1,323 research outputs found

    The feasibility of micromachined dynamic resonant beam coriolis true mass flow meter

    Get PDF
    The technological advances of micro-electro-mechanical systems (MEMS) in the past two decades have been remarkable for innovations in microfluidic systems as well as automotive applications such as pressure sensors and accelerometers. MEMS flow sensing has emerged as a field of interest in microfluidics, with a variety of sensing methods being miniaturized, such as thermal anemometry, ultrasonic sensing and flow measurement based on the Coriolis effect. Coriolis sensing is particularly attractive since, unlike most other methods which provide volumetric flow information, Coriolis sensing is capable of providing a direct, true mass flow measurement. Because of this advantage, Coriolis flow sensing has engendered strong interest in developing miniature device designs, fabrication techniques, and sensitive Coriolis detection methods. Research and development efforts have been undertaken both in academia and industry to make inexpensive, highly sensitive, reliable, and appropriately packaged Coriolis solutions. One research focus has been on detection and read-out methods for Coriolis-induced signals. Piezoresistive, optical and capacitive methods have all been tried. This dissertation introduces the resonant beam as a detecting method for Coriolis mass flow sensing. Because resonant beams measure frequency changes, they can be highly sensitive, much more so than the previously tried methods. Resonant beams have been successfully demonstrated in MEMS pressure sensors and accelerometers. This work extends their application to Coriolis mass flow devices

    Fabrication of micro separation column for miniaturized gas chromatography system

    Get PDF
    The emphasis of this work is on the fabrication of a micro separation column for applicaton in miniaturized gas chromatography system. The micro column was made by microchannels fabricated on the silicon wafer and sealed with a glass lid. The microchannels were fabricated by wet etching process and the channels were of length 2m , width 200 μm and depth 100 μm. The channels were closed by sealing with Pyrex glass. Silicide bonding was done for the bonding of silicon with Pyrex glass. Ti was used as an intermediate layer and bonded at a temperature of 377 ◦C and a force of 1kN. During bonding Ti forms an alloy with silicon and forms Titanium silicide and this helps to bond the glass wafer with silicom wafer with microchannels etched on it

    The Feasibility of a Fully Miniaturized Magneto-Optical Trap for Portable Ultracold Quantum Technology

    Full text link
    Experiments using laser cooled atoms and ions show real promise for practical applications in quantum- enhanced metrology, timing, navigation, and sensing as well as exotic roles in quantum computing, networking and simulation. The heart of many of these experiments has been translated to microfabricated platforms known as atom chips whose construction readily lend themselves to integration with larger systems and future mass production. To truly make the jump from laboratory demonstrations to practical, rugged devices, the complex surrounding infrastructure (including vacuum systems, optics, and lasers) also needs to be miniatur- ized and integrated. In this paper we explore the feasibility of applying this approach to the Magneto-Optical Trap; incorporating the vacuum system, atom source and optical geometry into a permanently sealed micro- litre system capable of maintaining 101010^{-10} mbar for more than 1000 days of operation with passive pumping alone. We demonstrate such an engineering challenge is achievable using recent advances in semiconductor microfabrication techniques and materialsComment: 23 pages, 10 figure

    High Aspect-ratio Biomimetic Hair-like Microstructure Arrays for MEMS Multi-Transducer Platform

