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Abstract. This work presents a reduced order modeling technique built on a high fidelity embedded
mesh finite element method. Such methods, and in particular the CutFEM method, are attractive

in the generation of projection-based reduced order models thanks to their capabilities to seamlessly

handle large deformations of parametrized domains and in general to handle topological changes. The
combination of embedded methods and reduced order models allows us to obtain fast evaluation of

parametrized problems, avoiding remeshing as well as the reference domain formulation, often used

in the reduced order modeling for boundary fitted finite element formulations. The resulting novel
methodology is presented on linear elliptic and Stokes problems, together with several test cases to

assess its capability. The role of a proper extension and transport of embedded solutions to a common

background is analyzed in detail.

1. Introduction and Motivation

A wide variety of numerical methods and computational libraries for the solution of problems gov-
erned by partial differential equations is nowadays available. However, there are still many cases in
which either the solution of the governing equations or the solution of associated inverse problems
becomes impractical or unfeasible using standard discretization techniques, such as the Finite Element
Method (FEM). For instance, complicated topology of the problem or a complex geometry may pose
a challenge in the discretization of complex phenomena, and ultimately affect the quality of the re-
sulting simulation. Moreover, repeated queries to the underlying solver in the context of an iterative
solution of inverse problems may result in unbearably large computational times. Such situations oc-
cur, for example, when a large number of different configurations are in need of being tested, such as
in uncertainty quantification, optimal control and shape optimization. The overall objective of this
manuscript is to investigate how the recently introduced unfitted mesh finite element methods may be
used combined with reduced order modeling techniques for parametrized partial differential problems.
Indeed, unfitted methods are very useful in cases characterized by complex geometrical configurations;
however, as their Finite Element counterparts, they usually require large computational efforts. A
combination with reduced order methods, able to widely decrease the overall computational time,
would result in a very compelling methodology to be possibly applied in several different fields.

Classical embedded/immersed methods provide simple, efficient, and robust numerical schemes
for solving PDE in general domains [1, 2, 3]. Since these early works, several improvements have
been made, for instance for what concerns the rate of spatial accuracy near embedded boundaries.
Recent improvements go under the names of Ghost-Cell finite difference methods, Cut-Cell finite
volume approach, Immersed Interface, Ghost Fluid, Volume Penalty methods, for which we refer to
the review paper [1] and references within. In particular, for what concerns incompressible flows in
arbitrary smooth domains, the Immersed Boundary Smooth Extension method has shown high-order
convergence for the incompressible Navier-Stokes equations [4].

More in detail, extended mesh finite element methods using cut elements are examined in [5, 6] for
stationary Stokes flow systems, as well as for Navier-Stokes. An analysis for high Reynolds numbers,
independent of the local Reynolds, has been carried out in [7, 8, 9]. XFEM approaches in 2D and 3D
Navier-Stokes are reported in [10]. Higher Reynolds number aerodynamics problems in unbounded
domains, thin vortex ring and Lattice Green function Immersed Boundary methods are studied in
[11, 12]. Furthermore, embedded and immersed methods have been used in solving fluid structure
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interaction problems, see e.g. [13, 14, 15, 16, 17, 18, 19, 3, 20, 21, 22, 23]. More recently a new embedded
boundary method called Shifted Boundary method was introduced in [24], with good approximation
properties and experimental results in several fields, including Navier-Stokes systems and fluid structure
interaction applications [24, 25, 26]. The main idea of this method is that boundary conditions are
imposed on the boundary of a surrogate domain whose geometry is properly chosen avoiding cut cells.

First attempts to apply Reduced Order Methods (ROMs) in the context of viscous flows and Stokes
/ Navier-Stokes systems can be found in [27, 28]. ROMs based on FEM full order approximations have
been used to treat several problems based on linear elliptic equations [29], linear parabolic equations [30]
and even non-linear problems [31, 32]. Stability of the resulting reduced order systems is often an issue,
see for more details [33, 34, 35, 36, 37, 38], and for transient systems see for instance [39, 40, 41, 42, 43].

The main novelty of this work is the combination of the cut element finite element method (Cut-
FEM), which we will consider as high fidelity method, to projection-based model reduction techniques.
In particular, this allows to overcome a reference domain formulation customarily employed in ROMs
for parametrized geometries built on conforming discretizations, see e.g. [44, 45, 46, 47, 48, 49, 36,
29, 37] and references therein. Even though such reference domain formulation avoids remeshing when
updating the parametric domain, the choice of the transformation map is usually problem-dependent
[50, 44, 47], suitable parameter space dimensionality reduction techniques [51, 52, 53, 54] must be
employed to identify the most relevant shape parameters and preserve good quality meshes, and often
limited only to small parametric deformations. In contrast, the combination of ROMs with a CutFEM
approach results in a novel methodology capable of handling large parametric deformations as well.

To the best of the authors’ knowledge this combination is not particularly investigated. We mention
here the approach proposed in [55] for classical embedded methods and model reduction, in which two
regions are separated by an evolving in time interface, where a snapshot compression problem as a
weighted low-rank approximation is formulated. We also mention our on-going work on combination
of the Shifted Boundary method and model reduction techniques for small parametric variations [56,
57, 58, 59]. The present work touches several key points of growing interest in the model reduction
community, especially since it shares challenges to be tackled for the efficient reduction of advection
dominated problems. In particular, a snapshots preprocessing is advocated by [60, 61, 62, 63, 64, 65]
in order to improve the efficiency of the resulting reduced model for advection dominated problems by
providing a better (smaller) representation of the reduced basis space. Such snapshots preprocessing
procedure, based in our case on extension and transportation, will be pivotal in this work in order to
deal with large deformations.

