63,664 research outputs found

    Increasing Distributed Generation Penetration using Soft Normally-Open Points

    No full text
    This paper considers the effects of various voltage control solutions on facilitating an increase in allowable levels of distributed generation installation before voltage violations occur. In particular, the voltage control solution that is focused on is the implementation of `soft' normally-open points (SNOPs), a term which refers to power electronic devices installed in place of a normally-open point in a medium-voltage distribution network which allows for control of real and reactive power flows between each end point of its installation sites. While other benefits of SNOP installation are discussed, the intent of this paper is to determine whether SNOPs are a viable alternative to other voltage control strategies for this particular application. As such, the SNOPs ability to affect the voltage profile along feeders within a distribution system is focused on with other voltage control options used for comparative purposes. Results from studies on multiple network models with varying topologies are presented and a case study which considers economic benefits of increasing feasible DG penetration is also given

    Hydro/Battery Hybrid Systems for frequency regulation

    Get PDF
    An innovative Hydro/Battery Hybrid System (HBHS), composed of a hydropower plant (HPP) and a Battery Energy Storage System (BESS) is proposed to provide frequency regulation services in the Nordic Power System (NPS). The HBHS is envisioned to have a faster and more efficient response compared to HPPs currently providing these services, whilst retaining their high energy capacity and endurance, thus alleviating stand-alone BESS operation constraints. This Thesis aims to explore the operation and optimization of such a hybrid system in order to make it efficient and economically viable. A power plant perspective is employed, evaluating the impact different control algorithms and parameters have on the HBHS performance. Providing Frequency Containment Reserves for Normal Operation (FCR-N), to the national TSO in Sweden, is defined from technology and market analyses as the use case for the HBHS. The characteristics of HPPs suitable for HBHS implementation are found theoretically, by evaluating HPP operational constraints and regulation mechanisms. With the aim of evaluating the dynamic performance of the proposed HBHS, a frequency regulation model of the NPS is built in MATLAB and Simulink. Two different HBHS architectures are introduced, the Hydro Recharge, in which the BESS is regulating the frequency and the HPP is controlling its state of charge (SoC), and the Frequency Split, in which both elements are regulating the frequency with the HPP additionally compensating for the SoC. The dynamic performance of the units is qualitatively evaluated through existing and proposed FCR-N prequalification tests, prescribed by the TSO and ENTSO-E. Quantitative performance comparison to a benchmark HPP is performed with regards to the estimated HPP regulation wear and tear and BESS degradation during 30-day operation with historical frequency data. The two proposed HBHS architectures demonstrate significant reductions of estimated HPP wear and tear compared to the benchmark unit. Simulations consistently report a 90 % reduction in the number of movements HPP regulation mechanism performs and a more than 50 % decrease in the distance it travels. The BESS lifetime is evaluated at acceptable levels and compared for different architectures. Two different applications are identified, the first being installing the HBHS to enable the HPP to pass FCR-N prequalification tests. The second application is increasing the FCR-N capacity of the HPP by installing the HBHS. The Frequency Split HBHS shows more efficient performance when installed in the first application, as opposed to the Hydro Recharge HBHS, which shows better performance in the second application. Finally, it is concluded that a large-scale implementation of HBHSs would improve the frequency quality in the NPS, linearly decreasing the amount of time outside the normal frequency band with increasing the total installed HBHS power capacity

    A novel haptic model and environment for maxillofacial surgical operation planning and manipulation

    Get PDF
    This paper presents a practical method and a new haptic model to support manipulations of bones and their segments during the planning of a surgical operation in a virtual environment using a haptic interface. To perform an effective dental surgery it is important to have all the operation related information of the patient available beforehand in order to plan the operation and avoid any complications. A haptic interface with a virtual and accurate patient model to support the planning of bone cuts is therefore critical, useful and necessary for the surgeons. The system proposed uses DICOM images taken from a digital tomography scanner and creates a mesh model of the filtered skull, from which the jaw bone can be isolated for further use. A novel solution for cutting the bones has been developed and it uses the haptic tool to determine and define the bone-cutting plane in the bone, and this new approach creates three new meshes of the original model. Using this approach the computational power is optimized and a real time feedback can be achieved during all bone manipulations. During the movement of the mesh cutting, a novel friction profile is predefined in the haptical system to simulate the force feedback feel of different densities in the bone

    Focusing a deterministic single-ion beam

    Full text link
    We focus down an ion beam consisting of single 40Ca+ ions to a spot size of a few mum using an einzel-lens. Starting from a segmented linear Paul trap, we have implemented a procedure which allows us to deterministically load a predetermined number of ions by using the potential shaping capabilities of our segmented ion trap. For single-ion loading, an efficiency of 96.7(7)% has been achieved. These ions are then deterministically extracted out of the trap and focused down to a 1sigma-spot radius of (4.6 \pm 1.3)mum at a distance of 257mm from the trap center. Compared to former measurements without ion optics, the einzel-lens is focusing down the single-ion beam by a factor of 12. Due to the small beam divergence and narrow velocity distribution of our ion source, chromatic and spherical aberration at the einzel-lens is vastly reduced, presenting a promising starting point for focusing single ions on their way to a substrate.Comment: 16 pages, 7 figure

    Modeling and Energy Optimization of LDPC Decoder Circuits with Timing Violations

    Full text link
    This paper proposes a "quasi-synchronous" design approach for signal processing circuits, in which timing violations are permitted, but without the need for a hardware compensation mechanism. The case of a low-density parity-check (LDPC) decoder is studied, and a method for accurately modeling the effect of timing violations at a high level of abstraction is presented. The error-correction performance of code ensembles is then evaluated using density evolution while taking into account the effect of timing faults. Following this, several quasi-synchronous LDPC decoder circuits based on the offset min-sum algorithm are optimized, providing a 23%-40% reduction in energy consumption or energy-delay product, while achieving the same performance and occupying the same area as conventional synchronous circuits.Comment: To appear in IEEE Transactions on Communication
    • 

    corecore