538 research outputs found

    ADN: An Information-Centric Networking Architecture for the Internet of Things

    Full text link
    Forwarding data by name has been assumed to be a necessary aspect of an information-centric redesign of the current Internet architecture that makes content access, dissemination, and storage more efficient. The Named Data Networking (NDN) and Content-Centric Networking (CCNx) architectures are the leading examples of such an approach. However, forwarding data by name incurs storage and communication complexities that are orders of magnitude larger than solutions based on forwarding data using addresses. Furthermore, the specific algorithms used in NDN and CCNx have been shown to have a number of limitations. The Addressable Data Networking (ADN) architecture is introduced as an alternative to NDN and CCNx. ADN is particularly attractive for large-scale deployments of the Internet of Things (IoT), because it requires far less storage and processing in relaying nodes than NDN. ADN allows things and data to be denoted by names, just like NDN and CCNx do. However, instead of replacing the waist of the Internet with named-data forwarding, ADN uses an address-based forwarding plane and introduces an information plane that seamlessly maps names to addresses without the involvement of end-user applications. Simulation results illustrate the order of magnitude savings in complexity that can be attained with ADN compared to NDN.Comment: 10 page

    Content-Centric Networking at Internet Scale through The Integration of Name Resolution and Routing

    Full text link
    We introduce CCN-RAMP (Routing to Anchors Matching Prefixes), a new approach to content-centric networking. CCN-RAMP offers all the advantages of the Named Data Networking (NDN) and Content-Centric Networking (CCNx) but eliminates the need to either use Pending Interest Tables (PIT) or lookup large Forwarding Information Bases (FIB) listing name prefixes in order to forward Interests. CCN-RAMP uses small forwarding tables listing anonymous sources of Interests and the locations of name prefixes. Such tables are immune to Interest-flooding attacks and are smaller than the FIBs used to list IP address ranges in the Internet. We show that no forwarding loops can occur with CCN-RAMP, and that Interests flow over the same routes that NDN and CCNx would maintain using large FIBs. The results of simulation experiments comparing NDN with CCN-RAMP based on ndnSIM show that CCN-RAMP requires forwarding state that is orders of magnitude smaller than what NDN requires, and attains even better performance

    Encaminhamento baseado no contexto em ICNs móveis

    Get PDF
    Over the last couple of decades, vehicular ad hoc networks (VANETs) have been at the forefront of research, yet still are afflicted by high network fragmentation, due to their continuous node mobility and geographical dispersion. To address these concerns, a new paradigm was proposed - Information-Centric Networks(ICN), whose focus is the delivery of Content based on names, being ideal to attend to high latency environments. However, the main proposed solutions for content delivery in ICNs do not take into account the type of content nor the various available communication interfaces in each point of the network, a factor which can be deciding in mobile networks. The scope of this dissertation lies on the use of ICNs concepts for the delivery of both urgent and non-urgent information in urban mobile environments. In order to do so, a context-based forwarding strategy was proposed, with a very clear goal: to take advantage of both packet names and Data, and node's neighborhood analysis in order to successfully deliver content into the network in the shortest period of time, and without worsening network congestion. The design, implementation and validation of the proposed strategy was performed using the ndnSIM platform simulator along with real mobility traces from communication infrastructure of the Porto city. The results show that the proposed context-based forwarding strategy for mobile ICN presents a clear improvement in performance in terms of delivery, while maintaining network overhead at a constant. Furthermore, by means of better pathing and through cooperation with caching mechanisms, lower transmission delays can be attained.Nas últimas décadas, as redes veiculares ad hoc (VANETs) estiveram na vanguarda da pesquisa, mas continuam a ser afetadas por alta fragmentação na rede, devido à mobilidade contínua dos nós e a sua dispersão geográfica. Para abordar estes problemas, um novo paradigma foi proposto - Redes Centradas na Informação (ICN), cujo foco é a entrega de Conteúdo com base em nomes, sendo ideal para atender ambientes de alta latência. No entanto, as principais soluções propostas para entrega de conteúdo em ICNs não têm em conta o tipo de conteúdo nem as várias interfaces de comunicação disponíveis em cada ponto da rede, fator que pode ser determinante em redes móveis. O objetivo desta dissertação reside no uso dos conceitos de ICNs para a entrega de informações urgentes e não urgentes em ambientes móveis urbanos. Para isso, foi proposta uma estratégia de encaminhamento baseada em contexto, com um objetivo muito claro: tirar proveito do nome e dados dos pacotes, e da análise de vizinhança dos nós, com vista em fornecer com êxito o conteúdo para a rede no menor período de tempo e sem piorar o congestionamento da rede. O desenho, implementação e validação da estratégia proposta foram realizados usando o simulador ndnSIM, juntamente com traces reais de mobilidade da infraestrutura de comunicação da cidade do Porto. Os resultados mostram que a estratégia de encaminhamento baseada em contexto proposta para o ICN móvel apresenta uma clara melhoria no desempenho em termos de entrega, mantendo a carga da rede constante. Além disso, através da escolha de melhores caminhos e através da cooperação com mecanismos de armazenamento em cache, é possível alcançar atrasos de transmissão mais baixos.Mestrado em Engenharia de Computadores e Telemátic

