derived from one or more other types when it is built using the above

defined type constructors.

The notation

is used to denote the derivation of type TO from the type expression T E.

Definition

A type declaration is the fixing of a names type, where the type is built using

the above defined type constructors.

The notation

I :: TE

is used to denote the declaration of the type of the name l.

30

8.2.2. Examples

To give an idea of the flavour of type derivations a few small examples are

presented. A simple basic subtype hierarchy can be specified as:

atom :: = num I bool I char.

A string is a list of characters:

string: : = [char].

The special notation "c1 ... en" is adopted for strings.

A tree can easily be derived if use is made of a recursive type derivation:

tree T :: = left tree T I leaf T I right tree T.

The non-zero naturals can be specified using a restriction:

nznat :: = n :: num ~ n > 0 and integer n.

In fact the list type constructor is not really needed as it may be defined as:

although the appearance

that previously defined.

sugaring for the named pair

list T :: = nil I T cons list T.

of the syntax

Note the use

for lists is

of the infix

cons CT, list T).

then somewhat different from

cons, this being a syntactic

An example of type declarations has already been seen in Chapter 3.

31

8.3. Abstract EBNF Syntax Definition of Type Derivations and Declarations

derivation :: = type-heading :: = type-constructor

declaration :: = name :: type-constructor

type-heading :: = name I parameterised-name

paramaterised-name :: = name parameter

parameter :: = variable

I basic-type

I type-constructor

type-constructor :: = union

I restriction

I tuple

I list
I mapping

I basic-type

I derived-type

8.4. Type Inference

It IS the authors view that type inference and type checking are useful pragmatic

features of any programmlllg language. Type checking IS useful for the additional

security that results from the imposed discipline associated with it and for the

improved programming methodology which arises from programming in t:
presence of a typed universe. Type inference is useful as it allows the

programmer to chose when to avoid cluttering his program with obvious type

information, this being left to be deduced by the machine although the resultant

type-checking is no less strict. Explicit type information can be useful

documentation though, and this point is returned to in section 8.5.

A type inference mechanism IS thus defined to be part of REDLOG. Section 8.4.1

32

gives the type ruJes used by the type inference mechanism to both infer

check the types of the equations and type derivations

then outlines the actual implementation of the type

REDLOG).

The notation 11 .. 11 used for type declarations can be

notation used to write the rules is similar to that

The part of the rule above the line is the condition

is the inference which can be made when the condition is satisfied.

8.4.1. Type Inference Rules

8.4.1.1 . Direct Type Inference

1. Numbers

NEJi.

N:: num

2. Truth Values

BEl!£

B:: bool

3. Characters

CEC

C:: char

4. Variables

v E W. t Err

v::T

of the system. Section

inference system (written

read as "is of type".

of Cardelli and Wegner

and the part below the

and

8.4.2

10

The

[29] .

line

Note: T is the set of all types (i.e. the powerset of U) and V is the set of all

33

variables in U.

5. Lists

a:: Tl. t :: Tl

[alt]::[Tl]

Note: the principle of type extension ensures that the type of a list will be the

type list of the least upper bound type of the elements of the list, where

a least upper bound exists.

6. Tuples

a :: Tl. t :: T?

(a,t):: Tl xT2

7. Equations

f:: T,-T? a:: Tl. b :: TZ

fa = b::TI-T2

8. Equation Body

c :: boo!, r :: Tl

rifc::Tl

9. Equation Body with Alternatives

c:: boo!' r:: T), a:: Tl

rifc = a ::Tl

Note: the principle of type

of an equation body

types of the individual

extension is important

with alternatives is the

alternatives, assuming

exist amongst the types of the alternatives.

34

in determining that the type

least upper bound of the

that a type hierarchy does

10. Application

f:: TJ --+T2. a :: Tl

fa:: T2

Note: the principle of type extension provides an elegant form of application

type extension to the rule of application presented here.

8.4.1.2. Type Inference in the Presence of a Derived Type Hierarchy

11. Type Extension

a:: TtJJS...I2

a:: T2

12. Type Union

I J5...Iz...D s;: T 2

T2::= TI l T3

13. Type Restriction

IJS...I2, c :: bool

Tl:: = T2~ c

8.4.2. Implementation

The implementation of the type inference system has been

Prolog v4.0 for efficiency reasons (a very fast compiler IS

system), but is presented here in REDLOG for clarity of exposition.

completed

available

in

for

Arity

this

The translation to REDLOG bears a marked resemblance to the ruJes above. The

peripheral details of the system, such as the driver loop are not presented.

The implementation keeps an environment as its work space from which it infers

35

new facts which are then incorporated into the environment. Extensive use is

made of the logical variable to achieve this.

