390 research outputs found

    Transcranial magnetic stimulation combined with functional magnetic resonance imaging: From target identification to prediction of therapeutic effects in stroke patients

    Get PDF
    Repetitive transcranial magnetic stimulation (rTMS), particularly theta-burst stimulation (TBS), can be applied to modulate cortical excitability beyond the period of stimulation (Huang et al., 2005). Consequently, rTMS is regarded to have high therapeutic potential for treatment of various psychiatric and neurological diseases related to cortical hypo- or hyperexcitability such as stroke (Ridding & Rothwell, 2007). Whether rTMS induced effects are sufficiently robust to be useful in clinical settings is currently under intense investigation. The most challenging problem appears to be considerably high variability in rTMS induced effects both, across studies (Hoogendam et al., 2010) and individual patients (Ameli et al., 2009). Hence, the major goal of the present thesis was to improve rTMS intervention strategies in stroke patients suffering from chronic motor hand deficits by multimodal uses of (repetitive) TMS with state-of-the-art neuroimaging techniques. Sources of variance across studies are likely to be methodological in origin. They might result from different strategies to identify the cortical rTMS target position. Individual functional magnetic resonance (fMRI) data have been demonstrated to yield best spatial approximations of the most excitable TMS position compared to other techniques (Sparing et al., 2008). However, there is still a considerably large spatial mismatch between the cortical position showing highest movement-related fMRI signal and the cortical position yielding highest muscle responses when stimulated with TMS of up to 14 mm (Bastings et al., 1998; Boroojerdi et al., 1999; Herwig et al., 2002; Krings et al., 1997; Lotze et al., 2003; Sparing et al., 2008; Terao et al., 1998). The underlying cause of this spatial mismatch is unknown. Hence, the aim of the first study (Study I) of the present thesis was to test the hypothesis that the spatial mismatch between positions with highest fMRI signal change and positions with highest TMS excitability might be caused by the widely-used Gradient-Echo blood oxygenation level dependent (GRE-BOLD) fMRI technique. GRE-BOLD signal has been demonstrated to occur further downstream from the site of neural activity in large veins running on the cerebral surface (Uludag et al., 2009). Consequently, we tested the hypothesis that alternative fMRI sequences may localize neural activity (i) closer to the anatomical motor hand area, i.e. Brodmann Area 4 (BA4), and (ii) closer to the optimal TMS position than GRE-BOLD. The following alternative fMRI techniques were tested: (i) Spin-Echo (SE-BOLD) assessing blood oxygenation level dependent signal changes with decreased sensitivity for the macrovasculature at high magnetic fields (≄ 3 Tesla, Uludag et al., 2009) and (ii) arterial spin labelling (ASL), assessing local changes in cerebral blood flow (ASL-CBF) which have been shown to occur in close proximity to synaptic activity (Duong et al., 2000). GRE-BOLD, SE-BOLD, and ASL-CBF signal changes during right thumb abductions were obtained from 15 healthy young subjects at 3 Tesla. In 12 subjects, brain tissue at fMRI peak voxel coordinates was stimulated with neuronavigated TMS to investigate whether spatial differences between fMRI techniques are functionally relevant, i.e. impact on motor-evoked potentials (MEPs) recorded from a contralateral target muscle, which is involved in thumb abductions. A systematic TMS motor mapping was performed to identify the most excitable TMS position (i.e. the TMS hotspot) and the centre-of-gravity (i.e. the TMS CoG), which considers the spatial distribution of excitability in the pericentral region. Euclidean distances between TMS and fMRI positions were calculated for each fMRI technique. Results indicated that highest SE-BOLD and ASL-CBF signal changes occurred in the anterior wall of the central sulcus (BA4), whereas highest GRE-BOLD signal changes occurred significantly closer to the gyral surface where most large draining veins are located. fMRI techniques were not significantly different from each other in Euclidean distances to optimal TMS positions since optimal TMS positions were located considerably more anterior (and slightly surprisingly in premotor cortex (BA6) and not BA4). Stimulation of brain tissue at GRE-BOLD peak voxel coordinates with TMS resulted in significantly higher MEPs (compared to SE-BOLD and ASL-CBF coordinates). This was probably the case because GRE-BOLD positions tended to be located at the gyral crown, which was slightly (but not significantly) closer to the TMS hotspot position. Taken together, findings of Study I suggest that spatial differences between fMRI and TMS positions are not caused by spatial unspecificity of the widely-used GRE-BOLD fMRI technique. Hnece, other factors such as complex interactions between brain tissue and the TMS induced electric field (Opitz et al., 2011), could be the underlying cause. Identification of the cortical rTMS target position is particularly challenging in stroke patients since reorganization processes after stroke may shift both, fMRI and TMS positions in unknown direction and extend (Rossini et al., 1998). In the second study (Study II) of the present thesis, we therefore tested whether findings obtained from healthy young subjects in Study I do also apply to chronic stroke patients and older (i.e. age-matched) healthy control subjects. In this study, arterial spin labelling (ASL) was used to assess CBF and BOLD signal changes simultaneously