428 research outputs found

    The LifeV library: engineering mathematics beyond the proof of concept

    Get PDF
    LifeV is a library for the finite element (FE) solution of partial differential equations in one, two, and three dimensions. It is written in C++ and designed to run on diverse parallel architectures, including cloud and high performance computing facilities. In spite of its academic research nature, meaning a library for the development and testing of new methods, one distinguishing feature of LifeV is its use on real world problems and it is intended to provide a tool for many engineering applications. It has been actually used in computational hemodynamics, including cardiac mechanics and fluid-structure interaction problems, in porous media, ice sheets dynamics for both forward and inverse problems. In this paper we give a short overview of the features of LifeV and its coding paradigms on simple problems. The main focus is on the parallel environment which is mainly driven by domain decomposition methods and based on external libraries such as MPI, the Trilinos project, HDF5 and ParMetis. Dedicated to the memory of Fausto Saleri.Comment: Review of the LifeV Finite Element librar

    Numerical discretizations of a convective Brinkman-Forchheimer model under singular forcing

    Full text link
    In two-dimensional Lipschitz domains, we analyze a Brinkman--Darcy--Forchheimer problem on the weighted spaces H01(ω,Ω)×L2(ω,Ω)/R\mathbf{H}_0^1(\omega,\Omega) \times L^2(\omega,\Omega)/\mathbb{R}, where ω\omega belongs to the Muckenhoupt class A2A_2. Under a suitable smallness assumption, we prove the existence and uniqueness of a solution. We propose a finite element method and obtain a quasi-best approximation result in the energy norm \emph{\`a la C\'ea} under the assumption that Ω\Omega is convex. We also develop an a posteriori error estimator and study its reliability and efficiency properties. Finally, we develop an adaptive method that yields optimal experimental convergence rates for the numerical examples we perform

    Projection-based reduced order models for a cut finite element method in parametrized domains

    Get PDF
    This work presents a reduced order modeling technique built on a high fidelity embedded mesh finite element method. Such methods, and in particular the CutFEM method, are attractive in the generation of projection-based reduced order models thanks to their capabilities to seamlessly handle large deformations of parametrized domains and in general to handle topological changes. The combination of embedded methods and reduced order models allows us to obtain fast evaluation of parametrized problems, avoiding remeshing as well as the reference domain formulation, often used in the reduced order modeling for boundary fitted finite element formulations. The resulting novel methodology is presented on linear elliptic and Stokes problems, together with several test cases to assess its capability. The role of a proper extension and transport of embedded solutions to a common background is analyzed in detail. \ua9 2019 Elsevier Lt

    Localized model reduction for parameterized problems

    Get PDF
    In this contribution we present a survey of concepts in localized model order reduction methods for parameterized partial differential equations. The key concept of localized model order reduction is to construct local reduced spaces that have only support on part of the domain and compute a global approximation by a suitable coupling of the local spaces. In detail, we show how optimal local approximation spaces can be constructed and approximated by random sampling. An overview of possible conforming and non-conforming couplings of the local spaces is provided and corresponding localized a posteriori error estimates are derived. We introduce concepts of local basis enrichment, which includes a discussion of adaptivity. Implementational aspects of localized model reduction methods are addressed. Finally, we illustrate the presented concepts for multiscale, linear elasticity and fluid-flow problems, providing several numerical experiments. This work has been accepted as a chapter in P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W.H.A. Schilders, L.M. Sileira. Handbook on Model Order Reduction. Walter De Gruyter GmbH, Berlin, 2019+

    Pore-scale Modeling of Viscous Flow and Induced Forces in Dense Sphere Packings

    Full text link
    We propose a method for effectively upscaling incompressible viscous flow in large random polydispersed sphere packings: the emphasis of this method is on the determination of the forces applied on the solid particles by the fluid. Pore bodies and their connections are defined locally through a regular Delaunay triangulation of the packings. Viscous flow equations are upscaled at the pore level, and approximated with a finite volume numerical scheme. We compare numerical simulations of the proposed method to detailed finite element (FEM) simulations of the Stokes equations for assemblies of 8 to 200 spheres. A good agreement is found both in terms of forces exerted on the solid particles and effective permeability coefficients

    A mixed finite element method for Darcy’s equations with pressure dependent porosity

    Get PDF
    In this work we develop the a priori and a posteriori error analyses of a mixed finite element method for Darcy’s equations with porosity depending exponentially on the pressure. A simple change of variable for this unknown allows to transform the original nonlinear problem into a linear one whose dual-mixed variational formulation falls into the frameworks of the generalized linear saddle point problems and the fixed point equations satisfied by an affine mapping. According to the latter, we are able to show the well-posedness of both the continuous and discrete schemes, as well as the associated Cea estimate, by simply applying a suitable combination of the classical Babuska-Brezzi theory and the Banach fixed point Theorem. In particular, given any integer k ≥ 0, the stability of the Galerkin scheme is guaranteed by employing Raviart-Thomas elements of order k for the velocity, piecewise polynomials of degree k for the pressure, and continuous piecewise polynomials of degree k+1 for an additional Lagrange multiplier given by the trace of the pressure on the Neumann boundary. Note that the two ways of writing the continuous formulation suggest accordingly two different methods for solving the discrete schemes. Next, we derive a reliable and efficient residualbased a posteriori error estimator for this problem. The global inf-sup condition satisfied by the continuous formulation, Helmholtz decompositions, and the local approximation properties of the Raviart-Thomas and Cl´ement interpolation operators are the main tools for proving the reliability. In turn, inverse and discrete inequalities, and the localization technique based on triangle-bubble and edge-bubble functions are utilized to show the efficiency. Finally, several numerical results illustrating the good performance of both methods, confirming the aforementioned properties of the estimator, and showing the behaviour of the associated adaptive algorithm, are reported.Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de ConcepciónUniversity of LausanneMinistry of Education, Youth and Sports of the Czech Republi
    • …
    corecore