170 research outputs found

    Chaotic Phase-Coded Waveforms with Space-Time Complementary Coding for MIMO Radar Applications

    Get PDF
    A framework for designing orthogonal chaotic phase-coded waveforms with space-time complementary coding (STCC) is proposed for multiple-input multiple-output (MIMO) radar applications. The phase-coded waveform set to be transmitted is generated with an arbitrary family size and an arbitrary code length by using chaotic sequences. Due to the properties of chaos, this chaotic waveform set has many advantages in performance, such as anti-interference and low probability of intercept. However, it cannot be directly exploited due to the high range sidelobes, mutual interferences, and Doppler intolerance. In order to widely implement it in practice, we optimize the chaotic phase-coded waveform set from two aspects. Firstly, the autocorrelation property of the waveform is improved by transmitting complementary chaotic phase-coded waveforms, and an adaptive clonal selection algorithm is utilized to optimize a pair of complementary chaotic phase-coded pulses. Secondly, the crosscorrelation among different waveforms is eliminated by implementing space-time coding into the complementary pulses. Moreover, to enhance the detection ability for moving targets in MIMO radars, a method of weighting different pulses by a null space vector is utilized at the receiver to compensate the interpulse Doppler phase shift and accumulate different pulses coherently. Simulation results demonstrate the efficiency of our proposed method

    Chaotic Phase-Coded Waveforms with Space-Time Complementary Coding for MIMO Radar Applications

    Get PDF
    A framework for designing orthogonal chaotic phase-coded waveforms with space-time complementary coding (STCC) is proposed for multiple-input multiple-output (MIMO) radar applications. The phase-coded waveform set to be transmitted is generated with an arbitrary family size and an arbitrary code length by using chaotic sequences. Due to the properties of chaos, this chaotic waveform set has many advantages in performance, such as anti-interference and low probability of intercept. However, it cannot be directly exploited due to the high range sidelobes, mutual interferences, and Doppler intolerance. In order to widely implement it in practice, we optimize the chaotic phase-coded waveform set from two aspects. Firstly, the autocorrelation property of the waveform is improved by transmitting complementary chaotic phase-coded waveforms, and an adaptive clonal selection algorithm is utilized to optimize a pair of complementary chaotic phase-coded pulses. Secondly, the crosscorrelation among different waveforms is eliminated by implementing space-time coding into the complementary pulses. Moreover, to enhance the detection ability for moving targets in MIMO radars, a method of weighting different pulses by a null space vector is utilized at the receiver to compensate the interpulse Doppler phase shift and accumulate different pulses coherently. Simulation results demonstrate the efficiency of our proposed method

    Nearly orthogonal, doppler tolerant waveforms and signal processing for multi-mode radar applications

    Get PDF
    In this research, we investigate the design and analysis of nearly orthogonal, Doppler tolerant waveforms for diversity waveform radar applications. We then present a signal processing framework for joint synthetic aperture radar (SAR) and ground moving target indication (GMTI) processing that is built upon our proposed waveforms. ^ To design nearly orthogonal and Doppler tolerant waveforms, we applied direct sequence spread spectrum (DSSS) coding techniques to linear frequency modulated (LFM) signals. The resulting transmitted waveforms are rendered orthogonal using a unique spread spectrum code. At the receiver, the echo signal can be decoded using its spreading code. In this manner, transmit orthogonal waveforms can be matched filtered only with the intended receive signals. ^ Our proposed waveforms enable efficient SAR and GMTI processing concurrently without reconfiguring a radar system. Usually, SAR processing requires transmit waveforms with a low pulse repetition frequency (PRF) rate to reduce range ambigu- ity; on the other hand, GMTI processing requires a high PRF rate to avoid Doppler aliasing and ambiguity. These competing requirements can be tackled by employing some waveforms (with low PRF) for the SAR mission and other waveforms (with high PRF) for the GMTI mission. Since the proposed waveforms allow separation of individual waveforms at the receiver, we can accomplish both SAR and GMTI processing jointl

