65 research outputs found

    Cabernet: A Content Delivery Network for Moving Vehicles

    Get PDF
    This paper describes the design, implementation, and evaluation of Cabernet, a system to deliver data to and from moving vehicles using open 802.11 (WiFi) access points encountered opportunistically during travel. Network connectivity in Cabernet is both fleeting (access points are typicallywithin range for a few seconds) and intermittent (because the access points don't provide continuous coverage), and suffers from high packet loss rates over the wireless channel. On the positive side, in the absence of losses, achievable data rates over WiFi can reach many megabits per second. Unfortunately, current protocols don't establish end-to-end connectivity fast enough, don't cope well with intermittent connectivity, and don't handle high packet loss rates well enough to achieve this potential throughput. Cabernet incorporates two new techniques to improve data delivery throughput: QuickWifi, a streamlined client-side process to establish end-to-end connectivity quickly, reducing the mean time to establish connectivity from 12.9 seconds to less than 366 ms and CTP, a transport protocol that distinguishes congestion on the wired portion of the path from losses over the wireless link to reliably and efficiently deliver data to nodes in cars. We have deployed the system on a fleet of 10 taxis, each running several hours per day in the Boston area. Our experiments show that CTP improves throughput by a factor of 2x over TCP and that QuickWifi increases the number of connectionsby a factor of 4x over unoptimized approaches. Thus, Cabernet is perhaps the first practical system capable of delivering data to moving vehicles over existing short-range WiFi radios, with a mean transfer capacity of approximately 38 megabytes/hour per car, or a mean rate of 87 kbit/s

