8 research outputs found

    Reduction of Switching Losses in Active Power Filters With a New Generalized Discontinuous-PWM Strategy

    No full text

    High power conversion chain for hybrid aircraft propulsion

    Get PDF
    Recently, the use of air transport systems has increased considerably. Therefore, the current environmental considerations are pushing to reduce their ecological impact. Projects such as Clean Sky 2 provide an answer to this problem, by proposing a reduction in CO2 emissions and noise pollution. The development of a hybrid-electric aircraft would reduce these emissions by reducing the size and weight of the systems and using more efficient electrical systems. This would reduce fuel consumption and therefore pollutant emissions. This work takes part into HASTECS Clean Sky 2 European project which aims to optimize the complete electrical chain of the hybrid aircraft integrating all aeronautical constraints such as partial discharges for electrical equipment placed in the non-pressurized zone. HASTECS project has set itself the challenge of doubling the specific power of electric machines including their cooling from 5 kW/kg to 10 kW/kg, while the power electronics, with their cooling system, would evolve from 15 kW/kg in 2025 to 25 kW/kg in 2035. To increase the specific power, the cooling system mass should be decreased either by optimizing its components which is done by the 4th work package (WP4) or by reducing power losses. Inverter losses reduction could be achieved by using small voltage rating components, by playing on modulation strategies or by using more performant semiconductors. The first option could be done by using multilevel architectures to avoid the direct series association. Unlike direct series association, the parallel one is easier to manage in terms of switches command so it was allowed in our studies. Several inverter topologies (2-, 3- and 5-level topologies) and modulation strategies (PWM, third harmonic injection, discontinuous PWM and full-wave) were compared using several semiconductors generations to choose the most performant solution in terms of efficiency and specific power. For the considered mission profile, the inverter could be sized for the maximum power point (takeoff) or the most extended flight phase (cruise). A comparative study of modulation strategies was carried out to highlight the structure and modulation presenting the best performance to minimize the losses for the chosen sizing points using most interesting topologies for the studied mission profile using two electrical motor windings configurations proposed by WP

    ROBUST CONTROLLER DESIGN FOR VOLTAGE SOURCE INVERTERS IN MICROGRIDS

    Get PDF

    Study and RTDS implementation of some controllers for performance and power quality improvement of an induction motor drive system

    Get PDF
    The present research work is directed to study of some controllers for design, modelling, simulation and RTDS implementation of induction motor (IM) drive system to identify suitable controller for high performance.Initially dynamic modelling and simulation of a feedback linearization scheme for high performance IM drive is carried out. The flux measurement required in this scheme is achieved using flux estimator rather sensor to simplify the system. The complexity and calculation involved in reference frame transformation is taken care by implementing the scheme in stationary reference frame. Two linear and independent subsystems: (i) Electrical and (ii) Mechanical are created by linearizing control scheme. The systematic design of closed loop control scheme using Proportional Integral (PI) controller is developed for implementation. To take care of uncertainties in the system the Fuzzy controller is added to speed controller. Sliding Mode (SM) controller considered to be a robust control strategy is designed and developed for IM drive. A procedure of finding gain and bandwidth of the controller is developed to take care of model inaccuracies, load disturbances and rotor resistance variation. During practical implementation of this controller for IM leads to oscillations and of state variable chattering due to presence of limiter and PWM inverter in the system. Iterative Learning controller (ILC) introduced in recent time is gaining popularity due to capability to take care of short comings of Sliding Mode controller. Feedback and feed forward Iterative Learning controller combining fuzzy logic is designed and developed. The MATLAB/SIMULINK model of IM drive with controllers designed are simulated under various possible operating conditions. A comparative study of three controllers is carried out in similar situation and the response of the drive system is presented.Normally we neglect stability aspect of IM while investigating procedure for performance improvement of IM drive. Stability study of IM in open loop and closed vii loop conditions using Lyapunov criteria and also considering the power balance equation are presented

    Articles indexats publicats per investigadors del Campus de Terrassa: 2012

    Get PDF
    Aquest infrome recull els 221 treballs publicats per 216 investigadors/es del Campus de Terrassa en revistes indexades al Journal Citation Report durant el 2012Preprin

    HASTECS: Hybrid Aircraft: reSearch on Thermal and Electric Components and Systems

    Get PDF
    In 2019, transportation was the fastest growing sector, contributing to environmental degradation. Finding sustainable solutions that pollute less is a key element in solving this problem, particularly for the aviation sector, which accounts for around 2-3% of global CO2 emissions. With the advent of Covid-19, air traffic seems to have come to a fairly permanent halt, but this pandemic reinforces the need to move towards a "cleaner sky" and respect for the environment, which is the objective of the Clean Sky2 program (H2020 EU), the context in which the HASTECS project has been launched in September 2016
    corecore