during thumb abductions with the affected/non-dominant and the unaffected/dominant hand in 15 chronic stroke patients and 13 age-matched healthy control subjects at 3 Tesla. Brain tissue at fMRI peak voxel coordinates was stimulated with neuronavigated TMS to test whether spatial differences are functionally relevant and impact on MEPs. Systematic TMS motor mappings were performed for both hemispheres in overall 12 subjects (6 stroke patients and 6 healthy subjects). Euclidean distances between fMRI and TMS positions were calculated for each hemisphere and fMRI technique. In line with results of Study I, highest ASL-CBF signal changes were located in the anterior wall of the central sulcus (BA4), whereas highest ASL-BOLD signal changes occurred significantly closer to the gyral surface. In contrast to Study I, there were no significant differences between ASL-CBF and ASL-BOLD positions in MEPs when stimulated with neuronavigated TMS, which suggests that spatial differences (in depth) were not functionally relevant for TMS applications. In line with Study I, there were no significant differences between fMRI techniques in Euclidean distances to optimal TMS positions, since optimal TMS positions were located considerably more anterior than fMRI positions (in premotor cortex, i.e. BA6). Stroke patients showed overall larger displacements (between fMRI and TMS positions) on the ipsilesional (but not the contralesional) hemisphere compared to healthy subjects. However, none of the fMRI techniques yielded positions significantly closer to the optimal TMS position. Hence, functional reorganization may impact on spatial congruence between fMRI and TMS, but the effect is similar for ASL-CBF and ASL-BOLD. Pathomechanisms underlying stroke induced motor deficits are still poorly understood but a simplified model of hemispheric competition has been suggested, which proposes relative hypoexcitability of the ipsilesional hemisphere and hyperexcitability of the contralesional hemisphere leading to pathologically increased interhemispheric inhibition from the contralesional onto the ipsilesional hemisphere during movements of the paretic hand (Duque et al., 2005; Grefkes et al., 2008b, 2010; Murase et al., 2004). In line with the model of hemispheric competition, both increasing excitability of the ipsilesional hemisphere (Khedr et al., 2005; Talelli et al., 2007) as well as decreasing excitability of the contralesional hemisphere (Fregni et al., 2006; Di Lazzaro et al., 2008a) have been demonstrated to normalize cortical excitability towards physiological levels and/or ameliorate motor performance of the stroke affected hand. However, there is considerably high inter-individual variance and some patients may even show deteriorations of motor performance after rTMS (Ameli et al., 2009). Therefore, the aim of the third study (Study III) was to identify reliable predictors for TBS effects on motor performance of the affected hand in stroke patients, which appears essential for successful implementation of TBS in neurorehabilitation. Overall, 13 chronic stroke patients with unilateral motor hand deficit and 12 age-matched healthy control subjects were included in the study. All patients received 3 different TBS interventions on 3 different days: (i) intermittent TBS (iTBS, facilitatory) over the primary motor cortex (M1) of the ipsilesional hemisphere, (ii) continuous TBS (cTBS, inhibitory) over M1 of the contralesional hemisphere, and (iii) either iTBS or cTBS over a control stimulation site (to control for placebo effects). Motor performance was measured before and after each TBS session with 3 different motor tasks and an overall motor improvement score was calculated. All subjects participated in an fMRI experiment, in which they performed rhythmic fist closures with their affected/non-dominant and unaffected/dominant hand. A laterality index (LI), reflecting laterality of fMRI signal in cortical motor areas was calculated. Effective connectivity, i.e. the direct or indirect causal influence that activity in one area exerts on activity of another area (Friston et al., 1993a), was inferred from fMRI data by means of dynamic causal modelling (DCM). Due to relatively high inter-individual variance, neither iTBS nor cTBS was significantly different from control TBS in terms of average behavioural (or electrophysiological) changes over the group of patients. However, beneficial effects of iTBS over the ipsilesional hemisphere were predicted by a unilateral fMRI activation pattern during movements of the affected hand and by the integrity of the cortical motor network. The more pronounced the promoting influence from the ipsilesional supplementary motor area (SMA) onto ipsilesional M1 and the more pronounced the inhibitory effect originating from ipsilesional M1 onto contralesional M1, the better was the behavioural response to facilitatory iTBS applied to the ipsilesional hemisphere. No significant correlations were found for behavioural improvements following cTBS or behavioural changes of the unaffected hand. Taken together, Study III yielded promising results indicating that laterality of fMRI signal and integrity of the motor network architecture constitute promising predictors for response to iTBS. In patients in whom the connectivity pattern of the ipsilesional motor network resembled physiological network connectivity patterns (i.e. preserved inhibition of the contralesional hemisphere and supportive role of the SMA of the ipsilesional hemisphere), beneficial effects of iTBS over the ipsilesional hemisphere could be observed. In contrast, patients with severely disturbed motor networks did not respond to iTBS or even deteriorated