    IEEE 802.11 기반 Enterprise 무선 LAN을 위한 자원 관리 기법

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 공과대학 전기·컴퓨터공학부, 2019. 2. 전화숙.IEEE 802.11이 무선 LAN (wireless local area network, WLAN)의 실질적인 표준이 됨에 따라 수 많은 엑세스 포인트(access points, APs)가 배치되었고, 그 결과 WLAN 밀집 환경이 조성되었다. 이러한 환경에서는, 이웃한 AP들에 동일한 채널을 할당하는 문제를 피할 수 없으며, 이는 해당 AP들이 같은 채널을 공유하게 하고 그로 인한 간섭을 야기한다. 간섭으로 인한 성능 저하를 줄이기 위해 채널 할당(channelization) 기법이 중요하다. 또한, 한 조직이 특정 지역에 밀집 배치된 AP들을 관리한다면 특정 사용자를 서비스할 수 있는 AP가 여럿일 수 있다. 이 경우, 사용자 접속(user association, UA) 기법이 준정적(quasi-static) 환경과 차량 환경 모두에서 네트워크 성능에 큰 영향을 미친다. 본 논문에서는 밀집 배치된 WLAN 환경에서 와이파이(WiFi) 성능 향상을 위해 채널 할당 기법을 제안한다. 먼저, 제안한 기법에서는 각각의 AP에 채널을 할당하기 위해 간섭 그래프(interference graph)를 이용하며 채널 결합(channel bonding)을 고려한다. 다음으로, 주어진 채널 결합 결과를 기반으로 해당 AP가 동적 채널 결합을 지원하는지 여부에 따라 주 채널(primary channel)을 결정한다. 한편, 준정적 환경과 차량 환경에서의 UA 문제는 다소 차이가 있다. 따라서 본 논문에서는 각각의 환경에 따라 서로 다른 UA 기법을 설계하였다. 준정적 환경에서의 UA 기법은 멀티캐스트 전송, 다중 사용자 MIMO (multi-user multiple input multiple output), 그리고 AP 수면과 같은 다양한 기술과 함께 AP간의 부하 분산(load balancing)과 에너지 절약을 고려한다. 제안하는 기법에서 UA 문제는 다목적함수 최적화 문제로 정식화하였고 그 해를 구하였다. 차량 환경에서의 UA 기법은 핸드오버(handover, HO) 스케줄 문제로 귀결된다. 본 논문에서는 도로의 지형을 고려하여 사용자가 접속할 AP를 결정하는 HO 스케줄 기법을 제안한다. 사용자는 단지 다음 AP로 연결을 맺을 시기만 결정하면 되기 때문에, 차량 환경에서의 매우 빠르고 효율적인 HO 기법을 구현할 수 있다. 이를 위해, 그래프 모델링 기법(graph modeling technique)을 활용하여 도로를 따라 배치된 AP사이의 관계를 표현한다. 현실적인 시나리오를 위해 직선 구간, 우회 구간, 교차로, 그리고 유턴 구간 등을 포함하는 복잡한 도로 구조를 고려한다. 도로 구조를 고려하여 각 사용자의 이동 경로를 예측하고, 그에 기반하여 각 사용자 별 HO의 목적 AP 집합을 선택한다. 제안하는 HO 스케줄 기법의 설계 목적은 HO 지연 시간의 합을 최소화하고 각 AP에서 해당 채널을 사용하려는 사용자 수를 줄이면서 WiFi 연결 시간을 최대화하는 것이다. 마지막으로, 본 논문에서는 준정적 환경에서 제안한 채널 할당 기법과 UA 기법의 현실성을 증명하기 위한 시험대(testbed)를 구성하였다. 또한, 광범위한 시뮬레이션을 통해 준정적 환경과 차량 환경에서 제안한 기법들과 기존의 기법들의 성능을 비교하였다.As the IEEE 802.11 (WiFi) becomes the defacto global standard for wireless local area network (WLAN), a huge number of WiFi access points (APs) are deployed. This condition leads to a densely deployed WLANs. In such environment, the conflicting channel allocation between the neighboring access points (APs) is unavoidable, which causes the channel sharing and interference between APs. Thus, the channel allocation (channelization) scheme has a critical role to tackle this issue. In addition, when densely-deployed APs covering a certain area are managed by a single organization, there can exist multiple candidate APs for serving a user. In this case, the user association (UA), i.e., the selection of serving AP, holds a key role in the network performance both in quasi-static and vehicular environments. To improve the performance of WiFi in a densely deployed WLANs environment, we propose a channelization scheme. The proposed channelization scheme utilizes the interference graph to assign the channel for each AP and considers channel bonding. Then, given the channel bonding assignment, the primary channel location for each AP is determined by observing whether the AP supports the static or dynamic channel bonding. Meanwhile, the UA problem in the quasi-static and vehicular environments are slightly different. Thus, we devise UA schemes both for quasi-static and vehicular environments. The UA schemes for quasi-static environment takes account the load balancing among APs and energy saving, considering various techniques for performance improvement, such as multicast transmission, multi-user MIMO, and AP sleeping, together. Then, we formulate the problem into a multi-objective optimization and get the solution as the UA scheme. On the other hand, the UA scheme in the vehicular environment is realized through handover (HO) scheduling mechanism. Specifically, we propose a HO scheduling scheme running on a server, which determines the AP to which a user will be handed over, considering the road topology. Since a user only needs to decide when to initiate the connection to the next AP, a very fast and efficient HO in the vehicular environment can be realized. For this purpose, we utilize the graph modeling technique to map the relation between APs within the road. We consider a practical scenario where the structure of the road is complex, which includes straight, curve, intersection, and u-turn area. Then, the set of target APs for HO are selected for each user moving on a particular road based-on its moving path which is predicted considering the road topology. The design objective of the proposed HO scheduling is to maximize the connection time on WiFi while minimizing the total HO latency and reducing the number of users which contend for the channel within an AP. Finally, we develop a WLAN testbed to demonstrate the practicality and feasibility of the proposed channelization and UA scheme in a quasi-static environment. Furthermore, through extensive simulations, we compare the performance of the proposed schemes with the existing schemes both in quasi-static and vehicular environments.1 Introduction 1.1 Background and Motivation 1.2 Related Works 1.3 Research Scope and Proposed Schemes 1.3.1 Centralized Channelization Scheme for Wireless LANs Exploiting Channel Bonding 1.3.2 User Association for Load Balancing and Energy Saving in Enterprise WLAN 1.3.3 A Graph-Based Handover Scheduling for Heterogenous Vehicular Networks 1.4 Organization 2 Centralized Channelization Scheme for Wireless LANs Exploiting Channel Bonding 2.1 System Model 2.2 Channel Sharing and Bonding 2.2.1 Interference between APs 2.2.2 Channel Sharing 2.2.3 Channel Bonding 2.3 Channelization Scheme 2.3.1 Building Interference Graph 2.3.2 Channel Allocation 2.3.3 Primary Channel Selection 2.4 Implementation 3 User Association for Load Balancing and Energy Saving in Enterprise Wireless LANs 3.1 System Model 3.1.1 IEEE 802.11 ESS-based Enterprise WLAN 3.1.2 Downlink Achievable Rate for MU-MIMO Groups 3.1.3 Candidate MU-MIMO Groups 3.2 User Association Problem 3.2.1 Factors of UA Objective 3.2.2 Problem Formulation 3.3 User Association Scheme 3.3.1 Equivalent Linear Problem 3.3.2 Solution Algorithm 3.3.3 Computational Complexity (Execution Time) 3.4 Implementation 4 A Graph-Based Handover Scheduling for Heterogenous Vehicular Networks 4.1 System Model 4.2 Graph-Based Modeling 4.2.1 Division of Road Portion into Road Segments 4.2.2 Relation between PoAs on a Road Segment 4.2.3 Directed Graph Representation 4.3 Handover Scheduling Problem 4.3.1 Problem Formulation 4.3.2 Weight of Edge 4.3.3 HO Scheduling Algorithm 4.4 Handover Scheduling Operation 4.4.1 HO Schedule Delivery 4.4.2 HO Triggering and Execution 4.4.3 Communication Overhead 5 Performance Evaluation 5.1 CentralizedChannelizationSchemeforWirelessLANsExploitingChannel Bonding 5.1.1 Experiment Settings 5.1.2 Comparison Schemes 5.1.3 Preliminary Experiment for Building Interference Graph 5.1.4 Experiment Results 5.2 User Association for Load Balancing and Energy Saving in Enterprise Wireless LANs 5.2.1 Performance Metrics 5.2.2 Experiment Settings 5.2.3 Experiment Results 5.2.4 Simulation Settings 5.2.5 Comparison Schemes 5.2.6 Simulation Results 5.2.7 Simulation for MU-MIMO System 5.3 A Graph-BasedHandover Scheduling for Heterogenous Vehicular Networks 5.3.1 Performance Metrics 5.3.2 Simulation Settings 5.3.3 Simulation Results 6 Conculsion Bibliography AcknowledgementsDocto