The work is organized as it follows: in Section 2 the abstract formulation of the problem is intro-
duced, as well as the embedded method used for the high fidelity problem of Darcy flow pressure model
and of the steady Stokes equations. The reduced order methodology is discussed in details in Section 3,
whilst in Section 4 the proposed ROM technique is tested on several numerical benchmarks. Finally in
Section 5 conclusions and perspectives are drawn, highlighting the directives for future improvements
and developments.

2. High fidelity CutFEM approximation

We introduce in this section the abstract parametrized model problem, which has the form: find
u(µ) ∈ V (µ) such that

(2.1) aγ(u(µ), v;µ) = `γ(v;µ) in V (µ),

where aγ(·, ·;µ) is the weak form of an operator defined on a domain D(µ) ⊂ Rd, for d = 2, 3, while
`γ(·, µ) is the right hand side of the system of equations related to the forcing term. The forms aγ(·, ·;µ),
`γ(·, µ), the domain D(µ), as well as the Sobolev space V (µ), depend on the parameter µ ∈ K, being
K ⊂ RK the set of possible outcomes, which we assume to be a compact set in RK , K ∈ N. Since
CutFEM discretizations usually require suitable penalty and stabilization procedures, for the sake of
exposition we will denote by aγ(·, ·;µ) and `γ(·, µ) the forms with penalty and stabilization, where γ
represents the penalty and stabilization coefficients, see e.g. [5] and references therein.

We start with a sketch description of the continuous strong form and the weak formulation used for
the problems under consideration. The CutFEM formulation (2.1) will be used for the high fidelity
simulation employed during the training of the reduced order model, which will be introduced in
Section 3.

2.1. The Darcy flow pressure model. For any µ ∈ K, let D(µ) ⊂ Rd be a bounded domain
depending on µ, with boundary Γ (µ). We consider the following model problem in D(µ): for any
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(a)

(b)

Figure 1. Geometric quantities employed in the definition of the CutFEM discretiza-
tion: (a) the background geometry, the background mesh, the geometry of a disk, the
surrogate geometry, and (b) the unfitted/extended geometry mesh, the cut elements,
the cut mesh and the set of element faces FG associated with Gh.

µ ∈ K, find u(µ) : D(µ)→ R such that

(2.2)


−∆u(µ) = g(µ), in D(µ),

u(µ) = gD(µ), on ΓD(µ),

nΓ · ∇u(µ) = gN (µ), on ΓN (µ),

and ΓD(µ), ΓN (µ) are non-overlapping parts of Γ (µ) = ΓD(µ)∪ ΓN (µ) where Dirichlet and Neumann
boundary conditions are applied, and g(µ), gN (µ), gD(µ) are given functions in D(µ) and on the
boundaries ΓN (µ), ΓD(µ) respectively, [66].

We start with the classical weak formulation in the spatial domain: for any µ ∈ K, find u(µ) ∈
VgD (µ) =

{
w ∈ H1 (D(µ)) with w|ΓD(µ) = gD(µ)

}
such that

(∇u(µ),∇υ(µ)) = (g(µ), υ(µ)) + (gN (µ), υ(µ))ΓN (µ) , ∀v(µ) ∈ V0(µ).(2.3)

We denote by B the background domain, and by Bh its corresponding mesh. The continuous
boundary value problem is next formulated on a domain DT (µ) that contains D(µ) ⊂ DT (µ), while
its mesh Th(µ) is not fitted to the domain boundary and DT (µ) ⊂ B and Th(µ) ⊂ Bh for all µ ∈ K.
Let also Gh(µ) := {K ∈ Th(µ) : K ∩ Γ (µ) 6= ∅} be the set of elements that are intersected by the
interface. We remark that Th(µ), Gh(µ) and DT (µ) depend on µ through D(µ) (or its boundary),
while the background domain B and its mesh Bh do not depend on µ.

Furthermore, the set of element faces FG(µ) associated with Gh(µ), is defined as follows: for each
face F ∈ FG(µ), there exist two simplices K 6= K ′ such that F = K∩K ′ and at least one of the two is a
member of Gh(µ). Note that boundary faces of Th(µ) are excluded from FG(µ). On a face F ∈ FG(µ),
F = K ∩K ′, the jump of the gradient of v ∈ C0(DT ) is defined by [[nF ·∇v]] = nF ·∇v|K −nF ·∇v|K′ ,
where nF denotes the outward pointing unit normal vector to F . Finally, let hk be the diameter of K,
h = maxK∈Th(µ) hk.

The CutFEM discretization is as follows. We seek a discrete solution uh(µ) in the finite element
space

(2.4) Vh(µ) =
{
υ ∈ C0(DT (µ)) : υ|K ∈ P 1(K), ∀K ∈ Th(µ)

}
,
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such that

(∇uh(µ),∇υh(µ))D(µ) − (nΓ · ∇uh(µ), υh(µ))ΓD(µ) − (uh(µ),nΓ · ∇υh(µ))ΓD(µ)

+
(
γDh

−1uh(µ), υh(µ)
)
ΓD(µ)

+ (γNhnΓ · ∇uh(µ),nΓ · ∇υh(µ))ΓN (µ) + j(uh(µ), υh(µ);µ)

= (g(µ), υh(µ))D(µ) +
(
gD(µ), γDh

−1υh(µ)− nΓ · ∇υh(µ)
)
ΓD(µ)

+
(
gN (µ), υh(µ)

+γNhnΓ · ∇υh(µ)
)
ΓN (µ)

,(2.5)

where j(uh(µ), υh(µ);µ) =
∑

F∈FG(µ)