    Full text link
    Many emerging applications of sensing microsystems in health care, environment, security and transportation systems require improved sensitivity and selectivity, redundancy, robustness, increased dynamic range, as well as small size, low power and low cost. Providing all of these features in a system consisting of one sensor is not practical or possible. Micro electro mechanical microsystems (MEMS) that combine a large sensor array with signal processing circuits could provide these features. To build such multi-transducer microsystems we get inspiration from “hair”, a structure frequently used in nature. Hair is a simple yet elegant structure that offers many attractive features such as large length to cross-sectional area ratio, large exposed surface area, ability to include different sensing materials, and ability to interact with surrounding media in sophisticated ways. In this thesis, we have developed a microfabrication technology to build 3D biomimetic hair structures for MEMS multi-transducer platform. Direct integration with CMOS will enable signal processing of dense arrays of 100s or 1000s of MEMS transducers within a small chip area. We have developed a new device structure that mimics biological hair. It includes a vertical spring, a proof-mass atop the spring, and high aspect-ratio narrow electrostatic gaps to adjacent electrodes for sensing and actuation. Based on this structure, we have developed three generations of 3D high aspect-ratio, small-footprint, low-noise accelerometers. Arrays of both high-sensitivity capacitive and threshold accelerometers are designed and tested, and they demonstrate extended full-scale detection range and frequency bandwidth. The first-generation capacitive hair accelerometer arrays are based on Silicon-on-Glass (SOG) process utilizing 500 µm thick silicon, achieving a highest sensor density of ~100 sensors/mm2 connected in parallel. Minimum capacitive gap is 5 μm with device height of 400 μm and spring length of 300 μm. A custom-designed Bosch deep-reactive-etching (DRIE) process is developed to etch ultra-deep (> 500 µm) ultra-high aspect-ratio (UHAR) features (AR > 40) with straight sidewalls and reduced undercut across a wide range of feature sizes. A two-gap dry-release process is developed for the second-generation capacitive hair accelerometers. Due to the large device height at full wafer thickness of 1 mm and UHAR capacitive transduction gaps at 2 µm that extend > 200 µm, the accelerometer achieves sub-µg resolution (< 1µg/√Hz) and high sensitivity (1pF/g/mm2), having an area smaller than any previous precision accelerometers with similar performance. Each sensor chip consists of devices with various design parameter to cover a wide range. Bonding with metal interlayers at < 400 °C allows direct integration of these devices on top of CMOS circuits. The third-generation digital threshold hair accelerometer takes advantage of large aspect-ratio of the hair structure and UHAR DRIE structures to provide low noise (< 600 ng/√Hz per mm2 footprint proof-mass due to small contact area) and low power threshold acceleration detection. 16-element (4-bit) and 32-element (5-bit) arrays of threshold devices (total chip area being < 1 cm2) with evenly-spaced threshold gap dimensions from 1 µm to 4 µm as well as with hair spring cross-sectional area from 102 µm to 302 µm are designed to suit specific g-ranges from < 100 mg to 50 g. This hair sensor and sensor array technology is suited for forming MEMS transducer arrays with circuits, including high performance IMUs as well as miniaturized detectors and actuators that require high temporal and spatial resolution, analogous to high-density CMOS imagers.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143975/1/yemin_1.pd

    High performance 3-folded symmetric decoupled MEMS gyroscopes

    Get PDF
    This thesis reports, for the first time, on a novel design and architecture for realizing inertial grade gyroscope based on Micro-Electro-Mechanical Systems (MEMS) technology. The proposed device is suitable for high-precision Inertial Navigation Systems (INS). The new design has been investigated analytically and numerically by means of Finite Element Modeling (FEM) of the shapes, resonance frequencies and decoupling of the natural drive and sense modes of the various implementations. Also, famous phenomena known as spring softening and spring hardening are studied. Their effect on the gyroscope operation is modeled numerically in Matlab/Simulink platform. This latter model is used to predict the drive/sense mode matching capability of the proposed designs. Based on the comparison with the best recently reported performance towards inertial grade operation, it is expected that the novel architecture further lowers the dominant Brownian (thermo-mechanical) noise level by more than an order of magnitude (down to 0.08º/hr). Moreover, the gyroscope\u27s figure of merit, such as output sensitivity (150 mV/º/s), is expected to be improved by more than two orders of magnitude. This necessarily results in a signal to noise ratio (SNR) which is up to three orders of magnitude higher (up to 1,900mV/ º/hr). Furthermore, the novel concept introduced in this work for building MEMS gyroscopes allows reducing the sense parasitic capacitance by up to an order of magnitude. This in turn reduces the drive mode coupling or quadrature errors in the sensor\u27s output signal. The new approach employs Silicon-on-Insulator (SOI) substrates that allows the realization of large mass (\u3e1.6mg), large sense capacitance (\u3e2.2pF), high quality factors (\u3e21,000), large drive amplitude (~2-4 µm) and low resonance frequency (~3-4 KHz) as well as the consequently suppressed noise floor and reduced support losses for high-performance vacuum operation. Several challenges were encountered during fabrication that required developing high aspect ratio (up to 1:20) etching process for deep trenches (up to 500 µm). Frequency Response measurement platform was built for devices characterization. The measurements were performed at atmospheric pressures causing huge drop of the devices performance. Therefore, various MEMS gyroscope packaging technologies are studied. Wafer Level Packaging (WLP) is selected to encapsulate the fabricated devices under vacuum by utilizing wafer bonding. Through Silicon Via (TSV) technology was developed (as connections) to transfer the electrical signals (of the fabricated devices) outside the cap wafers