    Information Resilience through User-Assisted Caching in Disruptive Content-Centric Networks

    Get PDF
    We investigate an information-resilience scheme in the context of Content-Centric Networks (CCN) for the retrieval of content in disruptive, fragmented networks cases. To resolve and fetch content when the origin is not available due to fragmentation, we exploit content cached both in in-network caches and in end-users’ devices. Initially, we present the required modifications in the CCN architecture to support the proposed resilience scheme. We also present the family of policies that enable the retrieval of cached content and we derive an analytical expression/lower bound of the probability that an information item will disappear from the network (be absorbed) and the time to absorption when the origin of the item is not reachable. Extensive simulations indicate that the proposed resilience scheme is a valid tool for the retrieval of cached content in disruptive scenarios, since it allows the retrieval of content for a long period after the fragmentation of the network and the “disappearance” of the content origin

    A Survey on Data Plane Programming with P4: Fundamentals, Advances, and Applied Research

    Full text link
    With traditional networking, users can configure control plane protocols to match the specific network configuration, but without the ability to fundamentally change the underlying algorithms. With SDN, the users may provide their own control plane, that can control network devices through their data plane APIs. Programmable data planes allow users to define their own data plane algorithms for network devices including appropriate data plane APIs which may be leveraged by user-defined SDN control. Thus, programmable data planes and SDN offer great flexibility for network customization, be it for specialized, commercial appliances, e.g., in 5G or data center networks, or for rapid prototyping in industrial and academic research. Programming protocol-independent packet processors (P4) has emerged as the currently most widespread abstraction, programming language, and concept for data plane programming. It is developed and standardized by an open community and it is supported by various software and hardware platforms. In this paper, we survey the literature from 2015 to 2020 on data plane programming with P4. Our survey covers 497 references of which 367 are scientific publications. We organize our work into two parts. In the first part, we give an overview of data plane programming models, the programming language, architectures, compilers, targets, and data plane APIs. We also consider research efforts to advance P4 technology. In the second part, we analyze a large body of literature considering P4-based applied research. We categorize 241 research papers into different application domains, summarize their contributions, and extract prototypes, target platforms, and source code availability.Comment: Submitted to IEEE Communications Surveys and Tutorials (COMS) on 2021-01-2

    SNAP : A Software-Defined & Named-Data Oriented Publish-Subscribe Framework for Emerging Wireless Application Systems

    Get PDF
    The evolution of Cyber-Physical Systems (CPSs) has given rise to an emergent class of CPSs defined by ad-hoc wireless connectivity, mobility, and resource constraints in computation, memory, communications, and battery power. These systems are expected to fulfill essential roles in critical infrastructure sectors. Vehicular Ad-Hoc Network (VANET) and a swarm of Unmanned Aerial Vehicles (UAV swarm) are examples of such systems. The significant utility of these systems, coupled with their economic viability, is a crucial indicator of their anticipated growth in the future. Typically, the tasks assigned to these systems have strict Quality-of-Service (QoS) requirements and require sensing, perception, and analysis of a substantial amount of data. To fulfill these QoS requirements, the system requires network connectivity, data dissemination, and data analysis methods that can operate well within a system\u27s limitations. Traditional Internet protocols and methods for network connectivity and data dissemination are typically designed for well-engineering cyber systems and do not comprehensively support this new breed of emerging systems. The imminent growth of these CPSs presents an opportunity to develop broadly applicable methods that can meet the stated system requirements for a diverse range of systems and integrate these systems with the Internet. These methods could potentially be standardized to achieve interoperability among various systems of the future. This work presents a solution that can fulfill the communication and data dissemination requirements of a broad class of emergent CPSs. The two main contributions of this work are the Application System (APPSYS) system abstraction, and a complementary communications framework called the Software-Defined NAmed-data enabled Publish-Subscribe (SNAP) communication framework. An APPSYS is a new breed of Internet application representing the mobile and resource-constrained CPSs supporting data-intensive and QoS-sensitive safety-critical tasks, referred to as the APPSYS\u27s mission. The functioning of the APPSYS is closely aligned with the needs of the mission. The standard APPSYS architecture is distributed and partitions the system into multiple clusters where each cluster is a hierarchical sub-network. The SNAP communication framework within the APPSYS utilized principles of Information-Centric Networking (ICN) through the publish-subscribe communication paradigm. It further extends the role of brokers within the publish-subscribe paradigm to create a distributed software-defined control plane. The SNAP framework leverages the APPSYS design characteristics to provide flexible and robust communication and dynamic and distributed control-plane decision-making that successfully allows the APPSYS to meet the communication requirements of data-oriented and QoS-sensitive missions. In this work, we present the design, implementation, and performance evaluation of an APPSYS through an exemplar UAV swarm APPSYS. We evaluate the benefits offered by the APPSYS design and the SNAP communication framework in meeting the dynamically changed requirements of a data-intensive and QoS-sensitive Coordinated Search and Tracking (CSAT) mission operating in a UAV swarm APPSYS on the battlefield. Results from the performance evaluation demonstrate that the UAV swarm APPSYS successfully monitors and mitigates network impairment impacting a mission\u27s QoS to support the mission\u27s QoS requirements
    corecore