(γ1h[[nF · ∇uh(µ)]], [[nF · ∇υh(µ)]])F ,

for all test functions υh(µ) ∈ Vh(µ) and for γD> 0, γN≥ 0, and γ1> 0 penalty parameters, see for
instance [67]. The stabilization term j(uh(µ), υh(µ);µ), which depends on γ1, extends the coercivity
from the physical domain D(µ) to the extended mesh domain DT (µ), while the penalty terms involving
coefficients γD and γN account for a Nitsche weak imposition of boundary conditions. Assuming that
for the Nitsche terms we use the notation

bγ(uh(µ), υh(µ);µ) := − (uh(µ),nΓ · ∇υh(µ))ΓD(µ) +
(
γDh

−1uh(µ), υh(µ)
)
ΓD(µ)

+ (γNhnΓ · ∇uh(µ),nΓ · ∇υh(µ))ΓN (µ) ,

the variational form (2.5), using the classical linear and bilinear forms, can be equivalently expressed
as: find uh(µ) ∈ Vh(µ) such that

aγ(uh(µ), υh(µ);µ) = `γ(υh(µ);µ), ∀υh(µ) ∈ Vh(µ),(2.6)

where

aγ(uh(µ), υh(µ);µ) := a(uh(µ), υh(µ);µ) + bγ(uh(µ), υh(µ);µ) + j(uh(µ), υh(µ);µ),(2.7)

`γ(υh(µ);µ) = (g(µ), υh(µ)) + (gN (µ), υh(µ) + bγ(gD(µ), υh(µ)))ΓN (µ) ,

and

a(uh(µ), υh(µ);µ) = (∇uh(µ),∇υh(µ))D(µ)− (nΓ · ∇uh(µ), υh(µ))ΓD(µ).(2.8)

We refer to [67] for more details concerning the CutFEM discretization of elliptic problems.

2.2. Steady Stokes problem. The strong form of the stationary Stokes flow system of equations
with Dirichlet and Neumann boundary conditions, geometrically parametrized by µ, is given by: for
any µ ∈ K, find velocity u(µ) : D(µ)→ Rd and pressure p(µ) : D(µ)→ R such that

−∇ · (2νε(u(µ))− p(µ)I) = g(µ), in D(µ),

∇ · u(µ) = 0, in D(µ),

u(µ) = gD(µ), on ΓD(µ),

(2νε(u(µ))− p(µ)I) · nΓ = 0, on ΓN (µ),

where ε(u) = 1/2(∇u+∇uT ) is the velocity strain tensor (i.e., the symmetric gradient of the velocity),
ν is the viscosity, ∇·u denotes the divergence of u, g a body force, and gD the value of the velocity on
the Dirichlet boundary. The first equation represents the conservation of the linear momentum of the
fluid, while the second equation is the incompressibility condition and enforces the mass conversation,
see e.g. [24] and references therein.

As in the Darcy case, the high fidelity CutFEM formulation is based on three ingredients: (i)
discrete FE spaces, (ii) Nitsche weak imposition of Dirichlet boundary conditions, and (iii) suitable
stabilization terms. For what concerns the first topic, using similar notation as in the elliptic case
for geometrical quantities, we introduce the discrete spaces Vh(µ) and Qh(µ), for the velocity and the
pressure, respectively, as piecewise linear spaces as in [67]:

Vh(µ) =
{
υh ∈ (C0(DT (µ)))d : υh|K ∈ (P 1(K))d,∀K ∈ Th(µ)

}
,

Qh(µ) =
{
wh ∈ C0(DT (µ)) : wh|K ∈ P 1(K),∀K ∈ Th(µ)

}
,

Alternative choices are possible, such as, for example, discontinuous Galerkin spaces, see e.g. [68, 69,
70]. For shortness in the remainder of this Section we will drop the suffix h when referring to discrete
functions υh, as well as sometimes omit the parameter µ in our notation.
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The Nitsche discrete weak formulation with focus on the Dirichlet boundary conditions of the
embedded geometry, takes the form

ν(∇u,∇ψ)− (p,∇ · ψ) + (∇ · u, ξ)− (νnΓ · u− pn, ψ)ΓD
− (u, νnΓ · ψ + ξn, ψ)ΓD

+
∑
K∈Gh

∫
ΓK

νγDh
−1
K uψ = (g, ψ)− (gD, νnΓ · ∇ψ + ξn)ΓD

+
∑
K∈Gh

∫
ΓK

νγDh
−1
K gDψ,

being γD a penalty coefficient. For the sake of notation, let us introduce

bγ(u,φ) = −(u, νnΓ · ∇ψ + ξnΓ )ΓD
+
∑
K∈Gh

∫
ΓK

νγDh
−1
K uψ,

a(u,φ) = (ν∇u,∇ψ)− (p,∇ · ψ) + (∇ · u, ξ)− (νnΓ · ∇u− pnΓ , ψ)ΓD
,

`γ(φ) = (g, ψ) + bγ(gD,φ),

where u = (u, p) and φ = (ψ, ξ) denote the pair of velocity and pressure functions.
Finally, introducing suitable stabilization terms, an extended mesh weak form can be expressed

using a symmetric form for the velocity and pressure, as follows: find u(µ) = (u(µ), p(µ)) ∈ Vh(µ) :=
Vh(µ)×Qh(µ) such that

(2.9) aγ(u(µ),φ(µ);µ) = `γ(φ(µ);µ), ∀φ(µ) = (ψ(µ), ξ(µ)) ∈ Vh(µ).

where
aγ(u,φ) := a(u,φ) + bγ(u,φ) + ju(u, ψ;µ)− jp(p, ξ;µ),

The terms ju and jp account for the stabilization due to the equal order FE spaces, and are expressed
as follows:

ju(u, ψ;µ) =

2∑
i=1

∑
F∈FG(µ)

(γ1,uhK [[∇ui(µ)nF ]], [[∇ψi(µ)nF ]])F ,

jp(p, ξ;µ) =
∑

F∈FG(µ)

(
γ1,ph

3
K [[∇p(µ) · nF ]], [[∇ξ(µ) · nF ]]

)
F
,

for all test functions φ = (ψ, ξ) ∈ Vh ×Qh, and for γ1,u, γ1,p positive penalty parameters. We refer to
[67] for further details on CutFEM discretization for Stokes problems.

