27,605 research outputs found

    Rank Maximal Matchings -- Structure and Algorithms

    Full text link
    Let G = (A U P, E) be a bipartite graph where A denotes a set of agents, P denotes a set of posts and ranks on the edges denote preferences of the agents over posts. A matching M in G is rank-maximal if it matches the maximum number of applicants to their top-rank post, subject to this, the maximum number of applicants to their second rank post and so on. In this paper, we develop a switching graph characterization of rank-maximal matchings, which is a useful tool that encodes all rank-maximal matchings in an instance. The characterization leads to simple and efficient algorithms for several interesting problems. In particular, we give an efficient algorithm to compute the set of rank-maximal pairs in an instance. We show that the problem of counting the number of rank-maximal matchings is #P-Complete and also give an FPRAS for the problem. Finally, we consider the problem of deciding whether a rank-maximal matching is popular among all the rank-maximal matchings in a given instance, and give an efficient algorithm for the problem

    Distributed Approximation of Maximum Independent Set and Maximum Matching

    Full text link
    We present a simple distributed Δ\Delta-approximation algorithm for maximum weight independent set (MaxIS) in the CONGEST\mathsf{CONGEST} model which completes in O(MIS(G)logW)O(\texttt{MIS}(G)\cdot \log W) rounds, where Δ\Delta is the maximum degree, MIS(G)\texttt{MIS}(G) is the number of rounds needed to compute a maximal independent set (MIS) on GG, and WW is the maximum weight of a node. %Whether our algorithm is randomized or deterministic depends on the \texttt{MIS} algorithm used as a black-box. Plugging in the best known algorithm for MIS gives a randomized solution in O(lognlogW)O(\log n \log W) rounds, where nn is the number of nodes. We also present a deterministic O(Δ+logn)O(\Delta +\log^* n)-round algorithm based on coloring. We then show how to use our MaxIS approximation algorithms to compute a 22-approximation for maximum weight matching without incurring any additional round penalty in the CONGEST\mathsf{CONGEST} model. We use a known reduction for simulating algorithms on the line graph while incurring congestion, but we show our algorithm is part of a broad family of \emph{local aggregation algorithms} for which we describe a mechanism that allows the simulation to run in the CONGEST\mathsf{CONGEST} model without an additional overhead. Next, we show that for maximum weight matching, relaxing the approximation factor to (2+ε2+\varepsilon) allows us to devise a distributed algorithm requiring O(logΔloglogΔ)O(\frac{\log \Delta}{\log\log\Delta}) rounds for any constant ε>0\varepsilon>0. For the unweighted case, we can even obtain a (1+ε)(1+\varepsilon)-approximation in this number of rounds. These algorithms are the first to achieve the provably optimal round complexity with respect to dependency on Δ\Delta

    Parallel and Distributed Algorithms for the Housing Allocation Problem

    Get PDF
    We give parallel and distributed algorithms for the housing allocation problem. In this problem, there is a set of agents and a set of houses. Each agent has a strict preference list for a subset of houses. We need to find a matching such that some criterion is optimized. One such criterion is Pareto Optimality. A matching is Pareto optimal if no coalition of agents can be strictly better off by exchanging houses among themselves. We also study the housing market problem, a variant of the housing allocation problem, where each agent initially owns a house. In addition to Pareto optimality, we are also interested in finding the core of a housing market. A matching is in the core if there is no coalition of agents that can be better off by breaking away from other agents and switching houses only among themselves. In the first part of this work, we show that computing a Pareto optimal matching of a house allocation is in {\bf CC} and computing the core of a housing market is {\bf CC}-hard. Given a matching, we also show that verifying whether it is in the core can be done in {\bf NC}. We then give an algorithm to show that computing a maximum Pareto optimal matching for the housing allocation problem is in {\bf RNC}^2 and quasi-{\bf NC}^2. In the second part of this work, we present a distributed version of the top trading cycle algorithm for finding the core of a housing market. To that end, we first present two algorithms for finding all the disjoint cycles in a functional graph: a Las Vegas algorithm which terminates in O(logl)O(\log l) rounds with high probability, where ll is the length of the longest cycle, and a deterministic algorithm which terminates in O(lognlogl)O(\log^* n \log l) rounds, where nn is the number of nodes in the graph. Both algorithms work in the synchronous distributed model and use messages of size O(logn)O(\log n)

