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Abstract

Large-scale distributed parameter systems cover a wide range of practical applications in in-

dustrial engineering, such as chemical tubular reactors, bio-production reactors, combustion

processes and microscopic reactions on the surface. Intelligent operations including optimi-

sation and control could improve process performance, satisfying process constraints. How-

ever, intelligent computations are challenging for large-scale systems due to the global op-

tima issues, process uncertainty and expensive system evaluations. The research in this thesis

presents model reduction based global optimisation, model predictive control and uncertainty

quantification methodologies for large-scale distributed parameter systems. Firstly, a double

reduction (principal component analysis and artificial neural networks) based global opti-

misation framework was built, which was then improved through piecewise affine and deep

rectifier neural network reformulations. Then a combination of nonlinear model predictive

control and polynomial chaos expansion was employed to robustly control distributed parame-

ter systems under parametric uncertainty, where the offline reformulations (proper orthogonal

decomposition and recurrent neural networks) based global optimisation method was utilised

within recursive control steps. Next, an “equation-free” Monte Carlo uncertainty quantifi-

cation methodology was proposed for large-scale distributed parameter systems, where the

recursive projection method and lifting-restriction operations were performed to accelerate

the computations of distributional steady states through a black-box dynamic simulator. Fi-

nally, a Bayesian optimisation approach was adopted to globally search optimal solutions for

large-scale system under uncertainty, where parametric uncertainty was addressed using our

presented uncertainty propagation algorithm. The proposed computational frameworks were

validated through several practical chemical and biochemical production cases.
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Chapter 1

Introduction

1.1 Large-scale distributed parameter systems

1.1.1 Background

Complex chemical processes usually comprise multiple phenomena involving spatial dynam-

ics, known as distributed parameter systems (DPS) (Ahmed, 1987). In fact, most physical pro-

cesses span multiple space and time scales, from the microscopic (Dittrich & Reuter, 1994;

Leimkuhler & Matthews, 2016), to the mesoscopic (Reguera et al., 2005) to the macroscopic

level (J. D. Anderson & Wendt, 1995; Bird et al., 2006). Such multi-scale spatiotempo-

ral phenomena are often one of the great challenges for understanding complex multi-scale

(bio)chemical and industrial processes, which are attracting numerous efforts for production-

oriented investigation (Charpentier & McKenna, 2004). Furthermore, the high complexity

of multi-scale DPS contributes to more inter-disciplinary research and collaborations within

different disciplines on multiple scales/levels (Wolkenhauer et al., 2014).

Distributed parameter systems are widely found in the engineering and life sciences. For

example, single phase or multiphase flow systems (Brennen & Brennen, 2005) in traditional

mechanical and chemical engineering, would exhibit velocity variations in different times and

space positions. Similarly, spatiotemporal multi-scale fluid flow patterns can be observed in

aerodynamics. Moreover, growth of materials (such as thin films) through a range of re-

action systems involve both macroscopic fluid and microscopic growth dynamics, typically

described by multi-scale models (Kleijn et al., 2007). Furthermore, both emerging nanotech-

nology (Song et al., 2017) and micro-reactor technology systems (Roberge et al., 2005) can
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be described as distributed parameter systems. Almost all systems dominated by physical

phenomena belong to distributed parameter systems. Even in social science, the population

level in ecological systems (Evans, 2012) may be modelled as a DPS, exhibiting dynamics in

different areas.

There are two fundamental descriptions for distributed parameter systems at all scales.

One is deterministic description, assuming the continuously evolving behaviours on space

domain. Deterministic description could be quantified using deterministic (partial) differ-

ential equations. For example, widely existing processes in engineering applications, such

as fluid flow (Constantin & Foias, 1988), heat and mass transport processes (Rosner, 2012),

are often described using Partial Differential Equations (PDEs) (Mattheij et al., 2005). The

other is stochastic description with the discrete behaviours on space scales. Stochastic de-

scription could be quantified by either stochastic differential equations (Protter, 2005) or

stochastic events based simulators (Gillespie, 1977). Stochastic differential equations use

so-called ”white noise” to describe random influences on processes including closed form

equations while stochastic simulators employ stochastic events based evolutionary processes

without closed form equations. Typical examples of stochastic description could be found

for distributed parameter systems including surface catalytic reactions (Boudart & Djéga-

Mariadassou, 2014) and thin film decomposition (Armaou & Varshney, 2004). Moreover,

complexity of distributed parameter systems could be derived from coupled processes. For

instance, chemical reactor systems with catalyst pellets (Y.-N. Wang et al., 2001) involve cou-

pled processes in two physical scales, the fluid flow and transport process in bulk gas scale

and the diffusion-reaction process in pellet scale. Multiple coupled processes could exploit

more details of systems but would increase the complexity of distributed parameter systems,

leading to more challenges to cope with them. Specifically in chemical and biochemical en-

gineering, early research focused on unit operations such as distillation, absorption and crys-

tallisation (McCabe et al., 1993) using lumped models (Olufsen & Nadim, 2003) through the

assumption of uniform spatial behaviours. Then, the transport phenomena and reaction engi-

neering (Levenspiel, 1999) were developed toward investigating more behaviours of coupled

heat, mass transfer and reaction processes. Meanwhile, the gap between increasing require-

ments of computational accuracy and low-fidelity lumped models drove researchers to study

the spatial distribution of transport-reaction processes. Thus, distributed parameter models,
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in the form of highly nonlinear PDEs, unclosed-form simulators and hybrids were introduced

to describe the complex transport-reaction phenomena (Hasmady et al., 2009).

Nowadays, numerous experimentaland computational research studies have produced plenty

of high-fidelity PDEs models and multi-scale simulators, which motivates further optimisa-

tion, control and uncertainty quantification for practical transport and reaction processes. For

example, the performances of cyclic adsorption processes were improved through the reduced

sequential quadratic programming (SQP) algorithm for PDE-based models (Ko et al., 2005).

Moreover, a model predictive control strategy was recently employed to stabilise the coupled

parabolic PDEs based tubular reactor (Khatibi et al., 2021). In addition, polynomial chaos ex-

pansion (PCE) (Xiu & Karniadakis, 2002) was used to propagate the parametric uncertainty

for the turbulent flow in a nozzle (Mathelin et al., 2004).