Each rule is defined as a functional

and the program fragment whose type

the functional is a new environment

REDLOG Reduction Machine will have

should not be confused).

of two arguments, the current environment

is currently being inferred. The result of

(of course the actual environment of the

been refmed in the process, these two

To begin with, a simple rule, rule 2 in section 8.4.1.1, is presented as translated

to REDLOG:

Envf-B :: bool :; Env if boolean B.

This may be read 'B can be deduced to be of type bool from Env with result •

if B is a member of the set of booleans". Apart from the complications introducea

by the environment, the resemblance of the RED LOG rule and rule 2 is obvious.

The translation of the other rules proceeds in a similar manner. The rule for lists

produces two REDLOG rules:

Envf-[] :: [T) " Env.

Envf-[AILJ:: [T) :; (Envf-A:: T)f-L:: [TJ.

The second of these rules may be read "[A I LJ can be deduced to be of type [TJ

from Env with result new Env if it can be deduced from the environment that A

is of type T and L is of type [T]". A translation using a single rule is possible by

utilising an alternative.

The RED LOG rule for equations is:

Envf-(N A " B):: (AT-+BT)

" Env f- N :: (AT -+ BT) f- A .. AT f-B :: BT.

This can be read "N A B is of type AT -+ BT if N is of type AT -+ BT and

36

A is of type AT and B is of type BT" if the Env argument is ignored.

To illustrate a possible method for producing an error message, the rule for

application can be augmented with the following functor:

on_error :: «EnvType,Typing) --+ EnvType, [string]) --+ EnvType

Ok on_error Message" Ok " err_output Message.

where err_output is a functor which transmits a list of strings to a terminal and

returns a null environment. The rule for application can then be defined as:

Env f- FA:: T - Env f- F .. (AT --+ T) f-A:: AT

on_error

[to_string F, must be a functor

must be a compatible argument"].

The translation of the other rules follow a similar pattern.

and " ,

8.4.2.1. Type Inference in the Presence of Derived Type Hierarchies

As was first noted

extra complexity into

10 Collier

the type

[30], the

inference

introduction of type hierarchies

system. Since a type variable

introduces

may now

represent

strictest

a number of types in a hierarchy and it is desired to always find the

type, it is necessary to alter the notion of type variable to incorporate

as was done by Collier. One method of dealing with this 10 the

inference mechanism would be to constantly take the intersection of

dependencies

actual type

the types associated with a variable and the types expected by the functor to

which the variable is an argument. Should this intersection produce the null set

for the variable then it would be necessary to see if the principle of type

extension could not produce a resolvent of the clash of types. If not then the

program is not well typed. This varies slightly from the method of Collier in that

types are carried around, in an effort to reduce the already large not all derived

time costs involved.

An alternative method would be to allow a type variable to only ever possess one

37

value, this being the type which is the most general of those encountered for

that type variable ill the particular type hierarchy. Should a functor demand a

stricter type for the type variable then this type is selected. This can safely be

done since all functors which accept a type which is a superset of the stricter

type will obviously accept the subset type as argument. To summarise, if a clash

of types is found for a type variable then instantiate that type variable to the

common ancestor of the types causing the clash, if the ancestor exists. If the

ancestor does not then the program is not well typed.

The above method will be called the law of type variable resolution. It works in

partnership with the law of composition resolution. This can be summarised as

follows: if a clash arises between the type of the argument of a function and the

type expected by the function then determine whether one of the clash types is a

direct ancestor of the other. If so then instantiate the smaller type to the

ancestor, else the program is not well-typed.

It is felt that this method may offer a solution to the combinatorial time costs

incurred by the previous method due to Collier. However, this has not been

formally verified.

8_4_3_ An Example of Type Inference

As an illustration of how the implementation of direct type inference works, a

short example is presented here.

The type of the quick-sort algorithm shown in chapter 3 can be inferred by the

following stages, presuming that there are standard defInitions for the operators:

++

>

([TJ. [T])->[TJ.

(num,num)--ibool.

(num,num)~ool.

Using the fIrst quick-sort equation and rules 7 and 5 the type of quick-sort is

inferred to be:

qsort :: [TJ -+(TJ.

38

Using the second equation of quick-sort, the type of "+ + " is used as a check to

insure that the result type of quick-sort is a list of elements of some type; the

rule for applications (10) also demands that the argument type is compatible and

so the types of the L and U variables IS sought, leading to the demand of the

type of the partition equation (the result type of this is demanded by rule 8 in

checking that it is boolean); by a repetition of this process and using all three

equations for partition and the number based relational operators > and {, the

type of partition is determined to be:

partition:: (num,[numl,[numl,[numj)->t:>ool.

which agrees with expectations so far and results in the type:

qsort :: [numl-->{numl.

for quick-sort, as expected with number based relational operators.

8.5. A Method for Type Specification

As has already been mentioned, the notation used for specifying the types of

equations and

part of the

script to that

to avoid any

would be to

variables and the notation for deriving new types forms a useful

documentation of a program (an aside: many people prefer the term

of program for a declarative language solution to a problem, so as

suggestion of proceduralism). A suggestion for taking this further

employ the method of type based specification as an early part of

the development cycle.