3. POD–Galerkin reduced order method

In this Section we obtain a projection-based reduced order model (ROM) built on the high fidelity
discretization introduced in Section 2. Following the ROM procedure of [71], a two stage procedure
will be used, the offline and the online. During the offline stage, one examines the solution manifold
to construct a reduced basis that well approximates the manifold through a small number of basis
functions. This may involve the solution of a large number of high fidelity problems, which may be
expensive to query. In contrast, during the online stage, a Galerkin projection of the problem (2.1)
onto the space spanned by the reduced basis is required. During this stage each solution for a new
value of µ entails substantially reduced cost.

3.1. The Darcy flow pressure model. Let us start from the elliptic case introduced in Section
2.1. In order to generate the reduced basis space we will employ a compression by means of a Proper
Orthogonal Decomposition (POD) [71], even though several other options (e.g. based on greedy proce-
dures, such as the certified Reduced Basis method (RB) [72, 71, 73, 74, 29] or the Proper Generalized
Decomposition (PGD) [72, 75, 76]) are available.

The offline phase of the POD–Galerkin ROM consists in an exploration of the solution manifold,
obtained by querying the CutFEM high fidelity solver for M � 0 values of the parameter, and a
successive compression to a basis of size N < M . The procedure starts by collecting the M high
fidelity solutions in the so-called snapshots matrix S, defined as

(3.1) S = [û(µ1), . . . , û(µM )] ∈ RNh×M .

Here µ1, . . . , µM are randomly selected values in K and u(µi) corresponding solutions of (2.6), i =
1, . . . ,M . We note that, since the solution u(µi) of (2.6) is sought in the µ-dependent FE space (2.4),
at least a suitable extension û(µi) should be carried out to provide snapshots defined on the (common)
background mesh Bh. Such extensions define a snapshot on the (µ-independent) background FE space

V̂h =
{
υ ∈ C0(B) : υ|K ∈ P 1(K), ∀K ∈ Bh

}
,
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denoting by Nh its dimension. We will return to this topic in Sections 3.3 and 3.4.
Afterwards, following e.g. [71, 77], a compression by POD is carried out. In practice, this derives

the following eigenvalue problem:

CQ = QΛ, being Cij = 〈û(µi), û(µj)〉L2(Th), for i, j = 1, . . . ,M,

where C is the correlation matrix obtained starting from the snapshots S, Λ is a diagonal matrix
collecting eigenvalues on the diagonal, and Q is an orthogonal matrix of the corresponding eigenvectors.
The resulting reduced space is then spanned (possibly after a L2 normalization) by the columns of the
matrix obtained as product between S and the first N columns of Q. The basis functions are denoted
by ϕi, i = 1, . . . , N , as well as

V̂N = span{ϕ1, . . . , ϕN}
denotes the obtained N -dimensional space, which will replace the high fidelity space Vh(µ) in all online

computations. We remark that V̂N is a parameter independent space, composed of basis functions
defined on the whole background mesh; the former assumption will be relaxed in Section 3.4.

During the online stage, a reduced solution uN (µ) of the form

(3.2) uN (µ) =

N∑
i=1

αi(µ) ϕi,

is sought1. The unknown coefficients α = [α1, . . . , αN ] ∈ RN are obtained through a Galerkin pro-
jection of the governing equations onto the reduced basis space, as follows: for any µ ∈ K, find
α = α(µ) ∈ RN such that

(3.3)

N∑
i=1

αi(µ)aγ(ϕi, ϕj ;µ) = `γ(ϕj ;µ), ∀j = 1, . . . , N.

Provided that N � Nh, this linear system is usually very inexpensive to solve. The overall efficiency of
the online stage usually comes also from an inexpensive assembly of the left-hand and right-hand side
of this linear system, that can be obtained owing to affinity assumptions. Such assumptions, although
natural in many applicative cases, can be approximately regained (if lacking) through suitable hyper-
reduction procedures [78]. We do mention that numerical examples in Section 4 do not fulfill affinity
assumptions. However, being this a preliminary work on the combination of unfitted methods and
ROMs, we do not aim at the utmost efficiency at this point. Thus, we will allow inefficient assembly
of the left-hand and right-hand side by projecting µ-dependent forms during the online stage. Further
perspectives and improvements in this direction will be discussed in the conclusion in Section 5.

3.2. Steady Stokes problem. Let us now discuss the reduction of the Stokes problems presented
in Section 2.2. During the offline stage, as in the previous discussion, we collect snapshots from the
CutFEM high fidelity discretization. Since the problem is characterized by two unknowns, following
e.g. [33, 79] we define two snapshots matrices, namely

Su = [û(µ1), . . . , û(µNs)] ∈ RN
u
h×M , Sp = [p̂(µ1), . . . , p̂(µNs)] ∈ RN

p
h×M ,

and ultimately perform two separate compressions by means of POD. We remark that two differ-
ent extension operators, both denoted by ·̂ above, may be used for velocity and pressure snapshots,
respectively. Here N u

h and N p
h denote the dimension of the background FE spaces

V̂h =
{
υh ∈ (C0(B))d : υh|K ∈ (P 1(K))d,∀K ∈ Bh

}
,

Q̂h =
{
wh ∈ C0(B) : wh|K ∈ P 1(K),∀K ∈ Bh

}
,

respectively. Let us denote by ϕui , i = 1, . . . , N the first N velocity basis functions, as well as by ϕpj ,
j = 1, . . . , N the first N pressure basis functions.

