12,404 research outputs found

    Stand-Alone Artificial Intelligence for Breast Cancer Detection in Mammography: Comparison With 101 Radiologists.

    Get PDF
    BACKGROUND: Artificial intelligence (AI) systems performing at radiologist-like levels in the evaluation of digital mammography (DM) would improve breast cancer screening accuracy and efficiency. We aimed to compare the stand-alone performance of an AI system to that of radiologists in detecting breast cancer in DM. METHODS: Nine multi-reader, multi-case study datasets previously used for different research purposes in seven countries were collected. Each dataset consisted of DM exams acquired with systems from four different vendors, multiple radiologists' assessments per exam, and ground truth verified by histopathological analysis or follow-up, yielding a total of 2652 exams (653 malignant) and interpretations by 101 radiologists (28 296 independent interpretations). An AI system analyzed these exams yielding a level of suspicion of cancer present between 1 and 10. The detection performance between the radiologists and the AI system was compared using a noninferiority null hypothesis at a margin of 0.05. RESULTS: The performance of the AI system was statistically noninferior to that of the average of the 101 radiologists. The AI system had a 0.840 (95% confidence interval [CI] = 0.820 to 0.860) area under the ROC curve and the average of the radiologists was 0.814 (95% CI = 0.787 to 0.841) (difference 95% CI = -0.003 to 0.055). The AI system had an AUC higher than 61.4% of the radiologists. CONCLUSIONS: The evaluated AI system achieved a cancer detection accuracy comparable to an average breast radiologist in this retrospective setting. Although promising, the performance and impact of such a system in a screening setting needs further investigation

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 153)

    Get PDF
    This bibliography lists 175 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1976

    A library of logic models to explain how interventions to reduce diagnostic error work

    Get PDF
    OBJECTIVES: We aimed to create a library of logic models for interventions to reduce diagnostic error. This library can be used by those developing, implementing, or evaluating an intervention to improve patient care, to understand what needs to happen, and in what order, if the intervention is to be effective. METHODS: To create the library, we modified an existing method for generating logic models. The following five ordered activities to include in each model were defined: preintervention; implementation of the intervention; postimplementation, but before the immediate outcome can occur; the immediate outcome (usually behavior change); and postimmediate outcome, but before a reduction in diagnostic errors can occur. We also included reasons for lack of progress through the model. Relevant information was extracted about existing evaluations of interventions to reduce diagnostic error, identified by updating a previous systematic review. RESULTS: Data were synthesized to create logic models for four types of intervention, addressing five causes of diagnostic error in seven stages in the diagnostic pathway. In total, 46 interventions from 43 studies were included and 24 different logic models were generated. CONCLUSIONS: We used a novel approach to create a freely available library of logic models. The models highlight the importance of attending to what needs to occur before and after intervention delivery if the intervention is to be effective. Our work provides a useful starting point for intervention developers, helps evaluators identify intermediate outcomes, and provides a method to enable others to generate libraries for interventions targeting other errors

    The Construction of a Clinical Decision Support System Based on Knowledge Base

    Get PDF
    Part 7: e-Health, the New Frontier of Service Science InnovationInternational audienceBased on a review of domestic and foreign research, application status, classification, composition, and the main problem of a clinical decision support system, this paper proposed a CDSS mode based on a knowledge base. On KB-CDSS mode, this paper discussed the architecture, principle, process, construction of the knowledge base, system design, and application value, then introduced the application WanFang Data Clinical Diagnosis and Treatment Knowledge Base

    Computer Simulation and the Practice of Oral Medicine and Radiology

    Get PDF
    The practice of Oral Medicine and Radiology has long been considered an art form. Collecting and collimating the enormous amount of information each patient brings has always tested the best of our abilities as diagnosticians. However, as the tide of smartphones, cheaper data access, and automation rises, it threatens to wash away all that we have held sacrosanct about conventional clinical practices. In this tussle between what is traditional and what is tantalizing, it is time to question, as diagnosticians, how much can we accede to the invasion of algorithms. How does computer simulation affect the practice of diagnosis in the field of Oral Medicine and Radiology

    Computer-Aided Detection, Pulmonary Embolism, Computerized Tomography Pulmonary Angiography: Current Status

    Get PDF
    Angiography (mostly computed tomography, but in some cases, conventional) is still the gold diagnostic standard in the clinical diagnosis of pulmonary embolism (PE). Computer-aided detection (CAD) is software that alerts radiologists the presence of PE during computerized tomography pulmonary angiography (CTPA) examinations. Interpreting CTPA scans with the aid of commercially available CTPA-CAD has improved the detectability of PE patients. This chapter aims to complete the scope of this book by explaining the clinical evidences of PE, the CTPA technology, the role of CTPA-CAD software in improving the diagnostic abilities of CTPA and the role of conventional pulmonary angiography in daily clinical practice. The reader will be introduced to the performance of diagnosing PE with or without the aid of CTPA-CAD algorithms. Differences among CTPA-CAD’s output will be compared and tabled according to “per patient,” “per clot,” “first reader,” and “second reader” basis. This includes, but not limited to, the CTPA-CAD’s sensitivity and specificity in comparison to human observer performance (i.e., radiologist). These topics cover the current status practice at the pulmonary angiography clinic
    • 

    corecore