    Waveform Diversity and Range-Coupled Adaptive Radar Signal Processing

    Get PDF
    Waveform diversity may offer several benefits to radar systems though often at the cost of reduced sensitivity. Multi-dimensional processing schemes are known to offer many degrees of freedom, which can be exploited to suppress the ambiguity inherent to pulse compression, array processing, and Doppler frequency estimation. Spatial waveform diversity can be achieved by transmitting different but correlated waveforms from each element of an antenna array. A simple yet effective scheme is employed to transmit different waveforms in different spatial directions. A new reiterative minimum mean squared error approach entitled Space-Range Adaptive Processing, which adapts simultaneously in range and angle, is derived and shown in simulation to offer enhanced performance when spatial waveform diversity is employed relative to both conventional matched filtering and sequentially adapting in angle and then range. The same mathematical framework is utilized to develop Time-Range Adaptive Processing (TRAP) algorithm which is capable of simultaneously adapting in Doppler frequency and range. TRAP is useful when pulse-to-pulse changing of the center frequency or waveform coding is used to achieve enhanced range resolution or unambiguous ranging, respectively. The inherent computational complexity of the new multi-dimensional algorithms is addressed by segmenting the full-dimension cost functions, yielding a reduced-dimensional variants of each. Finally, a non-adaptive approach based on the multi-dimensional TRAP signal model is utilized to develop an efficient clutter cancellation technique capable of suppressing multiple range intervals of clutter when waveform diversity is applied to pulse-Doppler radar

    Design and Optimization of Physical Waveform-Diverse and Spatially-Diverse Radar Emissions

    Get PDF
    With the advancement of arbitrary waveform generation techniques, new radar transmission modes can be designed via precise control of the waveform's time-domain signal structure. The finer degree of emission control for a waveform (or multiple waveforms via a digital array) presents an opportunity to reduce ambiguities in the estimation of parameters within the radar backscatter. While this freedom opens the door to new emission capabilities, one must still consider the practical attributes for radar waveform design. Constraints such as constant amplitude (to maintain sufficient power efficiency) and continuous phase (for spectral containment) are still considered prerequisites for high-powered radar waveforms. These criteria are also applicable to the design of multiple waveforms emitted from an antenna array in a multiple-input multiple-output (MIMO) mode. In this work, three spatially-diverse radar emission design methods are introduced that provide constant amplitude, spectrally-contained waveforms implemented via a digital array radar (DAR). The first design method, denoted as spatial modulation, designs the radar waveforms via a polyphase-coded frequency-modulated (PCFM) framework to steer the coherent mainbeam of the emission within a pulse. The second design method is an iterative scheme to generate waveforms that achieve a desired wideband and/or widebeam radar emission. However, a wideband and widebeam emission can place a portion of the emitted energy into what is known as the `invisible' space of the array, which is related to the storage of reactive power that can damage a radar transmitter. The proposed design method purposefully avoids this space and a quantity denoted as the Fractional Reactive Power (FRP) is defined to assess the quality of the result. The third design method produces simultaneous radar and communications beams in separate spatial directions while maintaining constant modulus by leveraging the orthogonal complement of the emitted directions. This orthogonal energy defines a trade-space between power efficiency gained from constraining waveforms to be constant amplitude and power efficiency lost by emitting energy in undesired directions. The design of FM waveforms via traditional gradient-based optimization methods is also considered. A waveform model is proposed that is a generalization of the PCFM implementation, denoted as coded-FM (CFM), which defines the phase of the waveform via a summation of weighted, predefined basis functions. Therefore, gradient-based methods can be used to minimize a given cost function with respect to a finite set of optimizable parameters. A generalized integrated sidelobe level (GISL) metric is used as the optimization cost function to minimize the correlation range sidelobes of the radar waveform. System specific waveform optimization is explored by incorporating the linear models of three different loopback configurations into the GISL metric to match the optimized waveforms to the particular systems