    Opportunistic sensing and mobile data delivery in the CarTel System

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 94-102).Wide-area sensor systems enable a broad class of applications, including the fine-grained monitoring of traffic congestion, road surface conditions, and pollution. This dissertation shows that it is possible to build a low-cost, wide-area sensor system. Our approach relies on two techniques: using existing motion from such sources of mobility as cars and people to provide coverage (opportunistic mobility), and using the abundance of short duration network connections to provide low-cost data delivery (opportunistic networking). We use these two techniques to build a mobile sensor computing system called CarTel, to collect, process, deliver, and visualize spatially diverse data. CarTel consists of three key components: hardware placed in users' cars to provide remote sensing, a communication stack called CafNet to take advantage of opportunistic networking, and a web-based portal for data visualization. This dissertation describes the design and implementation of these three components. In addition, we analyze the properties of opportunistic networking and mobility. To show the viability of opportunistic networking, we studied Internet access from moving vehicles and found that the median duration of link layer connectivity at vehicular speeds was 13 seconds, that the median connection upload bandwidth was 30 KBytes/s, and that the mean duration between successful associations to APs was 75 seconds. To show the viability of opportunistic mobility, we used a simulation and found that after as little as 100 drive hours, a CarTel deployment could achieve over 80 percent coverage of useful roads for a traffic congestion monitoring application.by Bret W. Hull.Ph.D

    Modeling and Measuring Performance of Data Dissemination in Opportunistic Networks

