325 research outputs found

    Reducing driver distraction by utilizing augmented reality head-up display system for rear passengers

    Get PDF

    I Am The Passenger: How Visual Motion Cues Can Influence Sickness For In-Car VR

    Get PDF
    This paper explores the use of VR Head Mounted Displays (HMDs) in-car and in-motion for the first time. Immersive HMDs are becoming everyday consumer items and, as they offer new possibilities for entertainment and productivity, people will want to use them during travel in, for example, autonomous cars. However, their use is confounded by motion sickness caused in-part by the restricted visual perception of motion conflicting with physically perceived vehicle motion (accelerations/rotations detected by the vestibular system). Whilst VR HMDs restrict visual perception of motion, they could also render it virtually, potentially alleviating sensory conflict. To study this problem, we conducted the first on-road and in motion study to systematically investigate the effects of various visual presentations of the real-world motion of a car on the sickness and immersion of VR HMD wearing passengers. We established new baselines for VR in-car motion sickness, and found that there is no one best presentation with respect to balancing sickness and immersion. Instead, user preferences suggest different solutions are required for differently susceptible users to provide usable VR in-car. This work provides formative insights for VR designers and an entry point for further research into enabling use of VR HMDs, and the rich experiences they offer, when travelling

    Challenges in passenger use of mixed reality headsets in cars and other transportation

    Get PDF
    This paper examines key challenges in supporting passenger use of augmented and virtual reality headsets in transit. These headsets will allow passengers to break free from the restraints of physical displays placed in constrained environments such as cars, trains and planes. Moreover, they have the potential to allow passengers to make better use of their time by making travel more productive and enjoyable, supporting both privacy and immersion. However, there are significant barriers to headset usage by passengers in transit contexts. These barriers range from impediments that would entirely prevent safe usage and function (e.g. motion sickness) to those that might impair their adoption (e.g. social acceptability). We identify the key challenges that need to be overcome and discuss the necessary resolutions and research required to facilitate adoption and realize the potential advantages of using mixed reality headsets in transit

    Driving experience of an indirect vision cockpit(æœŹæ–‡)