    Waveform design and processing techniques in OFDM radar

    Get PDF
    Includes bibliographical referencesWith the advent of powerful digital hardware, software defined radio and radar have become an active area of research and development. This in turn has given rise to many new research directions in the radar community, which were previously not comprehensible. One such direction is the recently investigated OFDM radar, which uses OFDM waveforms instead of the classic linear frequency mod- ulated waveforms. Being a wideband signal, the OFDM symbol offers spectral efficiency along with improved range resolution, two enticing characteristics for radar. Historically a communication signal, OFDM is a special form of multi- carrier modulation, where a single data stream is transmitted over a number of lower rate carriers. The information is conveyed via sets of complex phase codes modulating the phase of the carriers. At the receiver, a demodulation stage estimates the transmitted phase codes and the information in the form of binary words is finally retrieved. In radar, the primary goal is to detect the presence of targets and possibly estimate some of their features through measurable quantities, e.g. range, Doppler, etc. Yet, being a young waveform in radar, more understanding is required to turn it into a standard radar waveform. Our goal, with this thesis, is to mature our comprehension of OFDM for radar and contribute to the realm of OFDM radar. First, we develop two processing alternatives for the case of a train of wideband OFDM pulses. In this, our first so-called time domain solution consists in applying a matched filter to compress the received echoes in the fast time before applying a fast Fourier transform in the slow time to form the range Doppler image. We motivate this approach after demonstrating that short OFDM pulses are Doppler tolerant. The merit of this approach is to conserve existing radar architectures while operating OFDM waveforms. The second so-called frequency domain solution that we propose is inspired from communication engineering research since the received echoes are tumbled in the frequency domain. After several manipulations, the range Doppler image is formed. We explain how this approach allows to retrieve an estimate of the unambiguous radial velocity, and propose two methods for that. The first method requires the use of identical sequence (IS) for the phase codes and is, as such, binding, while the other method works irrespective of the phase codes. Like the previous technique, this processing solution accommodates high Doppler frequencies and the degradation in the range Doppler image is negligible provided that the spacing between consecutive subcarriers is sufficient. Unfortunately, it suffers from the issue of intersymbol interference (ISI). After observing that both solutions provide the same processing gain, we clarify the constraints that shall apply to the OFDM signals in either of these solutions. In the first solution, special care has been employed to design OFDM pulses with low peak-to-mean power ratio (PMEPR) and low sidelobe level in the autocorrelation function. In the second solution, on the other hand, only the constraint of low PMEPR applies since the sidelobes of the scatterer characteristic function in the range Doppler image are Fourier based. Then, we develop a waveform-processing concept for OFDM based stepped frequency waveforms. This approach is intended for high resolution radar with improved low probability of detection (LPD) characteristics, as we propose to employ a frequency hopping scheme from pulse to pulse other than the conventional linear one. In the same way we treated our second alternative earlier, we derive our high range resolution processing in matrix terms and assess the degradation caused by high Doppler on the range profile. We propose using a bank of range migration filters to retrieve the radial velocity of the scatterer and realise that the issue of classical ambiguity in Doppler can be alleviated provided that the relative bandwidth, i.e. the total bandwidth covered by the train of pulses divided by the carrier frequency, is chosen carefully. After discussing a deterministic artefact caused by frequency hopping and the means to reduce it at the waveform design or processing level, we discuss the benefit offered by our concept in comparison to other standard wideband methods and emphasize on its LPD characteristics at the waveform and pulse level. In our subsequent analysis, we investigate genetic algorithm (GA) based techniques to finetune OFDM pulses in terms of radar requirements viz., low PMEPR only or low PMEPR and low sidelobe level together, as evoked earlier. To motivate the use of genetic algorithms, we establish that existing techniques are not exible in terms of the OFDM structure (the assumption that all carriers are present is always made). Besides, the use of advanced objective functions suited to particular configurations (e.g. low sidelobe level in proximity of the main autocorrelation peak) as well as the combination of multiple objective functions can be done elegantly with GA based techniques. To justify that solely phase codes are used for our optimisation(s), we stress that the weights applied to the carriers composing the OFDM signal can be spared to cope with other radar related challenges and we give an example with a case of enhanced detection. Next, we develop a technique where we exploit the instantaneous wideband trans- mission to characterise the type of the canonical scatterers that compose a target. Our idea is based on the well-established results from the geometrical theory of diffraction (GTD), where the scattered energy varies with frequency. We present the problem related to ISI, stress the need to design the transmitted pulse so as to reduce this risk and suggest having prior knowledge over the scatterers relative positions. Subsequently, we develop a performance analysis to assess the behaviour of our technique in the presence of additive white Gaussian noise (AWGN). Then, we demonstrate the merit of integrating over several pulses to improve the characterisation rate of the scatterers. Because the scattering centres of a target resonate variably at different frequencies, frequency diversity is another enticing property which can be used to enhance the sensing performance. Here, we exploit this element of diversity to improve the classification function. We develop a technique where the classification takes place at the waveform design when few targets are present. In our case study, we have three simple targets. Each is composed of perfectly electrically conducting spheres for which we have exact models of the scattered field. We develop a GA based search to find optimal OFDM symbols that best discriminate one target against any other. Thereafter, the OFDM pulse used for probing the target in the scene is constructed by stacking the resulting symbols in time. After discussing the problem of finding the best frequency window to sense the target, we develop a performance analysis where our figure of merit is the overall probability of correct classification. Again, we prove the merit of integrating over several pulses to reach classification rates above 95%. In turn, this study opens onto new challenges in the realm of OFDM radar. We leave for future research the demonstration of the practical applicability of our novel concepts and mention manifold research axes, viz., a signal processing axis that would include methods to cope with inter symbol interference, range migration issues, methods to raise the ambiguity in Doppler when several echoes from distinct scatterers overlap in the case of our frequency domain processing solutions; an algorithmic axis that would concern the heuristic techniques employed in the design of our OFDM pulses. We foresee that further tuning might help speeding up our GA based algorithms and we expect that constrained multi- objective optimisation GA (MOO-GA) based techniques shall benefit the OFDM pulse design problem in radar. A system design axis that would account for the hardware components' behaviours, when possible, directly at the waveform design stage and would include implementation of the OFDM radar system