To perform a type based specification of a problem the programmer examines the

problem from the topmost level and regards its solution as being conducted by a

"black box". The shape of the input to and output from this "black box" is then

the transformation (if any) of types involved in solving the problem. This can be

specified using the mapping type operator. The shape of the input and output

(their types) may then be derived. Next, possible intermediate stages of type

transformation may be specified and "black boxes" or mappings dermed for them.

This process is then continued until the complete type structure of the program is

39

defmed, along with all the mappings to be performed. The fmal stage is then to

compile this type specification, relying on the type inference and checking

component of the compiler to verify the type specification. This process will

probably involve several iterations.

All that remains IS to implement the "black boxes", a series of equations. The

advantage of the type based specification method is the abstracted view of the

solution to a problem enjoyed by the programmer. This encourages the programmer

to critically examine the data structures used in solving the problem. This Issue

of representation is acknowledged by many researchers to be the most important

in Artificial Intelligence, and arguably so in many other fields. The breaking down

of the transformations into intermediate steps also results 1D a favorably

abstracted approach to top-down specification.

40

9. Formal Semantics of RED LOG

A continuation·based denotational semantics in the style of Tennent [47], Schmidt

[44] and Stoy [45] is presented. None of the languages of chapter 2 provide a

formal definition in the style of denotational semantics. Where there are

differences in notation, the notation of Schmidt will be adopted. These differences

are purely syntactic in nature and in no way affect the semantics of the

definition. The semantics of types and type derivations are omitted from the

semantics presented here, see Chapter 8 for a discussion of their meanings.

9.1. Abstract Syntax

S E Scripts

E E Equations

T E Terms

H E Head_Terms

R E Records

Te E Type_Expression

C E Conditional_Terms

V E Variables

Id E Identifiers

N E Numerals

B E Booleans

Ch E Chars

S .. - EgoalH

E .. El Ez I H {[=T] [if Cn.

T .. - NIB I Ch I [T] I (T1,Tz) I R T

H .. - Id T

C .. - T and CIT or C I not CIT

41

9.2. Semantic Algebras

1. Script Outputs

Domain

Answer = Denotable _Value x Subst

II. Denotable Values

Domain

vEDenotable_Value = lilt + Bool + Char +

(Denotable _Value-+f)ellotable _Value) +

(Denotable _Value x Denotable _Value) +

(Denotable_Value + Denotable_Value) +

Denotable_Value List +

III. The Truth Values

Domain

Identifier

BoolE JJl

Operations

true,

false: Bool

not : Bool-+Bool

and,

or : Bool x Bool-+Bool

IV. The Integers

Domain

IntE 7L

Operations

.. " minus one, zero, one, ... : Int

42

plus: Int x Int->fnt

minus: 1m x Int->fnt

times: Int x Int->fnt

div : Int x NzInt->fnt

equals,

lessthan,

lessthanequal,

greaterthan,

greaterthanequal: Int x Int-->Bool

V. The Characters

Domain

ChorE a:;

VI. The Lists

Domain

List = Nil + (D cons List)

Operations

Nil: Unit

cons : D x Lisl--Lisl

append: List x List--Lisl

VIr. Environments

Domain

(written infix)

(written infIx)

sE Subsl = Identifier--+f)enotoble _Value

Operations

emptysubst : Subsl

emptysubst =).,i.i

43

accesssubst: Identifier---+subst->Denotable_Value

accesssubst = :Ai>.s.s(i)

updatesubst : ldentifier->Denotable _value ---+Subst---+Subst

updatesubst = :Ai>.v>.s.[i Tv 1 s

VIII. The One Element Algebra

Domain

Unit (only a single element in the domain)

Operations

0: Unit

IX. Continuations, RED LOG's Control Algebra

Domain

cE Cmd_Cont = Subst-Answer

scESuccess_Cont = Failure_Cont--+cmd_Cont

fcEFailure_Cont = Cmd_Cont

Operations

succeeded: Success _ Cont

succeeded = Afc.As. in(Store, s)

failed: Failure Cont

failed = AS. in (String, "failure")

X. Evaluation Strategies

Domain

Strategy = Success _ Cont--->Failure _ Cont--+Cmd _ Cont

XI. Identifiers

Domain

Identifier = Id + (Id, Denotable_Value List)

Operations

MGU : Identifier--+ldentijier---+Subst---(Bool x Subst)

44

9.3. Valuation Functions

S:Seript->-Answer

S[EgoalT] ~

let (c, s) ~ T[T] (E[E] emptysubst) succeeded failed

in(cs,s)

E:Equation Subst-+Subst

dEl E2] ~

A s. (E [E I] 0 E [Ez]) s

E[H 6 T if c] ~ AS.

