4,216 research outputs found

    Quantum computing on encrypted data

    Full text link
    The ability to perform computations on encrypted data is a powerful tool for protecting privacy. Recently, protocols to achieve this on classical computing systems have been found. Here we present an efficient solution to the quantum analogue of this problem that enables arbitrary quantum computations to be carried out on encrypted quantum data. We prove that an untrusted server can implement a universal set of quantum gates on encrypted quantum bits (qubits) without learning any information about the inputs, while the client, knowing the decryption key, can easily decrypt the results of the computation. We experimentally demonstrate, using single photons and linear optics, the encryption and decryption scheme on a set of gates sufficient for arbitrary quantum computations. Because our protocol requires few extra resources compared to other schemes it can be easily incorporated into the design of future quantum servers. These results will play a key role in enabling the development of secure distributed quantum systems

    On the feasibility of attribute-based encryption on Internet of Things devices

    Get PDF
    Attribute-based encryption (ABE) could be an effective cryptographic tool for the secure management of Internet of Things (IoT) devices, but its feasibility in the IoT has been under-investigated thus far. This article explores such feasibility for well-known IoT platforms, namely, Intel Galileo Gen 2, Intel Edison, Raspberry pi 1 model B, and Raspberry pi zero, and concludes that adopting ABE in the IoT is indeed feasible

    Sequential Circuit Design for Embedded Cryptographic Applications Resilient to Adversarial Faults

    Get PDF
    In the relatively young field of fault-tolerant cryptography, the main research effort has focused exclusively on the protection of the data path of cryptographic circuits. To date, however, we have not found any work that aims at protecting the control logic of these circuits against fault attacks, which thus remains the proverbial Achilles’ heel. Motivated by a hypothetical yet realistic fault analysis attack that, in principle, could be mounted against any modular exponentiation engine, even one with appropriate data path protection, we set out to close this remaining gap. In this paper, we present guidelines for the design of multifault-resilient sequential control logic based on standard Error-Detecting Codes (EDCs) with large minimum distance. We introduce a metric that measures the effectiveness of the error detection technique in terms of the effort the attacker has to make in relation to the area overhead spent in implementing the EDC. Our comparison shows that the proposed EDC-based technique provides superior performance when compared against regular N-modular redundancy techniques. Furthermore, our technique scales well and does not affect the critical path delay

    Barrel Shifter Physical Unclonable Function Based Encryption

    Full text link
    Physical Unclonable Functions (PUFs) are circuits designed to extract physical randomness from the underlying circuit. This randomness depends on the manufacturing process. It differs for each device enabling chip-level authentication and key generation applications. We present a protocol utilizing a PUF for secure data transmission. Parties each have a PUF used for encryption and decryption; this is facilitated by constraining the PUF to be commutative. This framework is evaluated with a primitive permutation network - a barrel shifter. Physical randomness is derived from the delay of different shift paths. Barrel shifter (BS) PUF captures the delay of different shift paths. This delay is entangled with message bits before they are sent across an insecure channel. BS-PUF is implemented using transmission gates; their characteristics ensure same-chip reproducibility, a necessary property of PUFs. Post-layout simulations of a common centroid layout 8-level barrel shifter in 0.13 {\mu}m technology assess uniqueness, stability and randomness properties. BS-PUFs pass all selected NIST statistical randomness tests. Stability similar to Ring Oscillator (RO) PUFs under environment variation is shown. Logistic regression of 100,000 plaintext-ciphertext pairs (PCPs) failed to successfully model BS- PUF behavior

    X-SRAM: Enabling In-Memory Boolean Computations in CMOS Static Random Access Memories

    Get PDF
    Silicon-based Static Random Access Memories (SRAM) and digital Boolean logic have been the workhorse of the state-of-art computing platforms. Despite tremendous strides in scaling the ubiquitous metal-oxide-semiconductor transistor, the underlying \textit{von-Neumann} computing architecture has remained unchanged. The limited throughput and energy-efficiency of the state-of-art computing systems, to a large extent, results from the well-known \textit{von-Neumann bottleneck}. The energy and throughput inefficiency of the von-Neumann machines have been accentuated in recent times due to the present emphasis on data-intensive applications like artificial intelligence, machine learning \textit{etc}. A possible approach towards mitigating the overhead associated with the von-Neumann bottleneck is to enable \textit{in-memory} Boolean computations. In this manuscript, we present an augmented version of the conventional SRAM bit-cells, called \textit{the X-SRAM}, with the ability to perform in-memory, vector Boolean computations, in addition to the usual memory storage operations. We propose at least six different schemes for enabling in-memory vector computations including NAND, NOR, IMP (implication), XOR logic gates with respect to different bit-cell topologies - the 8T cell and the 8+^+T Differential cell. In addition, we also present a novel \textit{`read-compute-store'} scheme, wherein the computed Boolean function can be directly stored in the memory without the need of latching the data and carrying out a subsequent write operation. The feasibility of the proposed schemes has been verified using predictive transistor models and Monte-Carlo variation analysis.Comment: This article has been accepted in a future issue of IEEE Transactions on Circuits and Systems-I: Regular Paper

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies
    corecore