762 research outputs found

    Recursive POD expansion for reaction-diffusion equation

    Get PDF
    This paper focuses on the low-dimensional representation of multivariate functions. We study a recursive POD representation, based upon the use of the power iterate algorithm to recursively expand the modes retained in the previous step. We obtain general error estimates for the truncated expansion, and prove that the recursive POD representation provides a quasi-optimal approximation in L2 norm. We also prove an exponential rate of convergence, when applied to the solution of the reaction-diffusion partial differential equation. Some relevant numerical experiments show that the recursive POD is computationally more accurate than the Proper Generalized Decomposition for multivariate functions. We also recover the theoretical exponential convergence rate for the solution of the reaction-diffusion equation

    Recursive POD expansion for the advection-diffusion-reaction equation

    Get PDF
    This paper deals with the approximation of advection-diffusion-reaction equation solution by reduced order methods. We use the Recursive POD approximation for multivariate functions introduced in [M. AZAÏEZ, F. BEN BELGACEM, T. CHACÓN REBOLLO, Recursive POD expansion for reactiondiffusion equation, Adv.Model. and Simul. in Eng. Sci. (2016) 3:3. DOI 10.1186/s40323-016-0060-1] and applied to the low tensor representation of the solution of the reaction-diffusion partial differential equation. In this contribution we extend the Recursive POD approximation for multivariate functions with an arbitrary number of parameters, for which we prove general error estimates. The method is used to approximate the solutions of the advection-diffusion-reaction equation. We prove spectral error estimates, in which the spectral convergence rate depends only on the diffusion interval, while the error estimates are affected by a factor that grows exponentially with the advection velocity, and are independent of the reaction rate if this lives in a bounded set. These error estimates are based upon the analyticity of the solution of these equations as a function of the parameters (advection velocity, diffusion, reaction rate). We present several numerical tests, strongly consistent with the theoretical error estimates.Ministerio de Economía y CompetitividadAgence nationale de la rechercheGruppo Nazionale per il Calcolo ScientificoUE ERA-PLANE

    Recursive POD expansion for the advection-diffusion-reaction equation

    Get PDF
    This paper deals with the approximation of advection-diffusion-reaction equation solution by reduced order methods. We use the Recursive POD approximation for multivariate functions introduced in [M. AZAÏEZ, F. BEN BELGACEM, T. CHACÓN REBOLLO, Recursive POD expansion for reactiondiffusion equation, Adv.Model. and Simul. in Eng. Sci. (2016) 3:3. DOI 10.1186/s40323-016-0060-1] and applied to the low tensor representation of the solution of the reaction-diffusion partial differential equation. In this contribution we extend the Recursive POD approximation for multivariate functions with an arbitrary number of parameters, for which we prove general error estimates. The method is used to approximate the solutions of the advection-diffusion-reaction equation. We prove spectral error estimates, in which the spectral convergence rate depends only on the diffusion interval, while the error estimates are affected by a factor that grows exponentially with the advection velocity, and are independent of the reaction rate if this lives in a bounded set. These error estimates are based upon the analyticity of the solution of these equations as a function of the parameters (advection velocity, diffusion, reaction rate). We present several numerical tests, strongly consistent with the theoretical error estimates.Ministerio de Economía y CompetitividadAgence nationale de la rechercheGruppo Nazionale per il Calcolo ScientificoUE ERA-PLANE

    Computational Modeling of Gurney Flaps and Microtabs by POD Method

    Get PDF
    Gurney flaps (GFs) and microtabs (MTs) are two of the most frequently used passive flow control devices on wind turbines. They are small tabs situated close to the airfoil trailing edge and normal to the surface. A study to find the most favorable dimension and position to improve the aerodynamic performance of an airfoil is presented herein. Firstly, a parametric study of a GF on a S810 airfoil and an MT on a DU91(2)250 airfoil was carried out. To that end, 2D computational fluid dynamic simulations were performed at Re = 10(6) based on the airfoil chord length and using RANS equations. The GF and MT design parameters resulting from the computational fluid dynamics (CFD) simulations allowed the sizing of these passive flow control devices based on the airfoil's aerodynamic performance. In both types of flow control devices, the results showed an increase in the lift-to-drag ratio for all angles of attack studied in the current work. Secondly, from the data obtained by means of CFD simulations, a regular function using the proper orthogonal decomposition (POD) was used to build a reduced order method. In both flow control cases (GFs and MTs), the recursive POD method was able to accurately and very quickly reproduce the computational results with very low computational cost.The current research was partially supported by the Spanish Government with the Project: grant number: MTM2015-64577-C2-1-R

    Autoencoding for the 'Good Dictionary' of eigen pairs of the Koopman Operator

    Full text link
    Reduced order modelling relies on representing complex dynamical systems using simplified modes, which can be achieved through Koopman operator analysis. However, computing Koopman eigen pairs for high-dimensional observable data can be inefficient. This paper proposes using deep autoencoders, a type of deep learning technique, to perform non-linear geometric transformations on raw data before computing Koopman eigen vectors. The encoded data produced by the deep autoencoder is diffeomorphic to a manifold of the dynamical system, and has a significantly lower dimension than the raw data. To handle high-dimensional time series data, Takens's time delay embedding is presented as a pre-processing technique. The paper concludes by presenting examples of these techniques in action.Comment: 21 Pages, 17 Figures, Journal Pape

    Computational modeling of Gurney flaps and microtabs by POD method

    Get PDF
    Gurney flaps (GFs) and microtabs (MTs) are two of the most frequently used passive flow control devices on wind turbines. They are small tabs situated close to the airfoil trailing edge and normal to the surface. A study to find the most favorable dimension and position to improve the aerodynamic performance of an airfoil is presented herein. Firstly, a parametric study of a GF on a S810 airfoil and an MT on a DU91(2)250 airfoil was carried out. To that end, 2D computational fluid dynamic simulations were performed at Re = 106 based on the airfoil chord length and using RANS equations. The GF and MT design parameters resulting from the computational fluid dynamics (CFD) simulations allowed the sizing of these passive flow control devices based on the airfoil’s aerodynamic performance. In both types of flow control devices, the results showed an increase in the lift-to-drag ratio for all angles of attack studied in the current work. Secondly, from the data obtained by means of CFD simulations, a regular function using the proper orthogonal ecomposition (POD) was used to build a reduced order method. In both flow control cases (GFs and MTs), the recursive POD method was able to accurately and very quickly reproduce the computational results with very low computational cost.Ministerio de Economía y Competitivida
    corecore