    Plasma-activated fusion bonding for vacuum encapsulation of microdevices

    Get PDF
    A fabrication process for vacuum-encapsulating PZT microcantilevers was designed in this dissertation. Initially, a low temperature wafer-bonding recipe was optimized with the help of plasma-activation. Conventional direct fusion bonding temperature was reduced from 400°C to 85°C, and final thermal annealing temperature and time of 1000°C for 4 hours (hr) were significantly reduced to 300°C and 1 hr respectively. Tensile tests conducted on dies diced from the bonded wafer stack revealed bond strengths of 22.15 MPa, which was close to the bulk fracture strength of 24 MPa for silicon. Near infrared images of the wafer stack showed no debonded regions at the interface. Surface and interface chemistry of oxygen plasma-activated wafers before, during, and after bonding were investigated. Significance of wet chemical activation technique, like RCA (Radio Corporation of America) cleaning, was studied. The time interval between plasma-activation and fusion bonding was varied, and its effect on the bond quality and bond strength was investigated. Decrease in the bond-quality and strength was observed with an increase in storage time. However, an unexpected increase in the bond quality was observed after 48 hr, and was attributed to the increase in the interfacial oxide layer. Further investigations revealed that the interfacial oxide layer was capable of absorbing gas molecules released as a byproduct of ongoing reactions at the interface of the two wafers. Gettering capability of the interfacial oxide layer was confirmed through the bonding of plasma-activated and 48 hr stored silicon (Si) and silicon dioxide (SiO2) wafers. Infrared images showed a good bond for the wafer stack. Since designing a fabrication process flow for vacuum-encapsulation of microdevices was the primary objective, lead zirconate titanate microcantilevers were fabricated onto a silicon substrate. The microdevices were actuated in ambient air pressure as well as in a vacuum environment. Broadening of the resonance curve was observed with an increase in the magnitude of ambient pressure, and is a result of increased air-damping. Experimental results obtained were compared to theoretical results from finite element modeling analyses. Vacuum cavities were fabricated between two Si wafers. Optical lid-deflection method of measuring internal cavity pressure was explored and employed with the help of high aspect ratio pressure diaphragms on a capping wafer. An investigation of seal integrity of the vacuum package revealed real/virtual leaks. The gettering capability of the SiO2 layer was employed in order to preserve the vacuum-level in the cavities. Two types of gettering patterns were investigated. It was concluded that an SiO2 getter layer at the interface increased the seal-integrity of the vacuum packages, while getter rings still showed signs of real leaks. In addition, it was observed that the internal vacuum-level was higher for cavities with getter rings as compared to cavities without getters. It was concluded that getter rings were capable of preventing virtual leaks but not real leaks. A thick interfacial getter layer, however, prevented both the real and virtual leaks. Finally, a vacuum-packaging fabrication method to encapsulate lead zirconate titanate microcantilevers was proposed. In addition, more accurate methods of measuring package vacuum pressure magnitudes were proposed

    Microsensors for Microreaction and Lab-on-a-Chip Applications

    Get PDF
    corecore