However, as well known in the reduced basis approximation of saddle point problems, the resulting
basis may lead to inaccurate results, especially for what concerns the pressure approximation. There-
fore, we resort to a supremizer enrichment procedure [37, 35, 33], which we summarize in the following.

1As the basis functions are global, uN (µ) is defined on the whole background mesh, understanding that its value
outside of DT (µ) is not interesting and can be discarded during the analysis of the numerical results.
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From a practical standpoint, this requires the solution of M additional Laplace problems during the
offline phase which, in strong form, read as: find s(µi) ∈ Vh(µi) such that

(3.4)


−∆s(µi) = ∇p(µi) in D(µi),

s(µi) = 0 on ΓD(µi),

∇s(µi) · nΓ = 0 on ΓN (µi),

for all i = 1, . . . ,M . We note that, with the only exception of being a vector problem, (3.4) is a special
instance of (2.2). Therefore, we can use the CutFEM discretization introduced in Section 2.1 for its
approximation, component by component. The obtained snapshots are then collected in

Ss = [ŝ(µ1), . . . , ŝ(µM )] ∈ RN
u
h×M ,

where the same extension (and the same extended FE space) used for velocity is also used for suprem-
izers; correspondingly, N basis functions are generated, denoted by ϕsi , i = 1, . . . , N in the following.
The resulting reduced basis spaces are therefore obtained as

V̂N = span{ϕu1 , . . . , ϕuN , ϕs1, . . . , ϕsN}, Q̂N = span{ϕp1, . . . , ϕ
p
N}.

Using the combined velocity-pressure notation, we can express the combined reduced basis space as

V̂N = span{ϕu1 , . . . , ϕuN , ϕs1, . . . , ϕsN , ϕ
p
1, . . . , ϕ

p
N};

as in the following we will not be interested in differentiating the notation between velocity, supremizer
and pressure, we equivalently write this space as

V̂N = span{ϕ1, . . . , ϕ3N},

owing to a suitable renumbering of the basis functions. Thus, during the online stage we seek a
3N -dimensional solution uN (µ) of the form

uN (µ) =

3N∑
i=1

αi(µ) ϕi

such that
3N∑
i=1

αi(µ)aγ(ϕi, ϕj ;µ) = `γ(ϕj ;µ), ∀j = 1, . . . , 3N.

Finally, we remark that alternative approaches to supremizer enrichment are available, see e.g.
[80, 34, 81, 79]. In particular, one that relies on the underlying P 1/P 1 (Cut) FEM stabilization
[80, 81] seemed attractive in view of providing a less intrusive reduced order model, allowing to neglect
the supremizer enrichment stage. However, numerical experiments carried out in the preparation of
this work have shown a sensible deterioration of the accuracy when relying only on the high-fidelity
stabilization without supremizer enrichment due to the weaker stabilization employed. Although,
stronger CutFEM stabilizations are available in the literature, [7, 13].

3.3. Snapshots extension to the background mesh. Let us now discuss a few practical options
for what concerns snapshot extension. The first two possibilities that we investigate are to carry out
trivial extensions. The first option, which will be called zero extension in the following, is to extend the
snapshot to zero in B\D(µ). A slightly different option is to extend snapshots to zero in B\DT (µ), as
the CutFEM solution is naturally defined up to the boundary of DT (µ) ⊃ D(µ). This second options
will be named natural smooth extension, as this name is usually employed in the CutFEM literature
[82].

The third method we propose is an harmonic extension, see e.g. [83], which, for the scalar case of
Section 3.1, reads: for any µ ∈ K, assuming the corresponding solution u(µ) of (2.2) to be known, find
uc(µ) : B → R such that

(3.5)


−∆uc(µ) = 0, in B \ D(µ),

uc(µ) = u(µ), on ∂D(µ),

uc(µ) = 0, on ∂B,

and then define

û(µ) =

{
u(µ), in D(µ),

uc(µ), in B \ D(µ).
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Being another elliptic problem, the harmonic extension problem (3.5) is discretized as described in
Section 2.1, up to a suitable replacement of domain, boundaries and problem coefficients. A similar
approach may be used for the Stokes problem in Section 2.2, acting component by component.

3.4. Snapshots transportation on the background mesh. Similarly to problems characterized by
a strong hyperbolic nature, the methodology described up to now may suffer from a slowly decreasing
Kolmogorov n-width. To exemplify, let us consider the natural smooth extension, and let µ1 6= µ2

be two parameters such that DT (µ1) ∩ DT (µ2) = ∅. Then, the snapshot corresponding to µ1 bears
no useful information for the reduced basis representation of the phenomena associated to µ2, as
the support of the solutions do not intersect and the extension is trivial. Even though a non-trivial
extension (such as the harmonic one) may alleviate this drawback to some extent, we propose in this
Section to combine extension with an additional snapshots preprocessing based on a transportation,
as advocated in [60, 61, 62, 63, 64, 65].

Let τ (µ) : B → B be a bijective map chosen such that D(µ) is mapped into D(µ), and let τ−1(µ)
denote its inverse with respect to the spatial coordinates. Here µ is a fixed parameter, e.g. the
barycenter of K. We will discuss how to devise τ (µ) from D(µ) later on in this Section.

Let u(µ) be the snapshot obtained having solved (2.2) (the same reasoning goes for Stokes), and ex-
tend it to û(µ) according to the one of the methods introduced in the previous Section. By composition
with τ (µ) the following transported (and extended) snapshot is defined:

ûτ (µ) = û(µ) ◦ τ (µ).

Such transported snapshots ûτ (µi) can then be employed in the definition of the snapshots matrix
(3.1) in place of the extended ones û(µi), i = 1, . . . ,M . Since all transported snapshots are centered
around D(µ), it is expected that a more effective reduction (i.e., faster decay for POD singular values)
is obtained.

