8,452 research outputs found

    A Simple Modification in CMA-ES Achieving Linear Time and Space Complexity

    Get PDF
    International audienceThis paper proposes a simple modification of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) for high dimensional objective functions, reducing the internal time and space complexity from quadratic to linear. The covariance matrix is constrained to be diagonal and the resulting algorithm, sep-CMA-ES, samples each coordinate independently. Because the model complexity is reduced, the learning rate for the covariance matrix can be increased. Consequently, on essentially separable functions, sep-CMA-ES significantly outperforms CMA-ES. For dimensions larger than a hundred, even on the non-separable Rosenbrock function, the sep-CMA-ES needs fewer function evaluations than CMA-ES

    A Computationally Efficient Limited Memory CMA-ES for Large Scale Optimization

    Full text link
    We propose a computationally efficient limited memory Covariance Matrix Adaptation Evolution Strategy for large scale optimization, which we call the LM-CMA-ES. The LM-CMA-ES is a stochastic, derivative-free algorithm for numerical optimization of non-linear, non-convex optimization problems in continuous domain. Inspired by the limited memory BFGS method of Liu and Nocedal (1989), the LM-CMA-ES samples candidate solutions according to a covariance matrix reproduced from mm direction vectors selected during the optimization process. The decomposition of the covariance matrix into Cholesky factors allows to reduce the time and memory complexity of the sampling to O(mn)O(mn), where nn is the number of decision variables. When nn is large (e.g., nn > 1000), even relatively small values of mm (e.g., m=20,30m=20,30) are sufficient to efficiently solve fully non-separable problems and to reduce the overall run-time.Comment: Genetic and Evolutionary Computation Conference (GECCO'2014) (2014

    An Asynchronous Implementation of the Limited Memory CMA-ES

    Full text link
    We present our asynchronous implementation of the LM-CMA-ES algorithm, which is a modern evolution strategy for solving complex large-scale continuous optimization problems. Our implementation brings the best results when the number of cores is relatively high and the computational complexity of the fitness function is also high. The experiments with benchmark functions show that it is able to overcome its origin on the Sphere function, reaches certain thresholds faster on the Rosenbrock and Ellipsoid function, and surprisingly performs much better than the original version on the Rastrigin function.Comment: 9 pages, 4 figures, 4 tables; this is a full version of a paper which has been accepted as a poster to IEEE ICMLA conference 201

    SamACO: variable sampling ant colony optimization algorithm for continuous optimization

    Get PDF
    An ant colony optimization (ACO) algorithm offers algorithmic techniques for optimization by simulating the foraging behavior of a group of ants to perform incremental solution constructions and to realize a pheromone laying-and-following mechanism. Although ACO is first designed for solving discrete (combinatorial) optimization problems, the ACO procedure is also applicable to continuous optimization. This paper presents a new way of extending ACO to solving continuous optimization problems by focusing on continuous variable sampling as a key to transforming ACO from discrete optimization to continuous optimization. The proposed SamACO algorithm consists of three major steps, i.e., the generation of candidate variable values for selection, the ants’ solution construction, and the pheromone update process. The distinct characteristics of SamACO are the cooperation of a novel sampling method for discretizing the continuous search space and an efficient incremental solution construction method based on the sampled values. The performance of SamACO is tested using continuous numerical functions with unimodal and multimodal features. Compared with some state-of-the-art algorithms, including traditional ant-based algorithms and representative computational intelligence algorithms for continuous optimization, the performance of SamACO is seen competitive and promising

    Maximum Likelihood-based Online Adaptation of Hyper-parameters in CMA-ES

    Get PDF
    The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is widely accepted as a robust derivative-free continuous optimization algorithm for non-linear and non-convex optimization problems. CMA-ES is well known to be almost parameterless, meaning that only one hyper-parameter, the population size, is proposed to be tuned by the user. In this paper, we propose a principled approach called self-CMA-ES to achieve the online adaptation of CMA-ES hyper-parameters in order to improve its overall performance. Experimental results show that for larger-than-default population size, the default settings of hyper-parameters of CMA-ES are far from being optimal, and that self-CMA-ES allows for dynamically approaching optimal settings.Comment: 13th International Conference on Parallel Problem Solving from Nature (PPSN 2014) (2014

    KL-based Control of the Learning Schedule for Surrogate Black-Box Optimization

    Get PDF
    This paper investigates the control of an ML component within the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) devoted to black-box optimization. The known CMA-ES weakness is its sample complexity, the number of evaluations of the objective function needed to approximate the global optimum. This weakness is commonly addressed through surrogate optimization, learning an estimate of the objective function a.k.a. surrogate model, and replacing most evaluations of the true objective function with the (inexpensive) evaluation of the surrogate model. This paper presents a principled control of the learning schedule (when to relearn the surrogate model), based on the Kullback-Leibler divergence of the current search distribution and the training distribution of the former surrogate model. The experimental validation of the proposed approach shows significant performance gains on a comprehensive set of ill-conditioned benchmark problems, compared to the best state of the art including the quasi-Newton high-precision BFGS method
    corecore