    Get PDF
    In this thesis we focus on understanding, measuring and describing the performance of Opportunistic Networks (ONs) and their applications. An “opportunistic network” is a term introduced to describe a sparse, wireless, ad hoc network with highly mobile nodes. The opportunistic networking paradigm deviates from the traditional end-to-end connectivity concept: Forwarding is based on intermittent connectivity between mobile nodes (typically, users with wireless devices); complete routes between sources and destinations rarely exist. Due to this unique property of spontaneous link establishment, the challenges that exist in ONs are specific. The unstructured nature of these networks makes it difficult to give any performance guarantees on data dissemination. For this reason, in Part I of this thesis we explore the dynamics that affect the performance of opportunistic networks. We choose a number of meaningful scenarios where our models and algorithms can be validated using large and credible data sets. We show that a drift and jump model that takes a spatial approach succeeds in capturing the impact of infrastructure and mobile-to-mobile exchanges on an opportunistic content update system. We describe the effects of these dynamics by using the age distribution of a dynamic piece of data (i.e., information updates) as the performance measure. The model also succeeds in capturing a strong bias in user mobility and reveals the existence of regions, whose statistics play a critical role in the performance perceived in the network. We exploit these findings to design an application for greedy infrastructure placement, which relies on the model approximation for a large number of nodes. Another great challenge of opportunistic networking lies in the fact that the bandwidth available on wireless links, coupled with ad hoc networking, failed to rival the capacity of backbones and to establish opportunistic networks as an alternative to infrastructure-based networks. For this reason, we never study ONs in an isolated context. Instead, we consider the applications that leverage interconnection between opportunistic networks and legacy networks and we study the benefits this synergy brings to both. Following this approach, we use a large operator-provided data set to show that opportunistic networks (based on Wi-Fi) are capable of offloading a significant amount of traffic from 3G networks. At the same time, the offloading algorithms we propose reduce the amount of energy consumed by mobiles, while requiring Wi-Fi coverage that is several times smaller than in the case of real-time offloading. Again we confirm and reuse the fact that user mobility is biased towards certain regions of the network. In Part II of this thesis, we treat another issue that is essential for the acceptance and evolution of opportunistic networks and their applications. Namely, we address the absence of experimental results that would support the findings of simulation based studies. Although the techniques such as contact-based simulations should intuitively be able to capture the performance of opportunistic applications, this intuition has little evidence in practice. For this reason, we design and deploy an experiment with real users who use an opportunistic Twitter application, in a way that allows them to maintain communication with legacy networks (i.e., cellular networks, the Internet). The experiment gives us a unique insight into certain performance aspects that are typically hidden or misinterpreted when the usual evaluation techniques (such as simulation) are used. We show that, due to the commonly ignored factors (such as the limited transmission bandwidth), contact-based simulations significantly overestimate delivery ratio and obtain delays that are several times lower than those experimentally acquired. In addition to this, our results unanimously show that the common practice of assuming infinite cache sizes in simulation studies, leads to a misinterpretation of the effects of a backbone on an opportunistic network. Such simulations typically overestimate the performance of the opportunistic component, while underestimating the utility of the backbone. Given the discovered deficiencies of the contact-based simulations, we consider an alternative statistical treatment of contact traces that uses the weighted contact graph. We show that this approach offers a better interpretation of the impact of a backbone on an opportunistic network and results in a closer match when it comes to modeling certain aspects of performance (namely, delivery ratio). Finally, the security requirements for the opportunistic applications that involve an interconnection with legacy networks are also highly specific. They cannot be fully addressed by the solutions proposed in the context of autonomous opportunistic (or ad hoc) networks, nor by the security frameworks used for securing the applications with continuous connectivity. Thus, in Part III of this thesis, we put together a security framework that fits the networks and applications that we target (i.e., the opportunistic networks and applications with occasional Internet connectivity). We then focus on the impact of security print on network performance and design a scheme for the protection of optimal relaying capacity in an opportunistic multihop network. We fine-tune the parameters of our scheme by using a game-theoretic approach and we demonstrate the substantial performance gains provided by the scheme

    Analysis, design and experimental evaluation of connectivity management in heterogeneous wireless environments