However, as a result of this transformation, the reduced basis space needs now to depend on µ.
Indeed, for any online query associated to a new parameter µ, basis functions need to be transported
back from a neighborhood of D(µ) to the corresponding neighborhood of D(µ). In particular, the
µ-dependent reduced basis space is now defined as

V̂ τ
N (µ) = span{ϕ1 ◦ τ−1(µ), . . . , ϕN ◦ τ−1(µ)},

and inverse transported basis functions ϕj ◦τ−1(µ), j = 1, . . . , N are to be employed in the solution of
the reduced linear system (3.3), as well as in the representation (3.2) of the reduced order solution. We
do remark that such inverse transport introduces an additional non-affinity in the problem formulation;
as discussed in Section 3.1, such issue will be a topic of future developments.

Let us now go back to the choice of τ (µ). As customary in CutFEM methods, D(µ) is obtained
through a level set method2. Being the level sets functions employed in the numerical experiments
simple algebraic expressions, it is a matter of simple algebraic manipulations to devise the associated
maps τ (µ). In future, in case of lacking explicit representation of τ (µ), we seek to resort to optimal
transportation procedures [85, 60, 86], as proposed in [62, 87].

Before concluding this Section, we finally stress the difference with a reference domain formulation,
as both methods revolve around the idea of introducing a fixed parameter µ. In the reference domain
formulation, the domain D(µ) associated to fixed parameter µ is the only one employed in the compu-
tations, and the differential problems associated to any µ is recast on D(µ) through suitable pull backs,
which are often limited to small deformations. In contrast, the proposed transport procedure requires
only a postprocessing of the CutFEM solution, each obtained on its own domain D(µ), without any
change to the high fidelity solver. The introduction of µ is thus mandatory in the reference domain
approach and it is strongly intertwined with the snapshots computation, whilst in our case it is asso-
ciated only to a desirable postprocessing carried out in order to improve the decay of the Kolmogorov
n-width.

4. Numerical experiments

4.1. The Darcy flow pressure model. The proposed reduced order technique is numerically tested
in this Section on a case characterized by large deformations. The domain D(µ) ⊂ R2 is a parametrized

2Although, we remark that the use of a level-set domain description is not an inherent limitation of CutFEMs, see
for example [84] where a parametric description of the domain boundary is used.
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Figure 2. Darcy flow test case: The basic concept of the transportation mapping:
ellipse transportation to a circle with fixed radius (through τ (x, y;µ)), and reverse
circle transportation to the original ellipse geometry (through τ−1(x, y;µ)). .

ellipse, defined through the level set function

φ(x, y;µ1, µ2, µ3, µ4) = µ2
2(x− µ3)2 + µ2

1(y − µ4)2 − µ2
1µ

2
2R

2,

where the reference radius R = 0.05, the length of the axes of the ellipse is parametrized by (µ1, µ2) ∈
[0.3, 1.8]2, while the position of the center of the ellipse is parametrized by (µ3, µ4) ∈ [−0.85, 0.85]2.
A corresponding background domain B = [−1.2, 1.2]2 is chosen so that the ellipse is strictly contained
in B for any µ = (µ1, µ2, µ3, µ4) in the parametric range K = [0.3, 1.8]2 × [−0.85, 0.85]2. The value
µ = (1, 1, 0, 0), corresponding to a circle of radius R centered in the origin, is chosen for what concerns
the transport method introduced in Section 3.4, and the transportation mapping3 τ (x, y;µ) = (µ1x+

µ3, µ2y + µ4) together with the inverse mapping τ−1(x, y;µ) =
(
x−µ3

µ1
, y−µ4

µ2

)
is considered4 , see

Figure 2. This example is characterized by large parametric deformations (e.g., translation of any
coordinate of the center of the ellipse can reach values up to 1700% its radius) which a boundary
fitted method with reference domain formulation (obtained e.g. by creating a boundary fitted mesh
to D(µ) on B and applying a pull back to the differential problem) would hardly handle. The strong
formulation of the problem is as in (2.2) for g(x, y;µ) = 20, gD(x, y;µ) = 0.5 + xy, ΓD(µ) ≡ ∂D(µ).
For the background domain discretization we used mesh step size h = 0.05, corresponding to 2806
degrees of freedom. The parameter values γD, γN , γ1 under consideration are 10, 0, 0.1 respectively.

The results of the offline stage, run over a training set of 400 snapshots, are summarized in Figure
3, where POD eigenvalues (normalized to the maximum eigenvalue) are plotted against the number
of modes. The three extension methods introduced in Section 3.3 are considered, as well as their
combination to the snapshots transportation procedure introduced in Section 3.4. Results show that
small reduced basis spaces cannot be obtained relying only on extension procedures; indeed, Figure 3
shows a very slow eigenvalue decay, with negligible differences among the different extension options
(zero extension faring slightly worse than the others). Moreover, the training set is not large enough
to provide a representative reduced basis, as the smallest eigenvalue is only 4 orders of magnitude less
than the largest one. A faster decay is obtained instead thanks to the transportation. In particular,