updatesubst H[H] oh if c] s

O:Eqn _ Body->(Strategy-+Subst->Cmd _Cant)

O[Tifd ~

AscAfel-s.

let (tr, s', c) ~ C[c]sc fe s in

tr T[T]s Dcs

H:Head _Term ---Identifier

H[Id T] ~ (Id, T)

H[Id] ~ Id

C:Conditional_ Tefm -+Strategy-+Subst->(Boo/ x Subst x Cmd_ Cant)

Chand d ~

Ascl-fcl-s.

let(tr,s',c) ~ c[T]scfcsin

tr->let (tr', s", c') ~ c[c]e s' in

tr'~true, s", c')Dc' s"Dfc 5'

chor d ~

Ascl-fel-s.

let (tf, s', e') ~ Ch] scfe s in

tr~true, s', c')

DIet (tr, s", en) ~ C[de s in

tr--+(true, s", c")Ofc s

45

efnot d =
AscAfcAs.

efT] = AscAfcAs.

let (tr, s', c') = efdsc fc s in

tr->fc sO (true, s', c')

let (c', s') = (T[T]s)sin

c' s--(true, s', sc)Ofc s

T:Term -+ Subst -+ Cmd Cont -+ Cmd_Cont -+ (Cmd_Cont x

nN] = N[N]

nB] = B[B]

nciJ = chkiJ
T[[Tl> ... ,Tnl] =

AS. let (c',s') =

collectlist Th l]S ... T[T n]s

n(T 1,· .. ,T n)] =
AS. let (c',s') =

collecttuple Th1]s, ... , T[Tn] s

T [FT] = A SA c. FT [FT] s c

FT:Functor _ Term->Subst-.cmd _ Cont-.cmd _ Cont

-+(Cmd_Cont xSubst)

FT [let] = A SA fCA sc

let (tr, s') = MGU Id s in tr--(sc, s') 0 fc s

rn V] = AS. accesssubst V s

FT [FT T] = A SA c. FT[FT]sc T[T]

9.4 Shortcomings of the Definition

Subst)

As already noted, the semantics do not cater for type declarations or derivations.

Chapter 8 provides adequate coverage of these concepts. A better semantic

defInition might be to split the environment into two: a function environment and

a substitution environment. The advantage of doing this is expositional, although

it also has relevance to an implementor of REDLOG: should the implementation

employ a split environment? Splitting the environment could result In performance

improvements. Chapter 10 contains a circular semantics m which a split

environment is used.

46

10. Implementing RED LOG in REDLOG

An outline implementation of REDLOG is conducted in REDLOG in this chapter as

a companion to Chapter 9, the denotational semantics of RED LOG. This is also

done to continue the tradition started by the 'LISP in LISP' interpreter [7], which

is considered to be a useful way of judging the complexity of a programming

language by some researchers. The interpreter is a less formal semantic

specification of REDLOG and uses a split environment. None of the languages of

chapter 2 provide meta· implementations.

The implementation is developed as a series of rules which model the semantic

meaning denoted by a REDLOG equation. The method of type specification

propounded in Chapter 8 section 5 of this thesis is used in section 10.1. The rules

themselves are then implemented in section 10.2.

10.1 . Type Specification of REDLOG

The outer level of interpretation is represented by

interp :: (syntax,defns,subst)'Bsulttype.

resulttype:: = (denotable_value,subst) I defns.

The symbol "interp" represents the "black box" which performs the transformation

of the syntactic form

using the definitions for

(usually empty). "defns"

of REDLOG to a "denotable_value" and its

equations and types in ttdefnsll and an initial

is assumed to contain all primitive operations.

to return a udefns" type will become clear in the next section.

environment

environment

The option

The next stage indicated in Chapter 8 is to derme the input and output type

domains. The syntactic domain is considered to be a list of equations or type

derivations:

syntax :: = [equation I type_derivation].

47

To simplify the exposition the type domain for equation is chosen to be the set

of RED LOG equations! This is in fact the most natural method, and is commonly

used in Prolog programs (where the built in predicate "readlt
IS used to read III

terms, see Clocksin and Mellish [12]). A similar choice is made for type

derivations.

The domain of denotable values in REDLOG is:

denotable_"'8Iue ,,- num bool char I variable name name T [T] (Tl,T2)

I T142 I nCo

This is of course a specification for the standard universal domain of REDLOG,

although a superset can be chosen if desired, as was intimated at the beginning

of Chapter 8.

The domain of substitutions is:

subSl:: = [subSl].

subst:: = (name, denotable_value) ! (variable, denotable_value).

According

structures

to Chapter 8

used to solve

the next stage is to specify the types of the intermediate

the problem. The problem of implementing RED LOG in

REDLOG IS in fact a trivial one and so there are no intermediate forms: the

translation is direct!

10.2. Implementing the Rules

Since there only emerges one mapping from the type specification of the problem.

it is only necessary to implement this to complete our translator!