    OFDM Waveform Optimisation for Joint Communications and Sensing

    Get PDF
    Radar systems are radios to sense objects in their surrounding environment. These operate at a defined set of frequency ranges. Communication systems are used to transfer information between two points. In the present day, proliferation of mobile devices and the advancement of technology have led to communication systems being ubiquitous. This has made these systems to operate at the frequency bands already used by the radar systems. Thus, the communication signal interferes a radar receiver and vice versa, degrading performance of both systems. Different methods have been proposed to combat this phenomenon. One of the novel topics in this is the RF convergence, where a given bandwidth is used jointly by both systems. A differentiation criterion must be adopted between the two systems so that a receiver is able to separately extract radar and communication signals. The hardware convergence due to the emergence of software-defined radios also motivated a single system be used for both radar and communication. A joint waveform is adopted for both radar and communication systems, as the transmit signal. As orthogonal frequency-division multiplexing (OFDM) waveform is the most prominent in mobile communications, it is selected as the joint waveform. Considering practical cellular communication systems adopting OFDM, there often exist unused subcarriers within OFDM symbols. These can be filled up with arbitrary data to improve the performance of the radar system. This is the approach used, where the filling up is performed through an optimisation algorithm. The filled subcarriers are termed as radar subcarriers while the rest as communication subcarriers, throughout the thesis. The optimisation problem minimises the Cramer--Rao lower bounds of the delay and Doppler estimates made by the radar system subject to a set of constraints. It also outputs the indices of the radar and communication subcarriers within an OFDM symbol, which minimise the lower bounds. The first constraint allocates power between radar and communication subcarriers depending on their subcarrier ratio in an OFDM symbol. The second constraint ensures the peak-to-average power ratio (PAPR) of the joint waveform has an acceptable level of PAPR. The results show that the optimised waveform provides significant improvement in the Cramer--Rao lower bounds compared with the unoptimised waveform. In compensation for this, the power allocated to the communication subcarriers needs to be reduced. Thus, improving the performances of the radar and communication systems are a trade-off. It is also observed that for the minimum lower bounds, radar subcarriers need to be placed at the two edges of an OFDM symbol. Optimisation is also seen to improve the estimation performance of a maximum likelihood estimator, concluding that optimising the subcarriers to minimise a theoretical bound enables to achieve improvement for practical systems

