1,575 research outputs found

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    Strengthening the security of cognitive packet networks

    Get PDF
    Route selection in cognitive packet networks (CPNs) occurs continuously for active flows and is driven by the users' choice of a quality of service (QoS) goal. Because routing occurs concurrently to packet forwarding, CPN flows are able to better deal with unexpected variations in network status, while still achieving the desired QoS. Random neural networks (RNNs) play a key role in CPN routing and are responsible to the next-hop decision making of CPN packets. By using reinforcement learning, RNNs' weights are continuously updated based on expected QoS goals and information that is collected by packets as they travel on the network experiencing the current network conditions. CPN's QoS performance had been extensively investigated for a variety of operating conditions. Its dynamic and self-adaptive properties make them suitable for withstanding availability attacks, such as those caused by worm propagation and denial-of-service attacks. However, security weaknesses related to confidentiality and integrity attacks have not been previously examined. Here, we look at related network security threats and propose mechanisms that could enhance the resilience of CPN to confidentiality, integrity and availability attacks

    The Impact on Security due to the Vulnerabilities Existing in the network a Strategic Approach towards Security

    Full text link
    Software Defined Networking, the emerging technology is taking the network sector to a new variant. Networking sector completely focused on hardware infrastructure is now moving towards software programming. Due to an exponential growth in the number of user and the amount of information over wires, there arises a great risk with the existing IP Network architecture. Software Defined Networking paves a platform identifying a feasible solution to the problem by virtualization. Software Defined Networking provides a viable path in virtualization and managing the network resources in an “On Demand Manner”. This study is focused on the drawbacks of the existing technology and a fine grained introduction to Software Defined Networking. Further adding to the above topic, this study also passes over the current steps taken in the industrial sector in implementing Software Defined Networking. This study makes a walkthrough about the security features of Software Defined Networking, its advantages, limitations and further scope in identifying the loopholes in the security

    Proactive detection of DDOS attacks in Publish-Subscribe networks

    Get PDF
    Information centric networking (ICN) using architectures such as Publish-Subscribe Internet Routing Paradigm (PSIRP) or Publish-Subscribe Internet Technology (PURSUIT) has been proposed as an important candidate for the Internet of the future. ICN is an emerging research area that proposes a transformation of the current host centric Internet architecture into an architecture where information items are of primary importance. This change allows network functions such as routing and locating to be optimized based on the information items themselves. The Bloom filter based content delivery is a source routing scheme that is used in the PSIRP/PURSUIT architectures. Although this mechanism solves many issues of today’s Internet such as the growth of the routing table and the scalability problems, it is vulnerable to distributed denial-of-service (DDoS) attacks. In this paper, we present a new content delivery scheme that has the advantages of Bloom filter based approach while at the same time being able to prevent DDoS attacks on the forwarding mechanism. Our security analysis suggests that with the proposed approach, the forwarding plane is able to resist attacks such as DDoS with very high probabilit
    • …
    corecore