To provide more insights into distributed parameter systems, two illustrative examples are

introduced with details in the next sections (1.12-1.14): a typical large-scale combustor as a

deterministic example and oxidation of CO on a catalytic surface as a stochastic case.

1.1.2 Air combustion of NOx emissions

This subsection introduces a common large-scale CFD example (Lang et al., 2009; Wei et al.,

2012) in form of deterministic description for distributed parameter systems. The combus-

tion process of NOx pollutants (Wei et al., 2012) is an important technological process with

environmental repercussions since these pollutants damage the atmospheric layer. Complex

combustion processes involve the general fluid flow, heat-mass transport and chemical reac-

tions across the whole combustor (Chan, 1996), which can be modelled as a deterministic

distributed parameter system. Figure 1.1 illustrates a 2D axisymmetric combustor with the

inlet air and fuel, wall, and outlet boundary conditions. First, recycled hot combustion prod-

ucts are used to dilute and heat preheated air. The resulting low-concentration preheated air

(a mixture of O2, N2, H2O, CO2 and a few NO) would be mixed with the fuel (a mixture of

CH4, C2H4, C3H8, C4HO and N2) from a nozzle to enhance the species interaction. High

speed turbulent flow is generated to guarantee enough mixing efficiency. The operation tem-

perature in the combustor need to be high enough to control the complex reaction processes,

ensuring high-level thermal efficiency of reactions and less NOx emission at the outlet.
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Figure 1.1: 2D axisymmetric combustor geometry

NOx emission involves thermal NO, prompt NO and N2O intermediate mechanisms. The

fuel NO mechanism can be ignored if no nitrogen exists. The other reactions include oxidation

of hydrocarbon. The hydrocarbon oxidation and oxynitride reactions (Srivastava et al., 2005)

are as follows (Wei et al., 2012):

• CH4 + 2O2 → CO2 + 2H2O

• C2H4 + 3O2 → 2CO2 + 2H2O

• C3H8 + 5O2 → 3CO2 + 4H2O

• C4H10 + 8.5O2 → 4CO2 + 5H2O

• O + N 
 NO + N

• O + N 
 NO + O

• N + OH 
 NO + H

(1.1)

To capture these complex fluid dynamic, species transport and reaction phenomena, deter-

ministic PDE-based distributed parameter models (in the form of black-box CFD code for

this example (Wei et al., 2012)) can be employed, which could be further exploited to analyse

the process and guide the choice of operating conditions.

This is an illustrative deterministic distributed parameter system, where complex velocity,

heat and mass behaviours across the space domain are described in a deterministic way. Many

general commercial modelling software such as ANSYS Fluent (Fluent, 2015) and COMSOL

(Zimmerman, 2006) describe the complex processes in the similar deterministic way, which

is accurate enough to solve many engineering applications.

1.1.3 Oxidation of CO on a catalytic surface

In the previous example a distributed parameter system was described in a deterministic man-

ner. Hence, the inherent process stochastics were neglected. Nevertheless, the stochastic
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noises might havea significant impact in many complex phenomena, where the deterministic

distributed parameter models would generate considerable errors. In these cases, distributed

parameter systems need to be described in a stochastic way, putting the stochastic noises into

the discrete behaviours on space domain. The stochastic distributed parameter models are

extremely important when the number of participates of evolving process is relatively small.

Under these circumstances, the process noises would be so obvious that only stochastic mod-

els could capture the system behaviours.

Here the heterogeneous oxidation of carbon monoxide (CO) in catalytic reaction engineer-

ing (Zissis, 2002) is took as an illustrative example for the stochastic description, which can be

modelled by multi-step coupled reactions on a rectangular lattice that represents a metal (Pt)

catalytic surface. A set of dynamic behaviours occur including absorption onto the lattice ac-

tive sites, reaction with nearest neighbors and desorption to the bulk gas phase. Many kinetic

processes could be described using a deterministic mean field model, which can predict accu-

rate system behaviours for high reactant concentration cases. However, there are some other

applications with lowly covered reaction surfaces such as the heterogeneous oxidation on the

catalytic surface. Under these conditions, lateral interactions and/or diffusion significantly

affect system events, leading to strong process randomness. If deterministic models were

utilised, inaccurate results would be obtained. While stochastic kinetic models can accom-

modate the randomness and predict the oscillation behaviours in the heterogeneous catalytic

reactions across space scale. As Figure 1.2 shows, a set of coupled elementary reaction steps

are given as below (Sales et al., 1982).

• COgas + (∗)i → CO∗
ads,i

• O2,gas + (∗)i + (∗)j → O∗
ads,i + O∗

ads,j

• CO∗
ads,i + O∗

ads,j → CO2,gas + (∗)i + (∗)j

• CO∗
ads,i → COgas + (∗)i

• CO∗
ads,i + (∗)j → CO∗

ads,j + (∗)i

(1.2)

where COgas, O2,gas, CO2,gas are gas molecules in the bulk gas phase around the surface,

(∗)i and (∗)j are the empty absorbed sites with the index i and j while CO∗
ads,i and O∗

ads,j are

adsorbed species on the surface sites i and j. The reaction mechanism involves the adsorp-

tion of gas molecules COgas and O2,gas into vacant sites (∗)i and (∗)j , reactive event between
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two adsorbed molecules CO∗
ads,i and O∗

ads,j , desorption of the absorbed molecule CO∗
ads,i

into the gas molecule COgas, and diffusion of the absorbed molecule CO∗
ads,i to neighboring

empty site (∗)j . These surface events include the effects of the lateral absorbate interac-

tions and diffusion across the reaction surface, which could be simulated using kinetic Monte

Carlo method (Zhang et al., 2019). Thus, stochastics of the absorbate concentrations on the

reaction surface could be efficiently predicted in the case of low-level gas reactants. The

stochastic kinetic modelling for the oxidation reaction of CO on a catalytic surface is a typi-

cal stochastic description for distributed parameter systems, which has been popular in mod-

elling the surface chemistry, chemical reactions and parts of multi-scale processes (Zhang

et al., 2019). Similar stochastic distributed parameter models could be exploited to describe

other distributed parameter systems with obvious stochastics.