The rules are as follows:

interp (N,D,S) " (N,S) if number N.

interp (B,D,S) " (B,S) if boolean B.

48

interp (C,D,S) '" (C,S) if char C,

interp (V,D,S) '" (V,S) if variable V,

interp (I ,D,S) '" (I,S) if identifier I.

interp ([J,D,S) '" ([J,S),

interp ([R I Rest),D,S) '" ([RI(Restl).s")

where (RI,S') ~ interp (R,D,S) and (Resll,S") = interp (Rest,D,S'),

interp ((R,Rest) ,D,S) '" ((RI ,Restl),S")

where (RI,S') ~ interp (R,D,S) and (Resll,S") - interp (Rest,D,S') ,

interp (F A,D,S) '" (FI AI ,S")

where (FI ,S') ~ interp (F,D,S) and (AI,S") ~ interp (A,D,S') ,

interp (El' E2,D,S) '" interp(E2,interpdef (El,D),S) if equation El'

interp (E goal G,D,S) '" interp (G,interp (E,D,S),S).

interpdef :: (equation,defns) -+ defns,

interpdef ((F A'" B) ,D) '" [(F A "'B) I DJ.

The astute reader familiar with Prolog may notice the use of the expression

"variable V" 10 one of the rules above, and may wonder if this is a "metalogical"

facility being introduced via the back-door as is done with the "vartl predicate in

Prolog. This is not In fact the case, as variables in REDLOG are truly fIrst-class.

Variables are legitimate members of the universal domain and thus a type

recogniser may be defIned for variables.

Note how the interpreter returns the current state of the environment if it is not

49

asked to perform any reductions. As can be seen from the above definition of

REDLOG in REDLOG, circular- (or meta-) implementations can be very compact

when a sufficiently powerful language is used to implement itself. The same

limitation in not including updating of type declarations and derivations as the

denotational semantics is present here. Note the splitting of the environments as

suggested in the previous chapter.

It would be an interesting experiment to formalise REDLOG sufficiently that it

could be substituted as the core language of the denotational semantics method

used in the previous chapters. The advantage of integrating the two would

probably lie in more compact semantic deflnitions.

50

11. Other Areas of Language Design Interest

In this chapter a number of areas of design which have not been explicitly

mentioned and which were not of direct interest to the main areas of the thesis

are discussed.

11.1. Reduction Order

A point glossed over in previous chapters is REDLOG's reduction order so this is

clarified here. The work of Burton [28] and Lindstrom [6] have influenced the

methodology selected for REDLOG.

Unlike Miranda [10] whose default reduction order is call-by-narne, REDLOG has

call-by-value as its default reduction order. The advantage of call-by-name is that

it will always produce termination when call-by-value terminates, but termination

of call-by-name does not imply termination of call-by-value. Overcomputation is

often also avoided with call-by-name and a useful programmmg style which makes

use of infinite data structures IS efficiently realisable with the call-by-name

reduction order. The advantage of call-by-value is chiefly that programs will often

require an order of magnitude less space in which to run, and garbage collection

can be facilitated as structures used to hold waiting-to-be-reduced structures

under call-by-narne

collected. Another

demand of the

can be reduced immediately and then unused nodes

reason for the selection of call-by-value for RED LOG

unification procedure for reduced arguments so that

selection can be performed.

garbage

is the

equation

In the spirit of REDLOG, a combination of these advantages is sought. After

Lindstrom [6], strictness analysis is to be used by a future RED LOG compiler to

determine exactly when an argument need not be reduced. This relies on

knowledge not only of the subsequent use of the argument (as in Lindstrom), but

also of the needs of the unification mechanism in determining which equation(s)

should be selected. This will allow the use of infinite constructs in the functional

style.

It should be noted that the use of infinite constructs are not entirely ruled out

51

by the current REDLOG system. Use of the logical variable can be made to stand

for infinite constructs, using unification to generate new logical variables as the

structure is refmed.

11.2. The Unification Algorithm

The actual unification algorithm to be

implementing REDLOG. A good candidate

used is worthy of consideration when

is Martelli and Montanari [40] or some

conceptual simplification thereof.

removmg the occur check), and

structure. This would considerably

further enhancing performance.

One idea is to

to regard the result

extend the power

11.3. The Metalanguage and Tools

allow unification loops (by

as a regular infinite data

of RED LOG, while possibly

The programming environment is increasingly being recognised as more than just a

combination of programming language implementation, operating system and editor

(see Good [32]) . Development tools are seen as an important aid to productivity

by many people from industry and academia, and range from simple pretty printers

and module managers to sophisticated correctness proving systems (Good [32]). It

is therefore important to establish some sort of metalanguage to allow the

creation of system tools which will manipulate the source program code in "

flexible and natural marmer.