    Distributed local approximation algorithms for maximum matching in graphs and hypergraphs

    Full text link
    We describe approximation algorithms in Linial's classic LOCAL model of distributed computing to find maximum-weight matchings in a hypergraph of rank rr. Our main result is a deterministic algorithm to generate a matching which is an O(r)O(r)-approximation to the maximum weight matching, running in O~(rlogΔ+log2Δ+logn)\tilde O(r \log \Delta + \log^2 \Delta + \log^* n) rounds. (Here, the O~()\tilde O() notations hides polyloglog Δ\text{polyloglog } \Delta and polylog r\text{polylog } r factors). This is based on a number of new derandomization techniques extending methods of Ghaffari, Harris & Kuhn (2017). As a main application, we obtain nearly-optimal algorithms for the long-studied problem of maximum-weight graph matching. Specifically, we get a (1+ϵ)(1+\epsilon) approximation algorithm using O~(logΔ/ϵ3+polylog(1/ϵ,loglogn))\tilde O(\log \Delta / \epsilon^3 + \text{polylog}(1/\epsilon, \log \log n)) randomized time and O~(log2Δ/ϵ4+logn/ϵ)\tilde O(\log^2 \Delta / \epsilon^4 + \log^*n / \epsilon) deterministic time. The second application is a faster algorithm for hypergraph maximal matching, a versatile subroutine introduced in Ghaffari et al. (2017) for a variety of local graph algorithms. This gives an algorithm for (2Δ1)(2 \Delta - 1)-edge-list coloring in O~(log2Δlogn)\tilde O(\log^2 \Delta \log n) rounds deterministically or O~((loglogn)3)\tilde O( (\log \log n)^3 ) rounds randomly. Another consequence (with additional optimizations) is an algorithm which generates an edge-orientation with out-degree at most (1+ϵ)λ\lceil (1+\epsilon) \lambda \rceil for a graph of arboricity λ\lambda; for fixed ϵ\epsilon this runs in O~(log6n)\tilde O(\log^6 n) rounds deterministically or O~(log3n)\tilde O(\log^3 n ) rounds randomly

    (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value Probing

    Get PDF
    Consider a kidney-exchange application where we want to find a max-matching in a random graph. To find whether an edge e exists, we need to perform an expensive test, in which case the edge e appears independently with a known probability p_e. Given a budget on the total cost of the tests, our goal is to find a testing strategy that maximizes the expected maximum matching size. The above application is an example of the stochastic probing problem. In general the optimal stochastic probing strategy is difficult to find because it is adaptive - decides on the next edge to probe based on the outcomes of the probed edges. An alternate approach is to show the adaptivity gap is small, i.e., the best non-adaptive strategy always has a value close to the best adaptive strategy. This allows us to focus on designing non-adaptive strategies that are much simpler. Previous works, however, have focused on Bernoulli random variables that can only capture whether an edge appears or not. In this work we introduce a multi-value stochastic probing problem, which can also model situations where the weight of an edge has a probability distribution over multiple values. Our main technical contribution is to obtain (near) optimal bounds for the (worst-case) adaptivity gaps for multi-value stochastic probing over prefix-closed constraints. For a monotone submodular function, we show the adaptivity gap is at most 2 and provide a matching lower bound. For a weighted rank function of a k-extendible system (a generalization of intersection of k matroids), we show the adaptivity gap is between O(k log k) and k. None of these results were known even in the Bernoulli case where both our upper and lower bounds also apply, thereby resolving an open question of Gupta et al. [Gupta et al., 2017]