    Sustained Negative BOLD Response in Human fMRI Finger Tapping Task

    Get PDF
    In this work, we investigated the sustained negative blood oxygen level-dependent (BOLD) response (sNBR) using functional magnetic resonance imaging during a finger tapping task. We observed that the sNBR for this task was more extensive than has previously been reported. The cortical regions involved in sNBR are divided into the following three groups: frontal, somatosensory and occipital. By investigating the spatial structure, area, amplitude, and dynamics of the sNBR in comparison with those of its positive BOLD response (PBR) counterpart, we made the following observations. First, among the three groups, the somatosensory group contained the greatest number of activated voxels and the fewest deactivated voxels. In addition, the amplitude of the sNBR in this group was the smallest among the three groups. Second, the onset and peak time of the sNBR are both larger than those of the PBR, whereas the falling edge time of the sNBR is less than that of the PBR. Third, the long distance between most sNBR foci and their corresponding PBR foci makes it unlikely that they share the same blood supply artery. Fourth, the couplings between the sNBR and its PBR counterpart are distinct among different regions and thus should be investigated separately. These findings imply that the origin of most sNBR foci in the finger-tapping task is much more likely to be neuronal activity suppression rather than “blood steal.

    Studying the cortical state with transcranial magnetic stimulation

    Get PDF
    Cortical excitability and connectivity describe the state of the cerebral cortex. They reflect the ability of neurons to respond to input and the way information flows in the neuronal networks. These properties can be assessed with transcranial magnetic stimulation (TMS), which enables direct and noninvasive modulation of cortical activity. Electrophysiological or hemodynamic recordings of TMS-evoked activity or behavioral measures of the stimulation effect characterize the state of the cortex during and as a result of the stimulation. In the research reported in this Thesis, the ability of TMS to inform us about the cortical state is studied from different points of view. First, we examine the relationships between different measures of cortical excitability to better understand the physiology behind them; we show how cortical background activity is related to motor cortical excitability and how the evoked responses reflect the excitability. Second, this study addresses the questions whether the TMS-evoked responses include stimulation-related artifacts, how these artifacts are generated, and how they can be avoided or removed. Specifically, we present a method to remove the artifacts from TMS-evoked electroencephalographic (EEG) signals arising as a result of cranial muscle stimulation. The use of TMS-EEG has been limited to relatively medial sites because of these artifacts, but the new method enables studying the cortical state even when stimulating areas near the cranial muscles, especially lateral sites. Finally, this work provides new information about brain function. The mechanisms how the brain processes visually guided timed motor actions are elucidated. Moreover, we show that cortical excitability as measured with TMS-evoked EEG increases during the course of wakefulness and decreases during sleep, which contributes to our understanding of what happens in the brain during wakefulness that makes us feel tired and why the brain needs sleep. The study also shows the sensitivity of the TMS-EEG measurement to changes in the state of the cortex. Accordingly, we demonstrate the power of TMS in studying the cortical state

    Effects of aerobic fitness on aging-related changes of interhemispheric inhibition and motor performance

