1,758 research outputs found

    Redescription Mining and Applications in Bioinformatics

    Full text link
    Our ability to interrogate the cell and computationally assimilate its answers is improving at a dramatic pace. For instance, the study of even a focused aspect of cellular activity, such as gene action, now benefits from multiple high-throughput data acquisition technologies such as microarrays, genome-wide deletion screens, and RNAi assays. A critical need is the development of algorithms that can bridge, relate, and unify diverse categories of data descriptors. Redescription mining is such an approach. Given a set of biological objects (e.g., genes, proteins) and a collection of descriptors defined over this set, the goal of redescription mining is to use the given descriptors as a vocabulary and find subsets of data that afford multiple definitions. The premise of redescription mining is that subsets that afford multiple definitions are likely to exhibit concerted behavior and are, hence, interesting. We present algorithms for redescription mining based on formal concept analysis and applications of redescription mining to multiple biological datasets. We demonstrate how redescriptions identify conceptual clusters of data using mutually reinforcing features, without explicit training information.

    Compositional Mining of Multi-Relational Biological Datasets

    Get PDF
    High-throughput biological screens are yielding ever-growing streams of information about multiple aspects of cellular activity. As more and more categories of datasets come online, there is a corresponding multitude of ways in which inferences can be chained across them, motivating the need for compositional data mining algorithms. In this paper, we argue that such compositional data mining can be effectively realized by functionally cascading redescription mining and biclustering algorithms as primitives. Both these primitives mirror shifts of vocabulary that can be composed in arbitrary ways to create rich chains of inferences. Given a relational database and its schema, we show how the schema can be automatically compiled into a compositional data mining program, and how different domains in the schema can be related through logical sequences of biclustering and redescription invocations. This feature allows us to rapidly prototype new data mining applications, yielding greater understanding of scientific datasets. We describe two applications of compositional data mining: (i) matching terms across categories of the Gene Ontology and (ii) understanding the molecular mechanisms underlying stress response in human cells

    Redescription Mining: An Overview.

    Get PDF
    International audienceIn many real-world data analysis tasks, we have different types of data over the same objects or entities, perhaps because the data originate from distinct sources or are based on different terminologies. In order to understand such data, an intuitive approach is to identify thecorrespondences that exist between these different aspects. This isthe motivating principle behind redescription mining, a data analysistask that aims at finding distinct commoncharacterizations of the same objects.This paper provides a short overview of redescription mining; what it is and how it is connected to other data analysis methods; the basic principles behind current algorithms for redescription mining; and examples and applications of redescription mining for real-world data analysis problems

    Finding relational redescriptions

    Get PDF
    We introduce relational redescription mining, that is, the task of finding two structurally different patterns that describe nearly the same set of object pairs in a relational dataset. By extending redescription mining beyond propositional and real-valued attributes, it provides a powerful tool to match different relational descriptions of the same concept. We propose an alternating scheme for solving this problem. Its core consists of a novel relational query miner that efficiently identifies discriminative connection patterns between pairs of objects. Compared to a baseline Inductive Logic Programming (ILP) approach, our query miner is able to mine more complex queries, much faster. We performed extensive experiments on three real world relational datasets, and present examples of redescriptions found, exhibiting the power of the method to expressively capture relations present in these networks

    Representational redescription and cognitive architectures

    Get PDF
    We focus on Karmiloff-Smith's Representational redescription model, arguing that it poses some problems concerning the architecture of a redescribing system. To discuss the topic, we consider the implicit/explicit dichotomy and the relations between natur al language and the language of thought. We argue that the model regards how knowledge is employed rather than how it is represented in the system

    Subjectively Interesting Subgroup Discovery on Real-valued Targets

    Get PDF
    Deriving insights from high-dimensional data is one of the core problems in data mining. The difficulty mainly stems from the fact that there are exponentially many variable combinations to potentially consider, and there are infinitely many if we consider weighted combinations, even for linear combinations. Hence, an obvious question is whether we can automate the search for interesting patterns and visualizations. In this paper, we consider the setting where a user wants to learn as efficiently as possible about real-valued attributes. For example, to understand the distribution of crime rates in different geographic areas in terms of other (numerical, ordinal and/or categorical) variables that describe the areas. We introduce a method to find subgroups in the data that are maximally informative (in the formal Information Theoretic sense) with respect to a single or set of real-valued target attributes. The subgroup descriptions are in terms of a succinct set of arbitrarily-typed other attributes. The approach is based on the Subjective Interestingness framework FORSIED to enable the use of prior knowledge when finding most informative non-redundant patterns, and hence the method also supports iterative data mining.Comment: 12 pages, 10 figures, 2 tables, conference submissio
    • …
    corecore