    On Randomized Algorithms for Matching in the Online Preemptive Model

    Full text link
    We investigate the power of randomized algorithms for the maximum cardinality matching (MCM) and the maximum weight matching (MWM) problems in the online preemptive model. In this model, the edges of a graph are revealed one by one and the algorithm is required to always maintain a valid matching. On seeing an edge, the algorithm has to either accept or reject the edge. If accepted, then the adjacent edges are discarded. The complexity of the problem is settled for deterministic algorithms. Almost nothing is known for randomized algorithms. A lower bound of 1.6931.693 is known for MCM with a trivial upper bound of 22. An upper bound of 5.3565.356 is known for MWM. We initiate a systematic study of the same in this paper with an aim to isolate and understand the difficulty. We begin with a primal-dual analysis of the deterministic algorithm due to McGregor. All deterministic lower bounds are on instances which are trees at every step. For this class of (unweighted) graphs we present a randomized algorithm which is 2815\frac{28}{15}-competitive. The analysis is a considerable extension of the (simple) primal-dual analysis for the deterministic case. The key new technique is that the distribution of primal charge to dual variables depends on the "neighborhood" and needs to be done after having seen the entire input. The assignment is asymmetric: in that edges may assign different charges to the two end-points. Also the proof depends on a non-trivial structural statement on the performance of the algorithm on the input tree. The other main result of this paper is an extension of the deterministic lower bound of Varadaraja to a natural class of randomized algorithms which decide whether to accept a new edge or not using independent random choices

    The Price of Information in Combinatorial Optimization

    Full text link
    Consider a network design application where we wish to lay down a minimum-cost spanning tree in a given graph; however, we only have stochastic information about the edge costs. To learn the precise cost of any edge, we have to conduct a study that incurs a price. Our goal is to find a spanning tree while minimizing the disutility, which is the sum of the tree cost and the total price that we spend on the studies. In a different application, each edge gives a stochastic reward value. Our goal is to find a spanning tree while maximizing the utility, which is the tree reward minus the prices that we pay. Situations such as the above two often arise in practice where we wish to find a good solution to an optimization problem, but we start with only some partial knowledge about the parameters of the problem. The missing information can be found only after paying a probing price, which we call the price of information. What strategy should we adopt to optimize our expected utility/disutility? A classical example of the above setting is Weitzman's "Pandora's box" problem where we are given probability distributions on values of nn independent random variables. The goal is to choose a single variable with a large value, but we can find the actual outcomes only after paying a price. Our work is a generalization of this model to other combinatorial optimization problems such as matching, set cover, facility location, and prize-collecting Steiner tree. We give a technique that reduces such problems to their non-price counterparts, and use it to design exact/approximation algorithms to optimize our utility/disutility. Our techniques extend to situations where there are additional constraints on what parameters can be probed or when we can simultaneously probe a subset of the parameters.Comment: SODA 201

    Size versus truthfulness in the House Allocation problem

    Get PDF
    We study the House Allocation problem (also known as the Assignment problem), i.e., the problem of allocating a set of objects among a set of agents, where each agent has ordinal preferences (possibly involving ties) over a subset of the objects. We focus on truthful mechanisms without monetary transfers for finding large Pareto optimal matchings. It is straightforward to show that no deterministic truthful mechanism can approximate a maximum cardinality Pareto optimal matching with ratio better than 2. We thus consider randomised mechanisms. We give a natural and explicit extension of the classical Random Serial Dictatorship Mechanism (RSDM) specifically for the House Allocation problem where preference lists can include ties. We thus obtain a universally truthful randomised mechanism for finding a Pareto optimal matching and show that it achieves an approximation ratio of ee1\frac{e}{e-1}. The same bound holds even when agents have priorities (weights) and our goal is to find a maximum weight (as opposed to maximum cardinality) Pareto optimal matching. On the other hand we give a lower bound of 1813\frac{18}{13} on the approximation ratio of any universally truthful Pareto optimal mechanism in settings with strict preferences. In the case that the mechanism must additionally be non-bossy with an additional technical assumption, we show by utilising a result of Bade that an improved lower bound of ee1\frac{e}{e-1} holds. This lower bound is tight since RSDM for strict preference lists is non-bossy. We moreover interpret our problem in terms of the classical secretary problem and prove that our mechanism provides the best randomised strategy of the administrator who interviews the applicants.Comment: To appear in Algorithmica (preliminary version appeared in the Proceedings of EC 2014
    corecore