    Get PDF
    abstract: Physical fitness has been long associated with maintenance and improvement of motor performance as we age. In particular, measures of psychomotor speed and motor dexterity tend to be higher in physically fit aging adults as compared to their sedentary counterparts. Using functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS), we explored the patterns of neural activity that may, in part, account for differences between individuals of varying physical fitness levels. In this study, we enrolled both sedentary and physically fit middle age (40–60) and younger (18–30) adults and measured upper extremity motor performance during behavioral testing. In a follow-up session, we employed TMS and fMRI to assess levels of interhemispheric communication during unimanual tasks. Results show that increased physical fitness is associated with better upper extremity motor performance on distal dexterity assessments and increased levels of interhemispheric inhibition in middle age adults. Further, the functional correlates of changes of ipsilateral activity appears to be restricted to the aging process as younger adults of varying fitness levels do not differ in hemispheric patterns of activity or motor performance. We conclude that sedentary aging confers a loss of interhemispheric inhibition that is deleterious to some aspects of motor function, as early as midlife, but these changes can be mediated by chronic engagement in aerobic exercise.View the article as published at http://journal.frontiersin.org/article/10.3389/fnagi.2013.00066/ful

    Cortical lamina-dependent blood volume changes in human brain at 7T

    Get PDF
    Cortical layer-dependent high (sub-millimeter) resolution functional magnetic resonance imaging (fMRI) in human or animal brain can be used to address questions regarding the functioning of cortical circuits, such as the effect of different afferent and efferent connectivities on activity in specific cortical layers. The sensitivity of gradient echo (GE) blood oxygenation level-dependent (BOLD) responses to large draining veins reduces its local specificity and can render the interpretation of the underlying laminar neural activity impossible. The application of the more spatially specific cerebral blood volume (CBV)-based fMRI in humans has been hindered by the low sensitivity of the noninvasive modalities available. Here, a vascular space occupancy (VASO) variant, adapted for use at high field, is further optimized to capture layer-dependent activity changes in human motor cortex at sub-millimeter resolution. Acquired activation maps and cortical profiles show that the VASO signal peaks in gray matter at 0.8–1.6 mm depth, and deeper compared to the superficial and vein-dominated GE-BOLD responses. Validation of the VASO signal change versus well-established iron-oxide contrast agent based fMRI methods in animals showed the same cortical profiles of CBV change, after normalization for lamina-dependent baseline CBV. In order to evaluate its potential of revealing small lamina-dependent signal differences due to modulations of the input-output characteristics, layer-dependent VASO responses were investigated in the ipsilateral hemisphere during unilateral finger tapping. Positive activation in ipsilateral primary motor cortex and negative activation in ipsilateral primary sensory cortex were observed. This feature is only visible in high-resolution fMRI where opposing sides of a sulcus can be investigated independently because of a lack of partial volume effects. Based on the results presented here, we conclude that VASO offers good reproducibility, high sensitivity and lower sensitivity than GE-BOLD to changes in larger vessels, making it a valuable tool for layer-dependent fMRI studies in humans