3We do note that this expression does not map B in itself. However, as the goal of the mapping is to transport
snapshots in a R-neighborhood of the origin, we are satisfied with the proposed mapping as it provides properly mapped
values in such neighborhood. Mapped snapshots will be extended to zero for points which are not in τ (µ)(B). This is

trivially through in the zero and natural smooth extensions, while it is in agreement with boundary conditions on ∂B
for the harmonic extension. As an alternative, one could flip the role of extension and transportation, first transporting
snapshots and then extending the transported snapshots; we omit this case, as it only affects the harmonic extension

case with negligible impact on the overall results and discussion.
4In particular, we transport the elliptical geometries (corresponding to the snapshots for various parameters µ during

the offline stage) to circular ones with fixed radius. Indeed, the transformation x 7→ µ1x+ µ3, y 7→ µ2y+ µ4 guarantees

that the ellipse µ22(x − µ3)2 + µ21(y − µ4)2 − µ21µ22R2 = 0 is mapped into the circle x2 + y2 − R2 = 0. Afterwards, we
collect the transported snapshots and we construct the basis. Then, for every new (in the online stage) geometry we

apply the inverse trasportation x 7→ (x− µ3)/µ1, y 7→ (y − µ4)/µ2, i.e., we transport basis functions defined on the
circular geometry to the original elliptical geometry.
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Figure 3. Darcy flow test case: The POD eigenvalues decay (normalized to the
maximum eigenvalue) for a training set of 400 snapshots is reported against the number
of modes.

Figure 4. Darcy flow test case: first six POD modes for the natural smooth extension
without transportation.

comparing to the cases with extension only, an improvement of almost three orders of magnitude is
obtained for N = 100, more than four for N = 200; furthermore, the transport POD drops below
numerical precision at N = 300. Such improvement is instrumental in keeping a low space dimension
in the ROM, say N ≈ 100. Finally, we plot the first six basis functions for the case of natural smooth
extension without transportation (Figure 4) and with transportation (Figure 5). From a qualitative
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Figure 5. Darcy flow test case: first six POD modes for the natural smooth extension
with transportation.
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Figure 6. Darcy flow test case: error analysis between high fidelity and reduced
order approximations.

point of view, the improvement of the transportation procedure is justified by looking at the extent
of the support of the resulting basis functions. Indeed, as expected, basis functions generated through
the transportation procedure are compactly supported in a circular neighborhood of the origin, while
POD modes obtained without transport are characterized by larger (and varying) support.

Figure 6 shows the results of an error analysis between the reduced order and high fidelity ap-
proximations over a testing set of 30 parameter values, in the L2 norm. In particular, the average of
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Figure 7. Darcy flow test case: the high fidelity solution (left), the reduced ba-
sis solution (center) for the natural smooth extension with transportation, and the
corresponding relative error (right) for the random parameter µ =
(1.3222, 1.7666, 0.2514, 0.7365).
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Figure 8. Darcy flow test case: dependence of the relative error (over a random
testing set) on the value of the Nitsche parameter in the range [0.1, 40].

the relative error over the testing set is plotted against the reduced basis size. The reduced solution
obtained from the zero extension is inaccurate even for N = 140, being affected by relative errors of
the order of 10−1. A non-zero extension is beneficial, resulting in relative errors that are of the order of
10−2 for the maximum value of N . Furthermore, the combination with inverse transportation allows
to further improve results, up to errors of 10−4 for N = 140 in the case of POD basis obtained from
transport and natural smooth extension. Thus, the pivotal role of snapshots transportation can be
inferred from these results, being capable of improving the results of almost three orders of magnitude
compared to the simplest zero extension. Nonetheless, all methods reach a plateau after which no
further improvements are shown. We claim that this is due to integration errors occurring on ∂D(µ)
and Nitsche weak imposition of Dirichlet boundary conditions, as the maximum values of the error are
consistently attained on parts of the the boundary (see Figure 7 for a representative case). Further
investigation on this issue shows slightly improved relative errors for some specific Nitsche parameters
values. In particular, we tested our algorithm for several values of γD in the range [0.1, 40]. For each
coefficient γD we trained the ROM using 400 snapshots and we queried the reduced solver for a fixed
number of 120 basis components and 30 random geometrical parameter test cases. We employed the
best extension, namely the natural smooth extension, without transportation (in order to separate the
beneficial effects of transportation from those of changing γD). As seen in Figure 8, the average relative
error shows a mild dependence on the chosen value of γD, at least in the range [5, 40]. Yet, slightly
improved results (compared to those of Figure 6) can be obtained for the choice of γD = 8, resulting in
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Figure 9. Stokes flow test case: The POD eigenvalues decay (normalized to the
maximum eigenvalue) for a training set of 600 snapshots is visualized against the
number of modes.

a relative error of 0.0056, instead of the relative error 0.0112 for γD = 10 as in Figure 6. Even though
a careful tuning of γD allows to improve the accuracy, such issue should be further investigated in
future publications.

4.2. Steady Stokes problem. This experiment considers the Stokes flow around a circular cylinder,
embedded in a cavity B = [−2, 2] × [−1, 1]. The parametrization, which allows to change the y
coordinate of the center of the cylinder, is inspired by the numerical example in [57, Section 4]. The
embedded domain is thus parametrized through µ ∈ K = [−0.5, 0.5] according to the following level
set expression:

φ(x, y;µ) =

(
x− 3

2

)2

+ (y − µ)
2 −R2,

where the parameter µ describes the y coordinate of the center of the embedded circular domain. The
radius R = 0.2, while the viscosity ν is set to 1. A constant velocity in the x direction, uin = 1 is
applied (strongly) at the left side of the domain, and a Neumann boundary condition is applied on
the right. No slip, i.e. homogeneous Dirichlet boundary conditions are applied (strongly) on the top
and bottom edges, as well as (through Nitsche weak imposition) on the boundary of the embedded
cylinder. The results for the test problem have been obtained with a mesh size of h = 0.0350 for the
background mesh Bh, using 15022 triangles for the discretization and P 1/P 1 finite elements in space
with stabilization terms as described in Section 2.2.

