13,138 research outputs found

    Algebraic geometry of Gaussian Bayesian networks

    Get PDF
    Conditional independence models in the Gaussian case are algebraic varieties in the cone of positive definite covariance matrices. We study these varieties in the case of Bayesian networks, with a view towards generalizing the recursive factorization theorem to situations with hidden variables. In the case when the underlying graph is a tree, we show that the vanishing ideal of the model is generated by the conditional independence statements implied by graph. We also show that the ideal of any Bayesian network is homogeneous with respect to a multigrading induced by a collection of upstream random variables. This has a number of important consequences for hidden variable models. Finally, we relate the ideals of Bayesian networks to a number of classical constructions in algebraic geometry including toric degenerations of the Grassmannian, matrix Schubert varieties, and secant varieties.Comment: 30 page, 4 figure

    Semantics, Modelling, and the Problem of Representation of Meaning -- a Brief Survey of Recent Literature

    Full text link
    Over the past 50 years many have debated what representation should be used to capture the meaning of natural language utterances. Recently new needs of such representations have been raised in research. Here I survey some of the interesting representations suggested to answer for these new needs.Comment: 15 pages, no figure

    Discovery of statistical equivalence classes using computer algebra

    Full text link
    Discrete statistical models supported on labelled event trees can be specified using so-called interpolating polynomials which are generalizations of generating functions. These admit a nested representation. A new algorithm exploits the primary decomposition of monomial ideals associated with an interpolating polynomial to quickly compute all nested representations of that polynomial. It hereby determines an important subclass of all trees representing the same statistical model. To illustrate this method we analyze the full polynomial equivalence class of a staged tree representing the best fitting model inferred from a real-world dataset.Comment: 26 pages, 9 figure

    Credal Networks under Epistemic Irrelevance

    Get PDF
    A credal network under epistemic irrelevance is a generalised type of Bayesian network that relaxes its two main building blocks. On the one hand, the local probabilities are allowed to be partially specified. On the other hand, the assessments of independence do not have to hold exactly. Conceptually, these two features turn credal networks under epistemic irrelevance into a powerful alternative to Bayesian networks, offering a more flexible approach to graph-based multivariate uncertainty modelling. However, in practice, they have long been perceived as very hard to work with, both theoretically and computationally. The aim of this paper is to demonstrate that this perception is no longer justified. We provide a general introduction to credal networks under epistemic irrelevance, give an overview of the state of the art, and present several new theoretical results. Most importantly, we explain how these results can be combined to allow for the design of recursive inference methods. We provide numerous concrete examples of how this can be achieved, and use these to demonstrate that computing with credal networks under epistemic irrelevance is most definitely feasible, and in some cases even highly efficient. We also discuss several philosophical aspects, including the lack of symmetry, how to deal with probability zero, the interpretation of lower expectations, the axiomatic status of graphoid properties, and the difference between updating and conditioning
    • …
    corecore