    Virtual reality visual feedback and its effect on brain excitability

    Get PDF
    This dissertation examines manipulation of visual feedback in virtual reality (VR) to increase excitability of distinct neural networks in the sensorimotor cortex. The objective is to explore neural responses to visual feedback of motor activities performed in complex virtual environments during functional magnetic resonance imaging (fMRI), and to identify sensory manipulations that could further optimize VR rehabilitation of persons with hemiparesis. In addition, the effects of VR therapy on brain reorganization are investigated. An MRI-compatible VR system is used to provide subjects with online visual feedback of their hand movement. First, the author develops a protocol to analyze variability in movement kinematics between experimental sessions and conditions and its possible effect on modulating neural activity. Second, brain reorganization after 2 weeks of robot-assisted VR therapy is examined in 10 chronic stroke subjects in terms of change in extent of activation, interhemispheric dominance, connectivity network of ipsilesional primary motor cortex (iM1) and the interhemispheric interaction between iM 1 and contralesional M1 (cM 1). After training, brain activity during a simple paretic hand movement is re-localized in terms of bilateral change in activity or a shift of interhemispheric dominance (re-lateralization) toward the ipsilesional hemisphere that is positively correlated with improvement in clinical scores. Dynamic causal modeling (DCM) shows that interhemispheric coupling between the bilateral motor cortices tends to decrease after training and to negatively correlate with improvement in scores for clinical scales, and with the amount of re-lateralization. Third, the dissertation studies if visual discordance in VR of finger movement would facilitate activity in select brain networks. In a study of 12 healthy subjects, the amplitude of finger movement is manipulated (hypometric feedback) resulting in higher activation of contralateral M1. In a group of 11 stroke subjects, bidirectional, hypometric and hypermetric,VR visual discordance is used. Both feedback conditions cause small increase in activity of the iM1 contralateral to movement and stronger recruitment of both posterior parietal cortices and the ipsilesional fusiform gyrus (iFBA). Fourth, the effect of mirrored-visual feedback on the activity of the ipsilesional sensorimotor cortex of stroke subjects is examined. While subjects move the non-paretic hand during the fMRI experiment, they receive either veridical feedback of the movement or a mirrored feedback. The results show recruitment of iM1 and both posterior parietal cortices during the mirrored feedback. Effective connectivity analysis show increase correlation of iM1 and contralesional SPL (cSPL) with iFBA suggesting a role of the latter in the evaluation of feedback and in visuomotor processing. DCM analysis shows increased modulation of iM1 by cSPL area during the mirrored feedback, an observation that proves the influence of visual feedback on modulating primary motor cortex activation. This dissertation provides evidence that it is possible to enhance brain excitability through manipulation of virtual reality feedback and that brain reorganization can result from just two weeks of VR training. These findings should be exploited in the design of neuroscience-based rehabilitation protocols that could enhance brain reorganization and motor recovery

    Cerebellar–M1 connectivity changes associated with motor learning are somatotopic specific

    Get PDF
    One of the functions of the cerebellum in motor learning is to predict and account for systematic changes to the body or environment. This form of adaptive learning is mediated by plastic changes occurring within the cerebellar cortex. The strength of cerebellar-to-cerebral pathways for a given muscle may reflect aspects of cerebellum-dependent motor adaptation. These connections with motor cortex (M1) can be estimated as cerebellar inhibition (CBI): a conditioning pulse of transcranial magnetic stimulation delivered to the cerebellum before a test pulse over motor cortex. Previously, we have demonstrated that changes in CBI for a given muscle representation correlate with learning a motor adaptation task with the involved limb. However, the specificity of these effects is unknown. Here, we investigated whether CBI changes in humans are somatotopy specific and how they relate to motor adaptation. We found that learning a visuomotor rotation task with the right hand changed CBI, not only for the involved first dorsal interosseous of the right hand, but also for an uninvolved right leg muscle, the tibialis anterior, likely related to inter-effector transfer of learning. In two follow-up experiments, we investigated whether the preparation of a simple hand or leg movement would produce a somatotopy-specific modulation of CBI. We found that CBI changes only for the effector involved in the movement. These results indicate that learning-related changes in cerebellar– M1 connectivity reflect a somatotopy-specific interaction. Modulation of this pathway is also present in the context of interlimb transfer of learning

    Physiological characterisation of transcranial magnetic stimulation (TMS) using functional magnetic resonance imaging (fMRI).