The introduction of a second, different, language to act as the metalanguage of a

programming environment, is obviously a complicating factor and so the primary

development language is usually chosen as the metalanguage (as in CIUNIX [27]).

However, this is often an inappropriate choice if the prunary language IS not

particularly expressive (a simple C compiler written in C would involve several

thousand lines of source code!). With REDLOG this is not the case. The uniform

object representation of REDLOG and resultant first class status for all language

objects makes REDLOG especially suited for use as a metalanguage (cf. LEAF [15],

in which a single distinguished component is selected as the metalanguage, thus

restricting the power of the system). A REDLOG in REDLOG compiler is an order

of magnitude shorter than a C in C compiler! (the assumption being that both

52

languages are being compiled to architectures designed for the support of the

particular language.)

The provision of powerful

module construct and the

abstraction facilities m REDLOG, such as

hierarchical nature of the language itself,

the class and

allows flexible

"programming in the large", and encompasses "object-orientated" programming.

11.4 Existing Implementation

An early compiler wruch translated a small subset

(DEC-lO) Prolog was developed in standard Prolog on

been extended with a powerful new front-end which

of RED LOG. All the examples in this thesis have been executed.

of RED LOG into

an IBM-PC AT.

standard

This has

translates substantially more

The front end of the compiler is a three stage mechanism involving parsing, type

checking and type inference and then conversion to a form suitable for processing

by the earlier compiler. The parsing was achieved using the Definite clause

Grammar technique described in Clocksin and Mellish [12]. The typing system was

implemented in a very similar manner to that described in chapter 8 section 4.2,

although REDLOG was not used in the implementation for the reason mentioned at

the beginning of that section.

The final compilation to Prolog has much scope for improvement. The aim of the

current system was simply to obtain a working compiler in the shortest time

possible. No advantage was taken of potential optimisations in the form of the

RED LOG equations. One of the ideas could be employed is a means for attaining

improved efficiency through the use of the one way nature of the result term of

a REDLOG equation. Prolog is a useful target code for a trial implementation such

as this one is, but a target code of a lower-level

a production compiler were being implemented. A

this nature, if written m Prolog, would probably

current compiler (which is about two thousand Jines).

53

nature might be more useful if

more sophisticated compiler of

be of greater length than the

11 .5 Parallel Languages

An important Issue III future implementations of languages such as REDLOG is

their ability to be supported on a parallel process interpretation architecture. This

is an area which has been investigated by a number of researchers, the three

most prominent of which are Ehud Shapiro and his language Concurrent Prolog

[24J, Steve Gregory and his language PARLOG [23J and Michael Wise and his

language and architecture EPILOG [25J. The architecture of EPILOG is reviewed III

Wright [26J.

All three languages have a number of common characteristics. The most obvious

of these is some form of "guard" command which is used as an additional

constraint on equation selection. REDLOG's conditional term can be seen to fit

this requirement in a remarkably natural way, as opposed to the somewhat

artificial and operationally orientated approach of the other three languages which

propose that the guard be read as a special kind of conjunction.

The rest of the clause is usually placed after the guard command ill these

languages. RED LOG's functional result term is suitable for this purpose, and the

explicit flow of information embodied ill the result term is of particular

importance. Instead of using unsightly annotations to the variables III these

clauses, as IS done in the three parallel languages, use can be made of the

explicit relationship defined amongst the elements of a RED LOG result term to

efficiently obtain this information. This area is worthy of extensive investigation

(and another thesis!) on its own.

54

12. Conclusion

The REDLOG experiment has successfully created a language III which a free

mixing of programming language styles may be employed by a programmer in the

solution to a problem, while at · the same time remaining a language with a single

execution mechanism. REDLOG IS a new approach to programming, rather than a

patched logic programming or functional programming language. It is believed that

the resultant conceptual simplicity of the language is the way to achieve a major

gain in programmer productivity.

Compared to much of the related work, REDLOG's method of integrating logic and

functional

simplicity

approach

formally

language.

programming seems most natural.

often results In greater

seems promising. The

and informally, which IS

generality

syntax and

of some

With any mechanism or algorithm

and power and thus the RED LOG

semantics have been described both

importance for an implementor of the

The uniformity of REDLOG, in which all objects, from variables to classes and

modules, are first-class, is also an important factor in gaining expressive power.

This regularity should both reduce the learning curve involved in acquiring a

thorough knowledge of using REDLOG, and reduce the size of programs written in

RED LOG. Another important aspect of REDLOGs uniformity is its type system

which can be used to represent the whole of REDLOG in a concise and regular

way.