Figure 1.2: Stochastic kinetic reactions on the catalytic surface

1.2 Challenges for optimisation, control and uncertainty quantification

of large-scale distributed parameter systems

Nowadays, modelling techniques are more and more advanced for complex process sys-

tems, since a wide range of experimental and computational studies have contributed to nu-

merous high-fidelity,large-scale and multi-scale distributed parameter models. Moreover, ad-

vanced computational strategies have led to the development of commercial modelling soft-

ware, such as ANSYS Fluent (Fluent, 2015), COMSOL (Zimmerman, 2006) and even open-

source software (eg.(Jasak et al., 2007) ). The combination of such efficient simulators with

high performance computational facilities accelerates the development of large-scale process
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digitalisation. Nevertheless, further optimisation, control and uncertainty quantification of

such processes are still challenging.

Firstly, both high dimensionality from discretisation and inherent non-linearity require

dramatic computational cost as a compromise. Derived from complex spatiotemporal events,

high dimensionality contributes to a huge number of dependent variables from discretisa-

tion, resulting in expensive system evaluations and scalably increasing computation costs on

upper-level tasks. Moreover, complex thermodynamic and reaction mechanisms, coupled

multi-physical and multi-scale phenomena exhibit highly nonlinear behaviours, modelled by

large-scale non-convex equations. Non-convexity could generate multiple local optima, lead-

ing to great difficulties for existing optimisation solvers to identify the best (global) optima.

Popular stochastic search approaches require a large number of system evaluations to skiplo-

cal optima and find better optimisation solutions, which would cause intensive computations

for evaluating large-scale systems. Although stochastic approaches can often find good so-

lutions, they could not guarantee the global optimality conditions, even the local optimal

conditions. Deterministic branch and bound (BB) algorithms can provide a rigorous guar-

antee on global optimality conditions. However, almost all rigorous BB algorithms require

intractable number of system evaluations to compute the low-upper bounds, which would re-

sult in huge computational burdens for large-scale problems. Secondly, the mature commer-

cial modelling software are often black-box to users, providing no optimisation and control

options. Black-box characteristics imply inability to use the highlyefficient equation-based

algorithms, putting more barriers on optimal designs. For cases where legacy codes or open-

source codes are available, but revisiting the large volume of code and utilising them for

upper-level optimisation and control tasks are still time-consuming works.

Moreover, complex process systems often exhibit spatiotemporal behaviours, along with

inherent stochastics. Together with incomplete system knowledge, process uncertainty can

result in the mismatch between models and true processes. Uncertainty quantification ap-

proaches are helpful to make more robust decisions. However, traditional sample-based un-

certainty quantification techniques require intensive computational costs.

Computational challenges are the motivations behind this work to develop more efficient

optimisation, control and uncertainty quantification algorithms for large-scale and multi-scale

distributed parameter systems. Model reduction techniques are promising tools to satisfy the
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requirements of intensive computations. Here, this thesis aims to build high-performance

model reduction based computational algorithms for the purpose of optimisation, control

and uncertainty quantification.

As for the black-box characteristics and expensive system evaluation issues to global opti-

misation algorithms, sampling based projective order reduction techniques combining neural

network surrogate models could construct simple but accurate explicit models to determin-

istic global optimisation algorithms. Thus, reduced surrogate model based near global so-

lutions may be computed efficiently. Uncertainty is one of the most challenging difficulties

to intelligently control in practical large-scale systems. Model predictive control could deal

with process constraints and introduce feedback to update the state(s) of dynamic models

and eliminate some degree of uncertainties such as disturbance noise and state estimation er-

rors. Significant parametric uncertainty of process models would be addressed using popular

polynomial chaos expansion. However, model unavailability and expensive system evaluation

issues would still prevent the (global) optimisation within the recursive control procedures.

The previous reduced surrogate model based approximate global optimisation approach could

be employed to overcome these problems. Thus a robust model predictive control strategy

could be built for large-scale systems under uncertainty.

Although polynomial chaos expansion could efficiently deal with parametric uncertainty,

it requires a prior knowledge about the type of uncertainty distributions and may be not accu-

rate enough for complex systems. While traditional sample-based uncertainty quantification

algorithms such as Monte Carlo algorithm and its extensions could cope with the general

uncertainty distributions of complex systems, but they are extremely expensive for large-

scale systems. The ”Equation-free” approach, a projective model reduction technique, could

significantly accelerate system computations through black-box dynamic systems. A combi-

nation of Monte Carlo methods and the ”Equation -free” technique may efficiently perform

uncertainty quantification tasks in terms of computational cost and accuracy.

Even with efficient uncertainty quantification algorithms, large-scale system under uncer-

tainty is still expensive. Globally optimising these expensive systems is challenging. Accu-

rate, reduced surrogate model based global optimisation needs a large number of samples

to construct simple but accurate models, leading to huge computations for the cases with

more independent variables. The common local optimisation algorithms with multiple start
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points may be a possible choice. However, derivatives require expensive system evaluations.

Furthermore, large-scale systems under uncertainty may exploit strong systems noises, re-

sulting in unreliable derivatives and tortuous optimisation processes. Bayesian optimisation

approach may globally find a good optimisation solution for large-scale systems under uncer-

tainty with the limited number of system evaluations, avoiding the derivatives. The Bayesian

robust optimisation approach, together with the previous ”Equation-free” Monte Carlo algo-

rithm, may efficiently deal with large-scale system under uncertainty.

1.3 Research contributions and thesis structure

Motivated by the high demand on efficient optimisation, control and uncertainty quan-

tification algorithms for distributed parameter systems, a number of scientific contributions

are presented in the upcoming sections of this thesis. These contributions are presented in a

’journal format’ as a series of academic papers published or submitted for publication in peer

reviewed scientific journals.