    Get PDF
    Despite its widespread use, a striking lack of knowledge exists regarding the mechanism of action of transcranial magnetic stimulation (TMS). This thesis describes the physiological characterisation of repetitive TMS (rTMS) to the motor system by means of functional magnetic resonance imaging (fMRI). A detailed analysis of imaging artefacts arising from the simultaneous application of TMS-fMRI was conducted and subsequently, strategies were presented for unperturbed TMS-fMRI. Physiological responses during subthreshold high-frequency rTMS of the primary sensorimotor cortex (Ml/Sl) were visualised within distinct cortical motor regions, comprising PMd, SMA, and contralateral Ml/Sl, while no significant responses were evidenced in the area of stimulation. Repetitive TMS during or before motor behaviour illustrated the context- dependence of rTMS-induced activity changes. The first demonstration of TMS-fMRI at 3 Tesla provided evidence that subthreshold rTMS can activate distinct networks including subcortical motor regions. The subthreshold nature of rTMS was confirmed by simultaneous electromyographic recordings from the target muscle. Stimulation of the dorsal premotor cortex provided evidence that rTMS- evoked local activity changes depend on the input function. The capability of TMS to target distinct networks in the human brain was confirmed. TMS targets a set of cortical and subcortical structures. Local responses may not invariably be elicited, indicating that low levels of synaptic activity, as occurring at low-intensity stimulation, do not necessarily evoke corresponding changes in cortical haemodynamics. It is concluded that combined TMS-fMRI offers a means to assess the mechanism of action of TMS at high spatial and temporal resolution

    Exploring the role of interhemispheric inhibition in musculoskeletal pain

    Get PDF
    The overarching aim of this thesis was to determine whether: i) interhemispheric inhibition (IHI) is altered in response to unilateral musculoskeletal pain; and ii) a relationship exists between altered IHI (if any) and the development of bilateral sensorimotor dysfunction. To achieve this, three studies were conducted. These studies provided novel insight into IHI in experimentally induced acute muscle pain and chronic lateral elbow pain. The body of work in this thesis provides an original contribution to the field of musculoskeletal pain that deepens our understanding of IHI, and its potential association with changes in sensorimotor function in the unaffected limb, in unilateral conditions. Study 1 demonstrated a reduction in IHI from the affected to unaffected M1 but no change in IHI from the affected to unaffected S1 was observed in Study 2. In both studies, increased sensitivity to pressure was observed on the affected and unaffected sides. No change in IHI between M1s, and no differences in sensorimotor function were observed between individuals with chronic LE and healthy controls in Study 3. Taken together, the findings presented in this thesis suggest that IHI between M1s is reduced in response to acute muscle pain and altered IHI could contribute to the development of bilateral sensorimotor symptoms soon after pain onset. Conversely, IHI between S1s is preserved in response to acute muscle pain. In a clinical chronic musculoskeletal pain population, IHI is also preserved. However, further research is needed to determine whether the degree of change in IHI is related to various features of clinical pain such as pain severity, or the severity of bilateral sensorimotor dysfunction. The studies in this thesis are amongst the first to investigate: i) IHI in response to musculoskeletal pain of varying durations; and ii) the relationship between altered IHI and the development of bilateral sensorimotor dysfunction. Longitudinal studies that follow individuals from an initial episode of acute musculoskeletal pain to recovery, or to the development of chronic musculoskeletal pain, are required to further explore the relationship between IHI and the development of bilateral sensorimotor symptoms in unilateral musculoskeletal pain conditions
    • 

    corecore