    Get PDF
    Mención Internacional en el título de doctorThe future of network communications is mobile as many more users demand for ubiquitous connectivity. Wireless has become the primary access technology or even the only one, leading to an explosion in traffic demand. This challenges network providers to manage and configure new requirements without incrementing costs in the same amount. In addition to the growth in the use of mobile devices, there is a need to operate simultaneously different access technologies. As well, the great diversity of applications and the capabilities of mobile terminals makes possible for us to live in a hyper-connected world and offers new scenarios. This heterogeneity poses great challenges that need to be addressed to offer better performance and seamless experience to the final user. We need to orchestrate solutions to increase flexibility and empower interoperability. Connectivity management is handled from different angles. In the network stack, mobility is more easily handled by IP mobility protocols, since IP is the common layer between the different access technologies and the application diversity. From the end-user perspective, the connection manager is in charge of handling connectivity issues in mobile devices, but it is an unstandardized entity so its performance is heavily implementation-dependent. In this thesis we explore connectivity management from different angles. We study mobility protocols as they are part of our proposed solutions. In most of the cases we include an experimental evaluation of performance with 3G and IEEE 802.11 as the main technologies. We consider heterogeneous scenarios, with several access technologies where mobile devices have also several network interfaces. We evaluate how connectivity is handled as well as its influence in a handover. Based on the analysis of real traces from a cellular network, we confirm the suitability of more efficient mobility management. Moreover, we propose and evaluate three different solutions for providing mobility support in three different heterogeneous scenarios. We perform an experimental evaluation of a vehicular route optimization for network mobility, reporting on the challenges and lessons learned in such a complicated networking environment. We propose an architecture for supporting mobility and enhance handover in a passive optical network deployment. In addition, we design and deploy a mechanism for mobility management based on software-defined networking.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Arturo Azcorra Saloña.- Secretario: Ramón Agüero Calvo.- Vocal: Daniel Nunes Coruj

    Reliable Data Transmission in Challenging Vehicular Network using Delay Tolerant Network

    Get PDF
    In the 21st century, there has been an increasing tendency toward the wide adoption of wireless networks and technologies due to their significant advantages such as flexibility, mobility, accessibility, and low cost. Wireless technologies have therefore become essential factors in the improvement of intra-vehicle road safety in Vehicular Ad-hoc Network (VANET), which potentially reduce road traffic accidents by enabling efficient exchange of information between vehicles in the early stages. However, due to the inherent high mobility and rapid change of topology, there are numerous challenges in VANET. Hence, different software packages have been combined in this project to create the VANET environment, whereby the Objective Modular Network Testbed (OMNeT++) and the Simulation of Urban Mobility (SUMO), along with Vehicles in Network Simulation (VEINS) are integrated to model the VANET environment. Also, Delay Tolerant Network (DTN) are implemented in the Opportunistic Network Environment (ONE) simulator, where the Store-Carry-Forward technique is used to route traffic. When network resources are not limited, a high delivery ratio is possible. However, when network resources are scarce, these protocols will have a low delivery ratio and high overhead. Due to these limitations, in this research, an extensive performance evaluation of various routing protocols for DTN with different buffer management policies, giving insight into the impact of these policies on DTN routing protocol performance has been conducted. The empirical study gave insight into the strengths and limitations of the existing protocols thus enabling the selection of the benchmark protocols utilized in evaluating a new Enhanced Message Replication Technique (EMRT) proposed in this thesis. The main contribution of this thesis is the design, implementation, and evaluation of a novel EMRT that dynamically adjusts the number of message replicas based on a node's ability to quickly disseminate the message and maximize the delivery ratio. EMRT is evaluated using three different quota protocols: Spray&Wait, Encounter Based Routing (EBR), and Destination Based Routing Protocol (DBRP). Simulation results show that applying EMRT to these protocols improves the delivery ratio while reducing overhead ratio and latency average. For example, when combined with Spray&Wait, EBR, and DBRP, the delivery probability is improved by 13%, 8%, and 10%, respectively, while the latency average is reduced by 51%, 14%, and 13%, respectively

    Localisation en intérieur et gestion de la mobilité dans les réseaux sans fils hétérogènes émergents