1.3.1 Contributions

1. This work provides a double model reduction based global optimisation framework for

steady state distributed parameter systems. Initially, a combination of principle component

analysis (PCA) and artificial neural networks (ANNs) is employed to construct accurate re-

duction models for large-scale steady-state systems. In order to further improve the computa-

tional efficiency, two reformulation approaches are used for the reduction models. One way

is to use piecewise linear affine (PWA) to approximate the high nonlinear hyperbolic tan-

gent functions in artificial neural networks. Another way is to reformulate the ReLU based

deep ANNs into MILP problems. Both of the reformulations could significantly improve the

computational speed.

M. Tao, P. Petsagkourakis, J. Li, C. Theodoropoulos,

Model reduction based global optimisation for large-scale steady state nonlinear systems

for Distributed Parameter Systems,

Submitted to AICHE J, Under Review
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2. Next, this contribution still utilises model reduction techniques but considers more

complex dynamic control with parametric uncertainty. Firstly, polynomial chaos expansions

(PCE) are introduced to propagate the parametric uncertainty onto quantities of interest. Then

model construction techniques, proper orthogonal decomposition (POD) and recurrent neu-

ral networks (RNNs), are employed to capture the high-dimensional dynamics of statistics of

the computed quantities of interest, using a systematic data collection from the original sim-

ulator. Finally, the resulting dynamic models for the statistic moments/probabilistic bounds

would be adopted within the model predictive control (MPC) framework for robust control

of distributed parameter systems.

M. Tao, I. Zacharopoulos, C. Theodoropoulos,

Robust model predictive control for large-scale distributed parameter systems under un-

certainty,

To be submitted.

3. This work provides a novel equation-free Monte Carlo uncertainty propagation method-

ology for larges-scale steady-state distributed parameter systems. The key idea is to employ

equation-free techniques to accelerate the computations of a dynamic simulator to steady

states. Compared with popular polynomial chaos expansion, the computational accuracy

could be improved while the computational speed is faster than the traditional Monte Carlo

method. The performance of the proposed equation-free uncertainty propagation algorithms

are demonstrated through an illustrative tubular reactor, the typical FitzHugh-Naguma model

and a stochastic catalytic surface reaction case.

M. Tao, C. Theodoropoulos,

Uncertainty quantification for distributed parameter systems: deterministic and stochastic

cases,

To be submitted.

4. Next, this contribution presents a robust optimisation framework using our previous

uncertainty propagation algorithms. The equation-free uncertainty quantification method

would be employed to efficiently address the parametric uncertainty. However, large-scale

systems under uncertainty are likely to exploit unpredictable noise, which prevent the usage
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of traditional gradient based local search methods. Here, a Kriging model based Bayesian op-

timisation strategy is adopted to globally find the optima of large-scale distributed parameter

systems under uncertainty.

M. Tao, C. Theodoropoulos,

Robust steady-state optimisation for large-scale distributed parameter systems with uncer-

tainty,

To be submitted.

The journal format is adopted in this thesis, where Chapter 2 gives the literature review

and Chapters 3 - 6 include: 1) a brief introduction to the contributions of authors, 2) the paper

written in a journal format attached with any possible supplementary information. Finally,

both the conclusions of this finished project and incoming future work are summarised in the

last chapter.
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Chapter 2

Literature review

Many practical engineering and science problems can be formulated into optimisation

problems, made of design variable (s), objective(s) and constraint(s) (Biegler et al., 1997;

R. Smith, 2005). Optimisation aims to search the extreme points of an objective function

under a number of constraints in a domain of design variables. Specifically in chemical and

biochemical engineering, the objective functions are related to obtaining optimal conditions

for process economic and operation performance under the constraints of physical laws and

safety requirements. The general optimisation problem can be formulated as follows (Edger

& Himmelblau, 2001; Floudas, 1995):

min
d

G(d)

s.t.

f(d) = 0

g(d) ≤ 0

dL ≤ d ≤ dU

(2.1)

where G : RNd → R is the objective function, f : RNd → R are the equality constraints

while g : RNd → R are the inequality constraints. d ∈ RNd are the design variables within

the low and upper bounds of [dL,dU ]. The properties of the design variables d decide the

type of mathematical programming to be used. If design variables d contain integer vari-

ables, the above formulation belongs to mixed integer programming (MIP) problems. Gen-

eral MIP problems are NP-hard problems for global optimisation, needing efficient math-

ematical techniques such as branch and bound algorithms. If design variables d include

continuous variables within nonlinear terms, the above problems are classified as nonlinear
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programming (NLP) ones. Furthermore, the related nonlinear parts are often non-convex

for large-scale practical problems, which would also cause the difficulty of identifying the

global optimal solution for most existing local optimisation algorithms. If no integer vari-

able or nonlinear term exists in the optimisation formulation, the above problems are simply

linear programming (LP). Conversely, the problems are the complex mixed integer nonlinear

programming (MINLP) if the above formulation involves both integer variables and non-

linear terms. Other important classifications include steady state and dynamic optimisation

problems, where steady state optimisation problems are formulated using steady state system

models while dynamic optimisation problems would involve optimisation on the transition

behaviours of dynamic systems. In addition, more details about dynamic optimisation could

be seen in the subsequent optimal control parts.

This work focuses on NLP-based global optimisation of steady state behaviours, optimisation-

based model predictive control strategies of dynamic behaviours and uncertainty quantifica-

tion of steady state behaviours, especially for partial differential equations (PDEs) based dis-

tributed parameter systems. Finite approximation transforms the original steady-state PDEs

into large-scale algebraic equations while large-scale ODEs would be generated from dy-

namic PDEs. Both of large-scale algebraic equations and ODEs could result in expensive

system evaluations, scalably increasing the computations on upper-level optimisation, con-

trol and uncertainty quantification tasks.

In this Chapter, a comprehensive review and discussion is given about optimisation, con-

trol and uncertainty quantification technologies of large-scale distributed parameter systems.

Section 2.1 presents an overview of general optimisation and control methods, then Sec-

tion 2.2 discusses uncertainty quantification methods. Next, Section 2.3 describes the ro-

bust/stochastic optimization and control approaches under uncertainty. Then general model

reduction techniques are provided that can deal with large-scale computations. Finally, a sum-

mary is presented for optimisation and control of large-scale distributed parameter systems

under uncertainty.
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2.1 Optimisation and control

The above large-scale nonlinear optimisation problem Eq.(2.1) can be solved efficiently by

advanced model-based computational methodologies both for local and global optimisation.