In this test case we will only employ the natural smooth extension among all the possible extension
options presented in Section 3.3, as it was the one which gave best results in Section 4.1. For what
concerns the transportation method of Section 3.4, we choose the reference parameter µ = 0, which
corresponds to the center of the parameter range K. The expression ỹ = τ (y;µ) = y + µ(1 − y2) is
chosen so that the center-line y = 0 of the domain is mapped to ỹ = µ, while keeping top and bottom
walls fixed. Parameter range K has been chosen so that the inverse mapping being τ−1(y;µ) =
1
2µ (1− (4µ2 − 4µy + 1)

1
2 ) is well defined.

The results of the offline stage, run over a training set of 600 snapshots, are summarized in Figure
9, where POD eigenvalues (normalized to the maximum eigenvalue) are plotted against the number of
modes, for the velocity u, supremizer s and pressure p. As in the scalar Darcy flow experiments, results
show that smaller reduced basis spaces can be obtained by combining extension and transportation
procedures; indeed, Figure 9 shows a slower eigenvalue decay for the case without transportation.
The difference among the two options are less marked here than in the scalar case due to the simpler
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Figure 10. Stokes flow test case: first four velocity POD modes (plotted component
by component) for the natural smooth extension without transportation.

parametrization, which only affects one geometrical quantity rather than four. Nonetheless, the qual-
itative difference between the resulting POD modes is still very appreciable comparing Figures 10-12
(velocity and pressure, respectively, without transportation) to Figures 11-13 (velocity and pressure,
respectively, with transportation). In particular, close to the inlet, POD basis functions without trans-
portation are characterized by peaks/sinks in the y direction, their number increasing with the basis
index. Such behavior is required for such basis to capture the moving circle. In contrast, no such
phenomenon is present when applying transportation to the snapshots.

Figure 14 shows the L2 relative errors results, for velocity and pressure, of an error analysis between
the reduced order and high fidelity approximations over a testing set of 100 parameter values. In



PROJECTION-BASED ROMs FOR A CutFEM METHOD IN PARAMETRIZED DOMAINS 15

Figure 11. Stokes flow test case: first four velocity POD modes (plotted component
by component) for the natural smooth extension with transportation.

particular, the average of the relative error over the testing set is plotted against the reduced basis
size. In the case of natural smooth extension, the reduced pressure solution obtained is still inaccurate
even for N = 50 even with the addition of supremizers, being affected by relative errors of the order of
10−1. Reduced velocity solution is more accurate, resulting in errors of the order of 10−2 for N ≥ 20.
In contrast, the combination to the transportation procedure results in relative errors that is of the
order of 10−2 starting from N = 3 for both velocity and pressure. Thus, again the role of snapshots
transportation can be inferred from these results, being capable of improving the results of almost an
order of magnitude compared to the natural smooth extension for a very low number of basis functions.
Unfortunately, both methods again reach a plateau after which no further improvement is shown. As
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Figure 12. Stokes flow test case: first four pressure POD modes for the natural
smooth extension without transportation.

Figure 13. Stokes flow test case: first four pressure POD modes for the natural
smooth extension with transportation.

in the elliptic case, we claim that this is due to weak imposition of boundary conditions, as errors tend
to concentrate in a neighborhood of the embedded circle (especially for the pressure, which will thus
affect the downstream velocity; see Figures 15-16 for a representative case); further work on this topic
is forthcoming.
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Figure 14. Stokes flow test case: error analysis between high fidelity approximations
and reduced order.

Figure 15. Stokes flow test case: the high fidelity velocity (top left), the reduced
order velocity (top right) for the natural smooth extension with transportation, and
the corresponding relative error (bottom) for the random parameter µ = 0.4998.

5. Conclusions and future developments

In this work a POD-Galerkin ROM based on CutFEM high fidelity simulations was presented
for linear PDE problems (elliptic and Stokes), characterized by a geometrical parametrization with
(possibly) large variations. A CutFEM discretization naturally allows to use a level set description of
the parametrized geometry. In our opinion, this results in a simpler and more versatile high fidelity
method when compared to a FE formulation with pull back to a reference domain.
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Figure 16. Stokes flow test case: the high fidelity pressure (top left), the reduced
order pressure (top right) for the natural smooth extension with transportation, and
the corresponding relative error (bottom) for the random parameter µ = 0.4998.

A separation between construction and evaluation phases is sought. While the evaluation of the
ROM follows a standard Galerkin projection, a careful adaptation to embedded methods has been
necessary for the construction stage, especially for what concerns the definition of snapshot on a
common background mesh through a suitable combination of extension to the background mesh (in
order to have all snapshots defined on a common mesh) and transportation on the background mesh
itself (in order to enforce a rapid decrease of the Kolmogorov n-width). Indeed, thanks in particular
to the transportation step, the developed ROM is able to reproduce the high fidelity solution in an
accurate manner, with relative errors of the order of 10−4 for the elliptic case and 10−2 for the Stokes
case.

Even though the proposed ROM follows a construction-evaluation paradigm, it is not offline-online
separable in the usual sense [71], yet. Such separability, which is required for the efficient evaluation
of the reduced order system, is a perspective to be thoroughly investigated in future. Suitable hyper
reduction techniques, such as the empirical interpolation method [78, 88], should be employed for this
goal. Certification of the error is another topic of remarkable interest, in view of the application of
greedy algorithms during the generation of the reduced basis space. Furthermore, a deep investigation
on the role of Nitsche terms on the accuracy of the resulting ROM is needed, as numerical results show
a plateau due to the weak imposition of Dirichlet boundary conditions.

As a further future development, we mention the extension of the proposed ROM to nonlinear
problems in fluid dynamics, such as the Navier-Stokes equations. Moreover, a prototypical case for
the application of embedded methods are fluid-structure interaction problems, which is another future
perspective of this work. This will introduce additional complexities such as additional equations to
account for the structural dynamics, as well as fluid structure-interaction coupling.
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