    Get PDF
    Au cours des dernières décennies, nous avons été témoins d'une évolution considérable dans l'informatique mobile, réseau sans fil et des appareils portatifs. Dans les réseaux de communication à venir, les utilisateurs devraient être encore plus mobiles exigeant une connectivité omniprésente à différentes applications qui seront de préférence au courant de leur contexte. Certes, les informations de localisation dans le cadre de leur contexte est d'une importance primordiale à la fois la demande et les perspectives du réseau. Depuis l'application ou de point de vue utilisateur, la fourniture de services peut mettre à jour si l'adaptation au contexte de l'utilisateur est activée. Du point de vue du réseau, des fonctionnalités telles que le routage, la gestion de transfert, l'allocation des ressources et d'autres peuvent également bénéficier si l'emplacement de l'utilisateur peuvent être suivis ou même prédit. Dans ce contexte, nous nous concentrons notre attention sur la localisation à l'intérieur et de la prévision transfert qui sont des composants indispensables à la réussite ultime de l'ère de la communication omniprésente envisagé. Alors que les systèmes de positionnement en plein air ont déjà prouvé leur potentiel dans un large éventail d'applications commerciales, le chemin vers un système de localisation à l'intérieur de succès est reconnu pour être beaucoup plus difficile, principalement en raison des caractéristiques difficiles à l'intérieur et l'exigence d'une plus grande précision. De même, la gestion de transfert dans le futur des réseaux hétérogènes sans fil est beaucoup plus difficile que dans les réseaux traditionnels homogènes. Régimes de procédure de transfert doit être sans faille pour la réunion strictes de qualité de service (QoS) des applications futures et fonctionnel malgré la diversité des caractéristiques de fonctionnement des différentes technologies. En outre, les décisions transfert devraient être suffisamment souples pour tenir compte des préférences utilisateur d'un large éventail de critères proposés par toutes les technologies. L'objectif principal de cette thèse est de mettre au point précis, l'heure et l'emplacement de puissance et de systèmes efficaces de gestion de transfert afin de mieux satisfaire applications sensibles au contexte et mobiles. Pour obtenir une localisation à l'intérieur, le potentiel de réseau local sans fil (WLAN) et Radio Frequency Identification (RFID) que l'emplacement autonome technologies de détection sont d'abord étudiés par des essais plusieurs algorithmes et paramètres dans un banc d'essai expérimental réel ou par de nombreuses simulations, alors que leurs lacunes sont également été identifiés. Leur intégration dans une architecture commune est alors proposée afin de combiner leurs principaux avantages et surmonter leurs limitations. La supériorité des performances du système de synergie sur le stand alone homologues est validée par une analyse approfondie. En ce qui concerne la tâche de gestion transfert, nous repérer que la sensibilité au contexte peut aussi améliorer la fonctionnalité du réseau. En conséquence, deux de tels systèmes qui utilisent l'information obtenue à partir des systèmes de localisation sont proposées. Le premier schéma repose sur un déploiement tag RFID, comme notre architecture de positionnement RFID, et en suivant la scène WLAN analyse du concept de positionnement, prédit l'emplacement réseau de la prochaine couche, c'est à dire le prochain point de fixation sur le réseau. Le second régime repose sur une approche intégrée RFID et sans fil de capteur / actionneur Network (WSAN) de déploiement pour la localisation des utilisateurs physiques et par la suite pour prédire la prochaine leur point de transfert à deux couches de liaison et le réseau. Etre indépendant de la technologie d'accès sans fil principe sous-jacent, les deux régimes peuvent être facilement mises en œuvre dans des réseaux hétérogènes [...]Over the last few decades, we have been witnessing a tremendous evolution in mobile computing, wireless networking and hand-held devices. In the future communication networks, users are anticipated to become even more mobile demanding for ubiquitous connectivity to different applications which will be preferably aware of their context. Admittedly, location information as part of their context is of paramount importance from both application and network perspectives. From application or user point of view, service provision can upgrade if adaptation to the user's context is enabled. From network point of view, functionalities such as routing, handoff management, resource allocation and others can also benefit if user's location can be tracked or even predicted. Within this context, we focus our attention on indoor localization and handoff prediction which are indispensable components towards the ultimate success of the envisioned pervasive communication era. While outdoor positioning systems have already proven their potential in a wide range of commercial applications, the path towards a successful indoor location system is recognized to be much more difficult, mainly due to the harsh indoor characteristics and requirement for higher accuracy. Similarly, handoff management in the future heterogeneous wireless networks is much more challenging than in traditional homogeneous networks. Handoff schemes must be seamless for meeting strict Quality of Service (QoS) requirements of the future applications and functional despite the diversity of operation features of the different technologies. In addition, handoff decisions should be flexible enough to accommodate user preferences from a wide range of criteria offered by all technologies. The main objective of this thesis is to devise accurate, time and power efficient location and handoff management systems in order to satisfy better context-aware and mobile applications. For indoor localization, the potential of Wireless Local Area Network (WLAN) and Radio Frequency Identification (RFID) technologies as standalone location sensing technologies are first studied by testing several algorithms and metrics in a real experimental testbed or by extensive simulations, while their shortcomings are also identified. Their integration in a common architecture is then proposed in order to combine their key benefits and overcome their limitations. The performance superiority of the synergetic system over the stand alone counterparts is validated via extensive analysis. Regarding the handoff management task, we pinpoint that context awareness can also enhance the network functionality. Consequently, two such schemes which utilize information obtained from localization systems are proposed. The first scheme relies on a RFID tag deployment, alike our RFID positioning architecture, and by following the WLAN scene analysis positioning concept, predicts the next network layer location, i.e. the next point of attachment to the network. The second scheme relies on an integrated RFID and Wireless Sensor/Actuator Network (WSAN) deployment for tracking the users' physical location and subsequently for predicting next their handoff point at both link and network layers. Being independent of the underlying principle wireless access technology, both schemes can be easily implemented in heterogeneous networks. Performance evaluation results demonstrate the advantages of the proposed schemes over the standard protocols regarding prediction accuracy, time latency and energy savingsEVRY-INT (912282302) / SudocSudocFranceF