Popular local optimisation approaches (Nocedal & Wright, 2006) for large-scale con-

strained optimization are generally gradient-based search ways, containing sequential quadratic

programming (SQP) (Boggs & Tolle, 1989), penalty methods (Di Pillo & Grippo, 1989) and

interior point (Wright, 1997) methodologies. The idea of SQP is to solve a set of quadratic

programmings (QP) to approximate the Karush-Kuhn-Tucker (KKT) first necessary optimal

conditions (Gordon & Tibshirani, 2012). Exploiting Newton-like methods, SQP optimization

methods can achieve fast convergence rates (Boggs & Tolle, 1989). One of the successful

SQP variants is reduced space SQP (rSQP) or reduced Hessian method (Byrd & Nocedal,

1990). rSQP method was initially designed for large-scale equality-constrained optimization

problems with a small number of degrees of freedom. The computational cost could be sig-

nificantly reduced through projecting the iteration space onto a small subspace of the degrees

of freedom.

Penalty methods aim to transform the original constrained optimisation problems into un-

constrained ones. A penalty multiplier is introduced to construct auxiliary functions (Bert-

sekas, 1976). In this way, complex constrained optimisation issues could be dealt with by

advanced unconstrained optimisation algorithms (McKeown et al., 1990). However, new is-

sues such as ill-conditioned models can arise (Dussault, 1995). Sequential penalty algorithms

were developed to overcome this issue (Gould, 1989). Interior point methods perform sim-

ilar reformulation tasks, dropping the large-scale constraints and adding more terms to the

objective functions (Wright, 1997). Sequential decreasing barrier parameters are adopted to

force the computations toward the optimal points. Highly efficient interior point methods

contribute to the open-source software IPOPT (Wächter et al., 2002).

Local search optimisation methods have made great progress in both theoretical research

and engineering practices, however they can be easily stuck in local optima, especially for high

nonlinear and non-convex problems. Global optimization strategies have been developed to

overcome this barrier, including stochastic search methods (Spall, 2005) and deterministic

global optimisation techniques (Floudas, 2013).
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Stochastic search methods such as simulated annealing (Van Laarhoven & Aarts, 1987),

genetic algorithms (Holland, 1992) and particle swarm optimization (Kennedy & Eberhart,

1995), can globally explore the feasible solution space avoiding local optima. Simulated an-

nealing (SA) approach borrows heating and cooling rules from material annealing processes.

Motivated by the metropolis algorithm for simulating the annealing of solids, SA algorithm

was developed for combinatorial optimization problems (Xu et al., 2007). SA-based algo-

rithms have been applied widely in engineering and science areas including process network

design (Dolan et al., 1989), electronic energy (Tsoo et al., 1990) and job scheduling (Leite

& Topping, 1999). The stochastic approach is more likely to skip the neighborhood of local

optima, and globally search the feasible space to reach good solutions (Chibante, 2010). In-

spired by evolutionary rules, such as inheritance, selection, crossover and mutation from the

biological gene evolution (Vose, 1999), genetic algorithms (GA) perform heuristic searches

for the optimisation problems such as assembly sequences (Marian et al., 2006), rolling sys-

tem design (Oduguwa & Roy, 2002) and parameter estimation (Q. Wang, 1997). Their main

advantages are that they are inherently stochastic, easily parallelizable, and suitable for multi-

modal problems (Mühlenbein et al., 1991). Another popular stochastic search optimization

algorithm is particle swarm optimisation (PSO) (Mirjalili, 2019), which is motivated by the

cooperative social behaviours of animals such as birds and bees (Krink et al., 2002). Through

introducing the concepts of momentum, particle’ position, velocity and current best solution,

PSO search can accelerate the global search toward the minima (Lazinica, 2009). In (Li et

al., 2015), an improved nonlinear dynamic adaptive PSO algorithm has been developed for

producing energy-aware clusters with selection of optimal cluster heads, where a new cluster

head competition mechanism was introduced. The computational results showed that the pro-

posed novel algorithm could significantly increase the network lifespan and reduce the energy

consumption. More successful engineering and science application cases can be seen in the

literature including distillation column (Al-Dunainawi & Abbod, 2016), predictive surface

roughness (Noor et al., 2011) and heat exchange network (Silva et al., 2009). Such stochas-

tic search algorithms have been used to solve numerous optimisation problems. However,

these algorithms need a lot of computational evaluations, which lead to really slow compu-

tational speed for large-scale systems. Moreover, these stochastic approaches can often find

good optimisation solutions, but offer no theoretical guarantees on the global optimality of

the computed solutions.
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Deterministic global optimization methods are capable of computing global optima util-

ising branch-and-bound techniques (Lawler & Wood, 1966; Mitten, 1970). Rigorous deter-

ministic branch-and-bound global optimisation algorithms have been studied for small and/or

medium scale problems. In the paper (Adjiman et al., 1998), the α-based branch and bound

(αBB) global optimisation algorithm was first proposed based on the rigorous convex un-

derestimator (Adjiman & Floudas, 1996). The key idea is to construct the concave/convex

relaxations for the general twice-differentiable non-convex terms in the original problems to

iteratively compute the convergent upper-lower bounds for the global optimum. The αBB

algorithm offers a rigorous theoretical guarantee on the global optimum for the large class of

twice-differentiable NLPs. Later, αBB algorithms were successfully applied in commercial

global optimisation software such as ANTIGONE (Misener & Floudas, 2014). Extensions

of αBB algorithms were also studied. For example, an error-in-variables approach was de-

veloped and global optimisation algorithms were proposed for parameter estimation and data

reconciliation of differential-algebraic models using the principles of the αBB relaxation (Es-

posito & Floudas, 1998).