    Get PDF

    Designing passenger experiences for in-car Mixed Reality

    Get PDF
    In day-to-day life, people spend a considerable amount of their time on the road. People seek to invest travel time for work and well-being through interaction with mobile and multimedia applications on personal devices such as smartphones and tablets. However, for new computing paradigms, such as mobile mixed reality (MR), their usefulness in this everyday transport context, in-car MR remains challenging. When future passengers immerse in three-dimensional virtual environments, they become increasingly disconnected from the cabin space, vehicle motion, and other people around them. This degraded awareness of the real environment endangers the passenger experience on the road, which initially motivates this thesis to question: can immersive technology become useful in the everyday transport context, such as for in-car scenarios? If so, how should we design in-car MR technology to foster passenger access and connectedness to both physical and virtual worlds, ensuring ride safety, comfort, and joy? To this aim, this thesis contributes via three aspects: 1) Understanding passenger use of in-car MR —first, I present a model for in-car MR interaction through user research. As interviews with daily commuters reveal, passengers are concerned with their physical integrity when facing spatial conflicts between borderless virtual environments and the confined cabin space. From this, the model aims to help researchers spatially organize information and how user interfaces vary in the proximity of the user. Additionally, a field experiment reveals contextual feedback about motion sickness when using immersive technology on the road. This helps refine the model and instruct the following experiments. 2) Mixing realities in car rides —second, this thesis explores a series of prototypes and experiments to examine how in-car MR technology can enable passengers to feel present in virtual environments while maintaining awareness of the real environment. The results demonstrate technical solutions for physical integrity and situational awareness by incorporating essential elements of the RE into virtual reality. Empirical evidence provides a set of dimensions into the in-car MR model, guiding the design decisions of mixing realities. 3) Transcending the transport context —third, I extend the model to other everyday contexts beyond transport that share spatial and social constraints, such as the confined and shared living space at home. A literature review consolidates leveraging daily physical objects as haptic feedback for MR interaction across spatial scales. A laboratory experiment discovers how context-aware MR systems that consider physical configurations can support social interaction with copresent others in close shared spaces. These results substantiate the scalability of the in-car MR model to other contexts. Finally, I conclude with a holistic model for mobile MR interaction across everyday contexts, from home to on the road. With my user research, prototypes, empirical evaluation, and model, this thesis paves the way for understanding the future passenger use of immersive technology, addressing today’s technical limitations of MR in mobile interaction, and ultimately fostering mobile users’ ubiquitous access and close connectedness to MR anytime and anywhere in their daily lives.Im modernen Leben verbringen die Menschen einen betrĂ€chtlichen Teil ihrer Zeit mit dem tĂ€glichen Pendeln. Die Menschen versuchen, die Reisezeit fĂŒr ihre Arbeit und ihr Wohlbefinden durch die Interaktion mit mobilen und multimedialen Anwendungen auf persönlichen GerĂ€ten wie Smartphones und Tablets zu nutzen. Doch fĂŒr neue Computing-Paradigmen, wie der mobilen Mixed Reality (MR), bleibt ihre NĂŒtzlichkeit in diesem alltĂ€glichen Verkehrskontext, der MR im Auto, eine Herausforderung. Wenn kĂŒnftige Passagiere in dreidimensionale virtuelle Umgebungen eintauchen, werden sie zunehmend von der Kabine, der Fahrzeugbewegung und den Menschen in ihrer Umgebung abgekoppelt. Diese verminderte Wahrnehmung der realen Umgebung gefĂ€hrdet das Fahrverhalten der Passagiere im Straßenverkehr, was diese Arbeit zunĂ€chst zu der Frage motiviert: Können immersive Systeme im alltĂ€glichen Verkehrskontext, z.B. in Fahrzeugszenarien, nĂŒtzlich werden? Wenn ja, wie sollten wir die MR-Technologie im Auto gestalten, um den Zugang und die Verbindung der Passagiere mit der physischen und der virtuellen Welt zu fördern und dabei Sicherheit, Komfort und Freude an der Fahrt zu gewĂ€hrleisten? Zu diesem Zweck trĂ€gt diese Arbeit zu drei Aspekten bei: 1) VerstĂ€ndnis der Nutzung von MR im Auto durch die Passagiere - ZunĂ€chst wird ein Modell fĂŒr die MR-Interaktion im Auto durch user research vorgestellt. Wie aus Interviews mit tĂ€glichen Pendlern hervorgeht, sind die Passagiere um ihre körperliche Unversehrtheit besorgt, wenn sie mit rĂ€umlichen Konflikten zwischen grenzenlosen virtuellen Umgebungen und dem begrenzten Kabinenraum konfrontiert werden. Das Modell soll Forschern dabei helfen, Informationen und Benutzerschnittstellen rĂ€umlich zu organisieren, die in der NĂ€he des Benutzers variieren. DarĂŒber hinaus zeigt ein Feldexperiment kontextbezogenes Feedback zur Reisekrankheit bei der Nutzung immersiver Technologien auf der Straße. Dies hilft, das Modell zu verfeinern und die folgenden Experimente zu instruieren. 2) Vermischung von RealitĂ€ten bei Autofahrten - Zweitens wird in dieser Arbeit anhand einer Reihe von Prototypen und Experimenten untersucht, wie die MR-Technologie im Auto es den Passagieren ermöglichen kann, sich in virtuellen Umgebungen prĂ€sent zu fĂŒhlen und gleichzeitig das Bewusstsein fĂŒr die reale Umgebung zu behalten. Die Ergebnisse zeigen technische Lösungen fĂŒr rĂ€umliche BeschrĂ€nkungen und Situationsbewusstsein, indem wesentliche Elemente der realen Umgebung in VR integriert werden. Die empirischen Erkenntnisse bringen eine Reihe von Dimensionen in das Modell der MR im Auto ein, die die Designentscheidungen fĂŒr gemischte RealitĂ€ten leiten. 3) Über den Verkehrskontext hinaus - Drittens erweitere ich das Modell auf andere Alltagskontexte jenseits des Verkehrs, in denen rĂ€umliche und soziale ZwĂ€nge herrschen, wie z.B. in einem begrenzten und gemeinsam genutzten Wohnbereich zu Hause. Eine Literaturrecherche konsolidiert die Nutzung von AlltagsgegenstĂ€nden als haptisches Feedback fĂŒr MR-Interaktion ĂŒber rĂ€umliche Skalen hinweg. Ein Laborexperiment zeigt, wie kontextbewusste MR-Systeme, die physische Konfigurationen berĂŒcksichtigen, soziale Interaktion mit anderen Personen in engen gemeinsamen RĂ€umen ermöglichen. Diese Ergebnisse belegen die Übertragbarkeit des MR-Modells im Auto auf andere Kontexte. Schließlich schließe ich mit einem ganzheitlichen Modell fĂŒr mobile MR-Interaktion in alltĂ€glichen Kontexten, von zu Hause bis unterwegs. Mit meiner user research, meinen Prototypen und Evaluierungsexperimenten sowie meinem Modell ebnet diese Dissertation den Weg fĂŒr das VerstĂ€ndnis der zukĂŒnftigen Nutzung immersiver Technologien durch Passagiere, fĂŒr die Überwindung der heutigen technischen BeschrĂ€nkungen von MR in der mobilen Interaktion und schließlich fĂŒr die Förderung des allgegenwĂ€rtigen Zugangs und der engen Verbindung der mobilen Nutzer zu MR jederzeit und ĂŒberall in ihrem tĂ€glichen Leben