    Supporting Large Scale Communication Systems on Infrastructureless Networks Composed of Commodity Mobile Devices: Practicality, Scalability, and Security.

    Full text link
    Infrastructureless Delay Tolerant Networks (DTNs) composed of commodity mobile devices have the potential to support communication applications resistant to blocking and censorship, as well as certain types of surveillance. In this thesis we study the utility, practicality, robustness, and security of these networks. We collected two sets of wireless connectivity traces of commodity mobile devices with different granularity and scales. The first dataset is collected through active installation of measurement software on volunteer users' own smartphones, involving 111 users of a DTN microblogging application that we developed. The second dataset is collected through passive observation of WiFi association events on a university campus, involving 119,055 mobile devices. Simulation results show consistent message delivery performances of the two datasets. Using an epidemic flooding protocol, the large network achieves an average delivery rate of 0.71 in 24 hours and a median delivery delay of 10.9 hours. We show that this performance is appropriate for sharing information that is not time sensitive, e.g., blogs and photos. We also show that using an energy efficient variant of the epidemic flooding protocol, even the large network can support text messages while only consuming 13.7% of a typical smartphone battery in 14 hours. We found that the network delivery rate and delay are robust to denial-of-service and censorship attacks. Attacks that randomly remove 90% of the network participants only reduce delivery rates by less than 10%. Even when subjected to targeted attacks, the network suffered a less than 10% decrease in delivery rate when 40% of its participants were removed. Although structurally robust, the openness of the proposed network introduces numerous security concerns. The Sybil attack, in which a malicious node poses as many identities in order to gain disproportionate influence, is especially dangerous as it breaks the assumption underlying majority voting. Many defenses based on spatial variability of wireless channels exist, and we extend them to be practical for ad hoc networks of commodity 802.11 devices without mutual trust. We present the Mason test, which uses two efficient methods for separating valid channel measurement results of behaving nodes from those falsified by malicious participants.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120779/1/liuyue_1.pd
    corecore