In the literature (Tawarmalani & Sahinidis, 2005), a polyhedral branch-and-cut approach

was presented to construct tight nonlinear convex relaxations in a global optimisation frame-

work. Advanced automatic identification and polyhedral cutting plane methods improved the

computational efficiency by several orders of magnitude. The branch-and-cut algorithm con-

tributes to the state-of-art global optimisation solver BARON (Sahinidis, 1996). Its strong

capability of computing global optima contributes a lot to engineering and science applica-

tions such as heat exchange networks (S. Y. Kim & Bagajewicz, 2017) and gas network op-

eration (Puranik et al., 2016), and even mathematical computational methods. For instance,

global optimisation using BARON was employed to construct new computational formula-

tions of classical Runge-Kutta methods (Ketcheson et al., 2009; Ruuth, 2006). In (Mitsos et

al., 2009), a McCormick-based relaxation algorithm was proposed to compute the lower and

upper bounds of implicit functions, which was then put in a spatial branch and bound (SBB)

framework to solve a simple ODE-based dynamic optimisation problem. In (Najman & Mit-

sos, 2019), convex/concave relaxations of implicit functions were constructed using tighter

McCormick-based relaxations, employing sub-gradient progagation techniques to compute

the simple affine underestimators and overestimators of factorable functions. The tighter re-
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laxation could significantly improve the tightness of lower-upper bound gaps and decrease the

computational time in a reduced space branch and bound framework. In the paper (Hasan,

2018), an edge-concave underestimator or the linear facets of a convex envelope was used to

compute lower bounds in the SBB framework through the preconditioning of bounds of the

Hessian matrix. Then this novel computational approach for deterministic global optima was

applied to a challenging optimisation problem with an embedded system of ordinary differen-

tial equations (Bajaj & Hasan, 2020). The time dependent bounds on the state variables and

diagonal elements of the Hessian matrix were computed through solving an auxiliary set of

ordinary differential equations using the formulation of differential inequalities, which pro-

vides an efficient computational approach for low bounds in the branch and bound framework.

A more comprehensive review of deterministic global optimisation algorithms and their ap-

plications can be seen in (Floudas & Gounaris, 2009). However, most of these research works

are limited to small-scale application problems. The above algorithms are computationally

intensive for large-scale systems due to the requirements for multiple evaluations of the lower

bounds of the optimisation problems (Houska & Chachuat, 2019). Moreover, most large-

scale optimisation problems, especially PDE-based optimisation problems are black or grey

box, which are characterized by a total or partial lack of explicit mathematical equations de-

scribing the constraints and/or the objective of the problem(Boukouvala & Floudas, 2017).

Black/grey box problems cover various applications which involve expensive simulations,

input-output data, legacy codes or phenomena without physics-based equations (Boukouvala

& Floudas, 2017). Closed-form mathematical equations are unavailable for these black/grey

box problems, implying that direct model-based techniques such as branch and bound algo-

rithms are not applicable.

Surrogate models provide an alternative tool to account for the unknown parts of black

or grey box systems. In (Meyer et al., 2002), smart sampling was employed to construct an

explicit interpolation blending function as a surrogate model in a deterministic global op-

timization algorithm. The designed interpolants provide explicit function formulations and

allow valid convex/concave estimators, which ensures the ε -global optimality for the surro-

gate problems. In (Davis & Ierapetritou, 2009), a Kriging-based branch and bound frame-

work was proposed for mixed-integer nonlinear programming (MINLP), where a branch and

bound computation route was utilised to deal with integers while surrogate Kriging models
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were employed for sub-NLP problems with black box parts and process noise. The proposed

algorithm could efficiently solve small process synthesis examples in terms of number of func-

tion evaluations and computational time to find the global optimum. In (S. H. Kim & Bouk-

ouvala, 2020), the one-hot encoding technique was introduced to deal with mixed-variable

problems, where neural networks and Gaussian process were used as surrogate models. The

computational results showed that one-hot encoding could lead to more accurate and robust

mixed-variable surrogate models for surrogate-based optimisation compared with the tradi-

tional relaxation based surrogate approach. In (Boukouvala et al., 2017), a novel global opti-

mization framework was presented for general grey-box constrained problems, especially for

PDE-based problems. A large number of faster low-fidelity models were employed to select

representative samples. Interpolating and non-interpolating functions, including quadratic,

signomial and Kriging models, were used to formulate the whole constrained problems, which

would be globally optimised through deterministic optimization solvers.

Artificial neural networks (ANN) provide one of the most efficient ways to construct sur-

rogate models, due to both successful practices and proven theoretical supports that a feed-

forward neural network with one single layer is sufficient to represent any smooth function

(Hornik et al., 1989). However, global optimisation of ANN models is challenging due to their

complex structures. In (J. D. Smith et al., 2013), small-scale ANN models (1 hidden layer,

3 neurons) were constructed and optimized globally by the advanced global solver BARON

(Tawarmalani & Sahinidis, 2005). In (Schweidtmann & Mitsos, 2019), concave/convex en-

velopes were first constructed for the highly non-convex tangent activation function, which

were then embedded in a reduced-space spatial branch and bound framework. The reduced

space computational framework projects the iteration space of non-convex variables onto

the subspace of dependent variables, resulting in small-size sub-problems and, consequently,

in significant computational savings. Then the computational framework was successfully

applied to globally optimise ANN-based grey box models (Schweidtmann et al., 2019). In

(Grimstad & Andersson, 2019), advances in the machine learning community, including deep

neural network structures and low-complex ReLU activation functions, were adopted to for-

mulate the deep rectifier neural network into a mixed integer linear programming (MILP)

problem, which was solved by a fast CPLEX optimiser. In (Keßler et al., 2019), a small-

size Kriging model was globally optimised by BARON. In (Schweidtmann et al., 2021),
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concave/convex envelopes of common covariance functions and tight relaxations of an ac-

quisition functions were presented, which were then used in a reduced space optimisation

framework. The reduced space computational framework achieved significant computation

reduction for global optimisation.

Recent developments in data science, have made more progress on the research about

global optimisation of hybrid data-driven models or grey-box models. In (Boukouvala &

Floudas, 2017), a general framework for the global optimisation of non-linear constrained

grey-box problems was proposed. Variable selection, bounds tightening and constrained sam-

pling techniques were integrated to reconstruct accurate surrogate models for unknown parts

of systems, which were then globally optimised using advanced global solvers. The compu-

tational results show the competitive performance of the methodology compared to existing

derivative-free optimization algorithms. In (Demirhan et al., 2020), an integrated data-driven

modeling and global optimization-based multi-period nonlinear framework was presented for

real-life plants, which can significantly improve their performance.

