2,101 research outputs found

    05141 Abstracts Collection -- Power-aware Computing Systems

    Get PDF
    From 03.04.05 to 08.04.05, the Dagstuhl Seminar 05141 ``Power-aware Computing Systems\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and discussed open problems. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are collected in this paper. The first section describes the seminar topics and goals. Links to extended abstracts or full papers are provided, if available

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER

    Power, Performance, and Energy Management of Heterogeneous Architectures

    Get PDF
    abstract: Many core modern multiprocessor systems-on-chip offers tremendous power and performance optimization opportunities by tuning thousands of potential voltage, frequency and core configurations. Applications running on these architectures are becoming increasingly complex. As the basic building blocks, which make up the application, change during runtime, different configurations may become optimal with respect to power, performance or other metrics. Identifying the optimal configuration at runtime is a daunting task due to a large number of workloads and configurations. Therefore, there is a strong need to evaluate the metrics of interest as a function of the supported configurations. This thesis focuses on two different types of modern multiprocessor systems-on-chip (SoC): Mobile heterogeneous systems and tile based Intel Xeon Phi architecture. For mobile heterogeneous systems, this thesis presents a novel methodology that can accurately instrument different types of applications with specific performance monitoring calls. These calls provide a rich set of performance statistics at a basic block level while the application runs on the target platform. The target architecture used for this work (Odroid XU3) is capable of running at 4940 different frequency and core combinations. With the help of instrumented application vast amount of characterization data is collected that provides details about performance, power and CPU state at every instrumented basic block across 19 different types of applications. The vast amount of data collected has enabled two runtime schemes. The first work provides a methodology to find optimal configurations in heterogeneous architecture using classifiers and demonstrates an average increase of 93%, 81% and 6% in performance per watt compared to the interactive, ondemand and powersave governors, respectively. The second work using same data shows a novel imitation learning framework for dynamically controlling the type, number, and the frequencies of active cores to achieve an average of 109% PPW improvement compared to the default governors. This work also presents how to accurately profile tile based Intel Xeon Phi architecture while training different types of neural networks using open image dataset on deep learning framework. The data collected allows deep exploratory analysis. It also showcases how different hardware parameters affect performance of Xeon Phi.Dissertation/ThesisMasters Thesis Engineering 201

    Optimizing energy-efficiency for multi-core packet processing systems in a compiler framework

    Get PDF
    Network applications become increasingly computation-intensive and the amount of traffic soars unprecedentedly nowadays. Multi-core and multi-threaded techniques are thus widely employed in packet processing system to meet the changing requirement. However, the processing power cannot be fully utilized without a suitable programming environment. The compilation procedure is decisive for the quality of the code. It can largely determine the overall system performance in terms of packet throughput, individual packet latency, core utilization and energy efficiency. The thesis investigated compilation issues in networking domain first, particularly on energy consumption. And as a cornerstone for any compiler optimizations, a code analysis module for collecting program dependency is presented and incorporated into a compiler framework. With that dependency information, a strategy based on graph bi-partitioning and mapping is proposed to search for an optimal configuration in a parallel-pipeline fashion. The energy-aware extension is specifically effective in enhancing the energy-efficiency of the whole system. Finally, a generic evaluation framework for simulating the performance and energy consumption of a packet processing system is given. It accepts flexible architectural configuration and is capable of performingarbitrary code mapping. The simulation time is extremely short compared to full-fledged simulators. A set of our optimization results is gathered using the framework

    The AXIOM software layers

    Get PDF
    AXIOM project aims at developing a heterogeneous computing board (SMP-FPGA).The Software Layers developed at the AXIOM project are explained.OmpSs provides an easy way to execute heterogeneous codes in multiple cores. People and objects will soon share the same digital network for information exchange in a world named as the age of the cyber-physical systems. The general expectation is that people and systems will interact in real-time. This poses pressure onto systems design to support increasing demands on computational power, while keeping a low power envelop. Additionally, modular scaling and easy programmability are also important to ensure these systems to become widespread. The whole set of expectations impose scientific and technological challenges that need to be properly addressed.The AXIOM project (Agile, eXtensible, fast I/O Module) will research new hardware/software architectures for cyber-physical systems to meet such expectations. The technical approach aims at solving fundamental problems to enable easy programmability of heterogeneous multi-core multi-board systems. AXIOM proposes the use of the task-based OmpSs programming model, leveraging low-level communication interfaces provided by the hardware. Modular scalability will be possible thanks to a fast interconnect embedded into each module. To this aim, an innovative ARM and FPGA-based board will be designed, with enhanced capabilities for interfacing with the physical world. Its effectiveness will be demonstrated with key scenarios such as Smart Video-Surveillance and Smart Living/Home (domotics).Peer ReviewedPostprint (author's final draft
    • 

    corecore