    Smartphone-based vehicle telematics: a ten-year anniversary

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordJust as it has irrevocably reshaped social life, the fast growth of smartphone ownership is now beginning to revolutionize the driving experience and change how we think about automotive insurance, vehicle safety systems, and traffic research. This paper summarizes the first ten years of research in smartphone-based vehicle telematics, with a focus on user-friendly implementations and the challenges that arise due to the mobility of the smartphone. Notable academic and industrial projects are reviewed, and system aspects related to sensors, energy consumption, and human-machine interfaces are examined. Moreover, we highlight the differences between traditional and smartphone-based automotive navigation, and survey the state of the art in smartphone-based transportation mode classification, vehicular ad hoc networks, cloud computing, driver classification, and road condition monitoring. Future advances are expected to be driven by improvements in sensor technology, evidence of the societal benefits of current implementations, and the establishment of industry standards for sensor fusion and driver assessment

    How Visual Motion Cues Can Influence Sickness For In-Car VR

    Full text link
    This video demonstrates our research into the use of VR Head Mounted Displays (HMDs) in-car and in-motion. Immersive HMDs offer new possibilities for entertainment and productivity during travel. However, their use is confounded by motion sickness, caused in-part by the conflict between visually and physically perceived motion. We examine how visual conveyance of motion affects motion sickness during in-car VR

    License to Supervise:Influence of Driving Automation on Driver Licensing

    Get PDF
    To use highly automated vehicles while a driver remains responsible for safe driving, places new – yet demanding, requirements on the human operator. This is because the automation creates a gap between drivers’ responsibility and the human capabilities to take responsibility, especially for unexpected or time-critical transitions of control. This gap is not being addressed by current practises of driver licensing. Based on literature review, this research collects drivers’ requirements to enable safe transitions in control attuned to human capabilities. This knowledge is intended to help system developers and authorities to identify the requirements on human operators to (re)take responsibility for safe driving after automation
    • 

    corecore