Optimisation techniques have successfully been combined with control. Optimal control

seeks the best control policy for some performance criterion (minimize cost or maximize

benefits) with given constraints such as physical process laws. For example, proper control

policy is needed to adjust the dynamic paths of batch or semi-batch processes related to bio-

production to reach high conversions and satisfy safety and process constraints. The general

optimal control problem can be defined as follows (Vinter & Vinter, 2010):

min
λ(t)

∫ tH

t0

σ(y(tH)) + F1(z(t),y(t),λ(t), t) dt

s.t.

ẏ(t) = f1(y,λ, t)

z = g1(y,λ, t)

g2(z,y,λ, t) ≤ 0

y(t0) = y0

t ∈ [t0, tH ]

(2.2)

where λ(t) denotes the control inputs, y(t) the state variables and z(t) the measurement

variables. σ is the terminate part of the objective cost and F1 is the other cost. The constraints
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include the system equations f1, the state estimation g1and others inequality constraints g2

such as bound constraints for state, manipulated and measurement variables. The initial state

y0 and the operation time period [t0, tH ] are also given.

One of the most successful practices to solve the above optimal control problems is the

maximum principle, developed by Pontryagin and his coworkers (Pontryagin, 1987). This

principle could be easily seen as an extension of the calculus of variations (Kamien & Schwartz,

2012) for the above problems Eq.(2.2), which is achieved through the additional necessary

conditions for optimality of a Hamiltonian equation. A wide range of methodologies have

been exploited to solve the optimal control problem (OCPs) as dynamic optimisation formu-

lations. The general approaches include the single shooting method (Vassiliadis et al., 1994),

orthogonal collocation (Biegler, 1984) and multiple shooting approaches (Morrison et al.,

1962). All the three methods aim to transform the original dynamic optimisation in infinite

space into NLP problems. These methods have been widely applied in commercial software

such as gPROMs (Furlonge et al., 1999). More details can be found in the book (Biegler,

2010).

In practice, uncertainty is present including model-plant mismatch and process distur-

bance, which can make the system operate sub-optimally or worse. Feedback control al-

gorithms provide efficient tools to deal with it, such as model predictive control (Garcia et

al., 1989) and re-optimisation strategies (Xiong & Zhang, 2005). Model predictive control

(MPC) employs the feedback as a compensate of process uncertainty and solves a set of dy-

namic optimisation problems (Rawlings et al., 2017). MPC becomes more and more popular

in industry since the availability of highly accurate process models.

Most existing optimal control approaches only focus on satisfying the local optimal condi-

tions. However, global optima issues could arise due to the highly non-convex process models

within nonlinear model predictive control (NMPC). Additionally, local solutions may result

in unexpected system responses or failure of the control policy for the purpose of NMPC.

Stochastic approaches aim to obtain global optimal control of high complex systems but can-

not provide guarantees on the rigorous global optimality of the computational results. Fortu-

nately, deterministic global optimal control methods can provide a promising solution.

In (Long et al., (2004,2006)), a globally optimal nonlinear model predictive control algo-
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rithm was presented for small scale nonlinear dynamic systems. A combination of convex

relaxation and branch and bound framework was employed to compute the global solutions

of real-time optimisation. The deterministic global algorithm was shown to significantly im-

prove the poor performance caused by the suboptimal control policy computed by a local

solver based controller.

In (Čižniar et al., 2008), a constrained global nonlinear predictive control algorithm was

designed. The differential-algebraic equation was discretised into NLP problems, which was

then utilised by a traditional spatial branch and bound computational framework. The compu-

tational algorithm could find the global optimum for the closed-loop control of small dynamic

systems and improve the control performance.

In (Wang et al., 2017), a global nonlinear model predictive control algorithm was ex-

ploited for highly nonlinear processes with multiple operating conditions. The normalized

multi-parametric disaggregation technique (Teles et al., 2013) was utilised to compute the

upper and lower bounds in a spatial branch and bound global optimisation framework. In

addition, an optimisation-based bound tightening technique was adopted to speed up the ex-

pensive computations and improve the computational robustness. Controller performance

was improved in several small dynamic systems through the proposed global nonlinear con-

trol scheme, compared with a local optimisation solver-based control policy.

In (Caspari et al., 2019), a deterministic global optimisation scheme was put into an eco-

nomic nonlinear model predictive controller of a flexible air separation process. The perfor-

mance of the closed-loop controller using the global optimisation solver BARON was similar

to the one using a local optimisation solver although BARON was much more computation-

ally demanding.

Meanwhile, surrogate model-based global nonlinear predictive control strategies provide

alternatives to improve the performance of systems’ behaviour. In (Degachi et al., 2015), the

original system model was replaced by surrogate polynomial functions , where the polynomial

coefficients were computed through neural networks. Then the global optimisation method

for geometric programming was employed in recursive control loops. The proposed global

NMPC method efficiently achieved point tracking and disturbance rejection with acceptable

computation burden.
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In (Lu et al., 2020), Bayesian optimization techniques were employed for an NMPC con-

trol scheme. A Kriging surrogate model was utilised to build the input/output black-box

relationship between the closed-loop controller performance and the tuning parameters. The

exploring and exploiting strategies could compute the optimum tuning parameter values with

acceptable computational costs.

In (Doncevic et al., 2020), recurrent neural networks (RNNs) were adopted to construct

highly accurate surrogates for the complex dynamic systems. Then a reduced-space formu-

lation was built for the RNN based NMPC controller. The resulting optimisation problems

were solved by the global optimisation solver. The global nonlinear model predictive control

could efficiently avoid multiple local solutions. To further reduce the computational costs,

two alternatives were adopted: One was to exploit additional state variables as decision vari-

ables to the global optimizer while the other one was to replace the traditional RNN surrogate

model with a neural multi-models. The improvements could achieve computation reduction

by one order of magnitude.