The type inference mechanism,

hierarchies, is an essential tool

new types is pleasingly familiar,

to efficiently perform in the

important.

and its method for dealing

for program development. The

and the ability of the type

presence of such derived

with derived type

method for deriving

inference mechanism

type hierarchies is

Throughout the design of REDLOG a careful balance

and efficiency was striven for, leading to a language

disciplined specifications, and software production.

between expressive power

which can be used for

55

12.1. Future Directions

An interesting project would be to develop a complete programming environment

written entirely in REDLOG. This would involve the development of an efficient

compiler for full RED LOG (in a bootstrapping fashion), before continuing with the

development of the rest of the environment. This efficient compiler would use the

front·end mentioned in the previous section, and would then use a new code

generation phase. This could be broken down into two stages, firstly an

intermediate code which would reflect a suitable architecture for RED LOG, and

then a fmal phase of code generation onto a conventional architecture.

Another area currently being examined is a process interpretation for RED LOG. It

is hoped that such a radical change of the operational semantics of RED LOG will

have little effect on the form of the REDLOG language itself. Many of the

constructs used by the EPILOG [25] language are naturally embodied in the form

of RED LOG which currently exists, providing promising support for this hope.

The development of a more concise semantics deflnition method than the current

denotational semantics definition IS another area worth investigating. The

suitability (and length) of a semantics deflnition method is related directly to the

language being defmed, at least with the current technology.

A weakness of the current

constructs. Chapter 11 section

introduced into RED LOG, but

practical rigors of implementation.

implementation of

1 has already

these suggestions

RED LOG is the

pointed out how

have not been

lack of infinite

these could be

subjected to the

A further weakness is the lack of standardised input and output facilities.

a deliberate move pending the implementation of infinite constructs which

used to elegantly implement such facilities.

This is

can be

56

13. Appendix: EBNF Syntax Definition of REDLOG Equations

Module

Interface

:: = module Module_Identifier Interface Defmitions

:: = Provides [Interface]

I Uses [Interface]

::= provides {Domain_Spec} Provides

Uses :: = uses identifier {, Identifier} (; I Carriage_Return)}

Class

Definitions

:: = class Class_Identifier ako Identifier Provides Definitions

:: = equations {Equation I Domain_spec}

Domain_Spec :: = Derivation

I Declaration

Derivation :: = Type·heading :: = Type-constructor

Declaration :: = Name:: Type-constructor

Typeheading :: = Name I Parameterised-name

Paramaterised-name :: = Name Parameter

Parameter :: = Variable

I Basic-type

I Type-constructor

Type-constructor :: = Union

I Restriction

I Tuple

I List

I Mapping

I Basic-type

I Derived-type

Equation

Head Term

:: = Head]erm {[Result]art] [Cond]art]}. I Domain_Spec.

:: = Data Term

I Functor_Symbol [(Data]erm{,Data_Term})]

Result_Part :: = =Term

Cond_Part ::= Neck_Symbol Cond_Term

Cond_Term ::=Term

I Term J unctive _Symbol Cond _Term

I Negation Cond _Term

57

Neck_Symbol :: = :

lit
I where

Junctive_Symbol:: = and

I ,
lor

Negation ::= not

Term ::= Data_Term

I (Functor_Symbol

I Constructor_Symbol) [(Term{ , Term})]

:: = Variable

I Constructor_Symbol[(DataJerm{, Data_Term})]

Functor_Symbol :: = Identifier

Constructor_Symbol :: = Identifier

Variable

Name

:: = Identifier

:: = Identifier

Syntactical abbreviations and sugarings for numbers

3, are also dermed for standard REDLOG. The

dermed here.

58

and lists, as seen in

syntax for scope rules

chapter

is Dot

14. References and Bibliography

Functional Languages and Extensions

[1] Abramson, H., "A Prological DefInition of HASL: A Purely Functional

[2]

Language with UnifIcation-Based Conditional Binding Expressions", New

Generation Computing, Vol. 2, No.1, pp 3-35,1984.

Backus, J., "Can Programming be Liberated

A Programming Language and its Algebra",

1978.

from the Von-Neumann Style?

A CM Turing Award Lecture,

[3] Burstall, R.M., D.B. MacQueen and D.T. Sanella "HOPE: an Experimental

Applicative Language", Lisp Conference, ACM, 1980, pp136-143.

[4] Hoffman, C.M. and MJ. O'Donnell, 'Programming with Equations", ACM

Transactions on Programming Languages and Systems, Vol. 4 No. 1, January

1982, pp83-112.

[5] Hughes, J.M. "The Design and Implementation of Programming Languages",

PIt.D Tltesis, Oxford University 1984.

[6] Lindstrom, G., "Functional Programming . and the Logical Variable", Froc.

Principles of Programming Languages, ACM, 1985, pp266-280.

[7] McCarthy, J. et al. "Lisp 1.5 Programmers Manual", The MIT Press, 1962.

[8] Milner, R., "A Proposal for Standard ML", Proc. Symp. LISP and

Functional Languages, ACM, New York, August 1984, pp184-197.

[9] Rees, J. and W. Clinger (Eds), "Revised3 Report on the Algorithmic

Language Scheme", SIGPLAN Notices, Vol. 21 No. 12, December 1986.

