3,234 research outputs found

    Model Checking Timed Recursive CTL

    Get PDF
    We introduce Timed Recursive CTL, a merger of two extensions of the well-known branching-time logic CTL: Timed CTL is interpreted over real-time systems like timed automata; Recursive CTL introduces a powerful recursion operator which takes the expressiveness of this logic CTL well beyond that of regular properties. The result is an expressive logic for real-time properties. We show that its model checking problem is decidable over timed automata, namely 2-EXPTIME-complete

    Improved Undecidability Results for Reachability Games on Recursive Timed Automata

    Get PDF
    We study reachability games on recursive timed automata (RTA) that generalize Alur-Dill timed automata with recursive procedure invocation mechanism similar to recursive state machines. It is known that deciding the winner in reachability games on RTA is undecidable for automata with two or more clocks, while the problem is decidable for automata with only one clock. Ouaknine and Worrell recently proposed a time-bounded theory of real-time verification by claiming that restriction to bounded-time recovers decidability for several key decision problem related to real-time verification. We revisited games on recursive timed automata with time-bounded restriction in the hope of recovering decidability. However, we found that the problem still remains undecidable for recursive timed automata with three or more clocks. Using similar proof techniques we characterize a decidability frontier for a generalization of RTA to recursive stopwatch automata

    Relating timed and register automata

    Get PDF
    Timed automata and register automata are well-known models of computation over timed and data words respectively. The former has clocks that allow to test the lapse of time between two events, whilst the latter includes registers that can store data values for later comparison. Although these two models behave in appearance differently, several decision problems have the same (un)decidability and complexity results for both models. As a prominent example, emptiness is decidable for alternating automata with one clock or register, both with non-primitive recursive complexity. This is not by chance. This work confirms that there is indeed a tight relationship between the two models. We show that a run of a timed automaton can be simulated by a register automaton, and conversely that a run of a register automaton can be simulated by a timed automaton. Our results allow to transfer complexity and decidability results back and forth between these two kinds of models. We justify the usefulness of these reductions by obtaining new results on register automata.Comment: In Proceedings EXPRESS'10, arXiv:1011.601

    Revisiting Underapproximate Reachability for Multipushdown Systems

    Full text link
    Boolean programs with multiple recursive threads can be captured as pushdown automata with multiple stacks. This model is Turing complete, and hence, one is often interested in analyzing a restricted class that still captures useful behaviors. In this paper, we propose a new class of bounded under approximations for multi-pushdown systems, which subsumes most existing classes. We develop an efficient algorithm for solving the under-approximate reachability problem, which is based on efficient fix-point computations. We implement it in our tool BHIM and illustrate its applicability by generating a set of relevant benchmarks and examining its performance. As an additional takeaway, BHIM solves the binary reachability problem in pushdown automata. To show the versatility of our approach, we then extend our algorithm to the timed setting and provide the first implementation that can handle timed multi-pushdown automata with closed guards.Comment: 52 pages, Conference TACAS 202

    On the decidability and complexity of Metric Temporal Logic over finite words

    Full text link
    Metric Temporal Logic (MTL) is a prominent specification formalism for real-time systems. In this paper, we show that the satisfiability problem for MTL over finite timed words is decidable, with non-primitive recursive complexity. We also consider the model-checking problem for MTL: whether all words accepted by a given Alur-Dill timed automaton satisfy a given MTL formula. We show that this problem is decidable over finite words. Over infinite words, we show that model checking the safety fragment of MTL--which includes invariance and time-bounded response properties--is also decidable. These results are quite surprising in that they contradict various claims to the contrary that have appeared in the literature

    Zenoness for Timed Pushdown Automata

    Full text link
    Timed pushdown automata are pushdown automata extended with a finite set of real-valued clocks. Additionaly, each symbol in the stack is equipped with a value representing its age. The enabledness of a transition may depend on the values of the clocks and the age of the topmost symbol. Therefore, dense-timed pushdown automata subsume both pushdown automata and timed automata. We have previously shown that the reachability problem for this model is decidable. In this paper, we study the zenoness problem and show that it is EXPTIME-complete.Comment: In Proceedings INFINITY 2013, arXiv:1402.661

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    Two-Player Reachability-Price Games on Single-Clock Timed Automata

    Full text link
    We study two player reachability-price games on single-clock timed automata. The problem is as follows: given a state of the automaton, determine whether the first player can guarantee reaching one of the designated goal locations. If a goal location can be reached then we also want to compute the optimum price of doing so. Our contribution is twofold. First, we develop a theory of cost functions, which provide a comprehensive methodology for the analysis of this problem. This theory allows us to establish our second contribution, an EXPTIME algorithm for computing the optimum reachability price, which improves the existing 3EXPTIME upper bound.Comment: In Proceedings QAPL 2011, arXiv:1107.074
    corecore