    Multibeam radar system based on waveform diversity for RF seeker applications

    Get PDF
    Existing radiofrequency (RF) seekers use mechanically steerable antennas. In order to improve the robustness and performance of the missile seeker, current research is investigating the replacement of mechanical 2D antennas with active electronically controlled 3D antenna arrays capable of steering much faster and more accurately than existing solutions. 3D antenna arrays provide increased radar coverage, as a result of the conformal shape and flexible beam steering in all directions. Therefore, additional degrees of freedom can be exploited to develop a multifunctional seeker, a very sophisticated sensor that can perform multiple simultaneous tasks and meet spectral allocation requirements. This thesis presents a novel radar configuration, named multibeam radar (MBR), to generate multiple beams in transmission by means of waveform diversity. MBR systems based on waveform diversity require a set of orthogonal waveforms in order to generate multiple channels in transmission and extract them efficiently at the receiver with digital signal processing. The advantage is that MBR transmit differently designed waveforms in arbitrary directions so that waveforms can be selected to provide multiple radar functions and better manage the available resources. An analytical model of an MBR is derived to analyse the relationship between individual channels and their performance in terms of isolation and phase steering effects. Combinations of linear frequency modulated (LFM) waveforms are investigated and the analytical expressions of the isolation between adjacent channels are presented for rectangular and Gaussian amplitude modulated LFM signals with different bandwidths, slopes and frequency offsets. The theoretical results have been tested experimentally to corroborate the isolation properties of the proposed waveforms. In addition, the practical feasibility of the MBR concept has been proved with a radar test bed with two orthogonal channels simultaneously detecting a moving target

    Applicability and Advantages of Implementation of MIMO Techniques in Radar Systems

    Get PDF
    High-accuracy object detection using radio frequency signal has become popular field for research since last couple of years. Huge amount of research work are being done in this field now a days. Although radar systems were invented for the purpose of military, they are also used for civil service at present. MIMO communication systems becomes popular in recent years because of higher capacity, increased coverage and better voice and data quality in telecommunication systems. The overwhelming popularity of MIMO systems draws radar researchers’ attention to study the probability of implementing MIMO techniques in radar systems. This trend has been followed in this thesis. The applicability of MIMO in radar systems has been examined along with small simulations outcomes, which ends with analysis of the result and further research probability in this field. Any type of diversity is required for MIMO radar. Some of the probable diversity techniques are discussed with a signal model along with their advantages and disadvantages. This thesis starts with a brief discussion about radar principle and different types of radar systems, followed by detailed discussion on MIMO technology and their implementation on radar systems. Angular diversity i.e. beamforming is considered, in the simulation part of the thesis, to implement MIMO. Ideal propagation environment is assumed in the simulations in order to keep the focus on the beamforming mechanism itself. Approximately 10 dB signal-to-noise ratio gain is obtained in the simulations using reasonably low number of antennas. The thesis ends up with short discussion on the advantages of MIMO application in radar along with future research possibilities in this arena
    • …
    corecore