59

[10] Turner, D.A., "Miranda: A non-strict Functional language with Polymorphic

Types", Proc. IFIP Int. Cont on Functional Programming and

Architecture, Nancy France, Sept. 1985 (Springer-Verlag Lecture

Computer Science, Vol. 205).

computer

Notes in

[11] Wright, D.A., 'Rhodes-FP and Declarative Languages", B.Sc. (Hons) Thesis,

Rhodes University, 1986.

Prolog and Extensions

[12] Clocksin, W.F. and C.S. Mellish "Progranuning in Prolog", Springer-Verlag

1981.

[13] Colmerauer, A. "Prolog and Infinite Trees", in K.L. Clark and S. -A.

Tarnlund, Eds., Logic Programming, Academic Press, 1982.

[14] Covington, M.A. "Eliminating unwanted loops in Prolog", SIGPLAN Notices,

20, 1(1985), pp20-26.

Integrated Languages

[15] Barbuti, R., M. Bellia, G. Levi and M. Martelli, "LEAF: A Language which

Integrates Logic,

Functions, Relations

Prentice-Hall, 1986.

Equations and Functions",

and Equations, D. DeGroot

In Logic Programming:

and G. Lindstrom, Eds.,

[16] Cohen, S., "The Applog Language", In Logic Programming: Functions,

Relations and Equations, D. DeGroot and G. Lindstrom, Eds., Prentice-Hall,

1986.

[17] Darlington, J., AJ. Field and H. Pull, "The Unification of Functional and

Logic Languages", In Logic Programming: Functions, Relations and

Equations, D. DeGroot and G. Lindstrom, Eds., Prentice-Hall, 1986.

60

[18] Goguen, J.A. and J.Meseguer "EQLOG: Equality, Types, and Generic Modules

for Logic Programming", Journal of Logic Programming 1, 2(1984), pp 179-

210.

[19] Kornfeld, W.A., "Equality for Prolog", Proc. 7th Int. Joint Conf on

Artificial Intelligence, 1983, pp 514-519.

[20] Malachi, Y., and R. Waldinger, ''TABLOG: A New Approach to Logic

Programming", Proceedings of the Symposium on LISP and Functional

Programming, ACM, 1984, pp323-330.

[21] Subrahmanyam, P.A. and J.-H. You "Pattern Driven Lazy Reduction: a

Unifying Mechanism for Functional and Logic Programs", Proc. Principles

of Programming Languages, ACM, 1984, pp228-234.

[22] Wright, D.A., "An Integration of Reduction and Logic for Programming

Languages", M.Sc Thesis, Rhodes University (in preparation).

Parallel Prologs and Implementation

[23] Gregory, S., "Parallel Logic Programming in PARLOG", Addison-Wesley,

1987.

[24] Shapiro, E.Y., "A Subset of Concurrent Prolog and its Interpreter", TR-003,

ICOT,1983.

[25] Wise, M.J., "Prolog Multiprocessors", Prentice-Hall, 1986.

[26] Wright, D.A., "Two Promising Approaches to Fifth Generation Systems",

Technical Document 87/36, Rhodes University 1987.

Background

[27] Bourne, S.R., "The Unix System V Environment", Addison-Wesley, 1987.

61

[28] Burton, F.W., "Functional Programming for Concurrent and Distributed

Computing", The Computer Journal, Vol. 30 No.5, October 1987, pp437-450.

[29] Cardelli, L. and P.

Polymorphism", ACM

pp471-522.

Wegner, "On Understanding Types, Data Abstraction and

Computing SUlveyS, Vol. 17 No. 4, December 1985,

[30] Collier, P., "Type Inference in the presence of a Basic Type Hierarchy",

private co=unication, 1987.

[31] Goldfarb, D., "The Undecidability of the Second Order Unification

Problem", Journal of Theoretical Computer Science, 13(1981), pp 225-230.

[32] Good, D.I., "Mechanical Proofs about Computer programs", in Mathematical

Logic and Programming Languages, The Royal Society, Prentice-Hall, 1985.

[33] Henderson, P., "Functional Programming: Application and Implementation",

Prentice-Hall, 1980.

[34] Hindley, R., "The Principal Type Scheme of an Object in Combinatory

Logic", Trans. Am. Math. Soc., 146, December 1969, pp29-60.

[35] Huet, G., "Confluent Reductions: Abstract Properties and Applications to

Term Rewriting Systems", Journal of the ACM, 27, 4(1980), pp 797-821.

[36] Kowalski, R.A., "The Relation between Logic Programming and Logic

Specification", in Mathematical Logic and Programming Languages, The

Royal Society, Prentice-Hall, 1985.

[37] Kowalski, R.A., "Logic for Problem Solving", North-Holland, 1979.

[38] Lloyd, J.W., "Foundations of Logic Programming", Springer-Verlag, 1984.

62