2.2 Uncertainty quantification

In complex process systems, uncertainty can arise due to a wide range of reasons (Sulli-

van, 2015). One such factor may be the inherent uncertainty of the system, which may be

irreducible aleatoric uncertainty, including measurement noise and varying quantum effects.

Aleatoric uncertainty cannot be avoided, which means that computational designs should

take account of it. Another classification can be epistemic uncertainty, which is caused by

insufficient knowledge about the processes, such as unknown model parameters. This uncer-

tainty may be reduced through more computational and/or experimental research (Kramer,

1999). Both aleatoric and epistemic uncertainties can result in mismatch between model-

based simulation and experiment-based observations. In particular, uncertainty can greatly

impact computational results and may lead to worse decision-making for industrial produc-

tion (Chambers & Quiggin, 2000). In order to make smart decisions for industrial processes,

efficient uncertainty quantification methods should be used to account for the impact of un-

certainty, which can speed up expensive robust optimization strategies for large-scale systems

with uncertainty.
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Uncertainty quantification aims to measure the impact of uncertainty on quantities of in-

terest (Ghanem et al., 2017). Considering a simple situation where models of processes are

available, explicit analytical solutions may be obtained. However, process models are mostly

black-box for large-scale practical cases. Even if they are open to users, high complexity of

models makes analytical solutions almost impossible to obtain. This way, uncertainty prop-

agation techniques are more practical by using black-box system models for a large number

of realisations, approximating the distribution of uncertainty. The large volume of propa-

gated results can be then used to calculate distributions of quantities of interest. Typically,

numerous samples from standard Monte Carlo methods can accurately represent distribu-

tions of uncertainty, leading to highly accurate propagated results. However, so many sample

based evaluations of large-scale systems would be computationally intensive (Nagy & Braatz,

2007), especially for online optimisation and control (Bansal et al., 2000). These computa-

tional challenges drive the development of fast-computing methods.

One alternative approach is to exploit efficient sampling ideas such as the Latin hyper-

cube sampling method (Florian, 1992), reducing the number of sample points while pre-

serving computational accuracy. In (Dunn et al., 2011), turbulence model coefficients and

parameters in turbulent flows were obtained through experimental investigation subject to

measurement uncertainty, which was then quantified using a fast Latin hypercube sampling

method. Computational evaluations of the coefficient uncertainty significantly improve the

robustness of fluid flow.

To reduce the variance from the standard Monte Carlo estimator, Multilevel Monte Carlo

(MLMC) method (Giles, 2008), an efficient sampling approach, utilizes discretisation with

different step values, leading to much fewer samples compared to a fine level of discreti-

sation. In (Icardi et al., 2016), macroscopic effective parameters such as permeability, ef-

fective diffusivity and hydrodynamic dispersion suffer significant errors and uncertainties in

pore-scale and Digital Rock Physics (DRP) problems. The MLMC method was utilised to

reduce the computational cost needed for computing accurate statistics of effective parame-

ters and other quantities of interest, which was the first practice of uncertainty quantification

in pore-scale physics and simulation. Moreover, MLMC method has been used an efficient

uncertainty quantification tool across surfactant/polymer enhanced-oil-recovery (Alkhatib &

Babaei, 2016), wastewater treatment and distillation (Kimaev & Ricardez-Sandoval, 2018),
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and biochemical engineering (D. F. Anderson & Higham, 2012) applications.

An alternative approach is to construct efficient low-order closed-form models to replace

the expensive system models for the Monte Carlo method, including power series expansion

(PSE) and polynomial chaos expansion (PCE). Power series expansion, as a perturbation

method, utilises sensitivity information to build the relationship between output observations

and uncertain parameters. The low-order sensitivity information only needs a small number

of system simulations. PSE has been widely employed as a popular uncertainty quantifica-

tion method. In (Ma & Braatz, 2001), the coefficients of growth rate in a multidimensional

crystallisation process suffered irreducible uncertainty, which was accounted for by the PSE

method to compute the worst-case scenario. The PSE-based worst-case computation signif-

icantly enhanced the robust analysis of the batch multidimensional crystallization process.

In (Chaffart et al., 2016), uncertainty in kinetic parameters of spatially heterogeneous multi-

scale catalytic reaction system were considered, where PSE method was applied to efficiently

propagate parametric uncertainty throughout the large-scale systems. PSE-based uncertainty

analysis unveiled the substantial effect of uncertainty in reaction rates on the reactor perfor-

mance, which contributed to the robust operations of the catalytic reaction systems. However,

the sensitivities of PSE-based uncertainty quantification are prone to the size of the perturba-

tion step and usually need costly high-order sensitivities to preserve computational accuracy

for strongly nonlinear processes (Nagy & Braatz, 2007).

Polynomial chaos expansion, firstly introduced by (Wiener, 1938), represents the observ-

able variables with a series of polynomials in uncertain parameters, and then approximates

the exact representation using an expansion of finite order (Eldred, 2009). Low-order PCE

models, with the coefficients of polynomials calculated through the collocation method and

Galerkin projection, can efficiently be utilised as an uncertainty quantification tool in process

industry (Chaffart & Ricardez-Sandoval, 2018). In (Chaffart & Ricardez-Sandoval, 2017),

distributional uncertainty was propagated through the multi-scale reactor model using the

PCE method. Efficient PCE-based uncertainty propagation techniques provide advantageous

preconditions for further robust dynamic optimisation. In (Bradford & Imsland, 2019), PCE

method was employed to propagate parametric uncertainty considering the additive system

disturbances. The PCE-based control strategies successfully improved the economic bene-

fits of a semi-batch polymerization process. However, PCE requires prior knowledge of the
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distributions of parametric uncertainty, because “suitable” orthogonal polynomials need to

be chosen corresponding to the uncertainty distribution, which significantly affects compu-

tational accuracy (Xiu, 2010).

2.3 Optimisation and control under uncertainty

The previous subsection introduced uncertainties in complex systems and uncertainty

quantification techniques, which provide essential tools for further optimisation and control

under uncertainty. The aim of optimisation and control of uncertain systems is to take account

of substantial effects due to uncertainty and make smart decisions for process systems.

There are two approaches to deal with optimisation and control under uncertainty. One is

robust optimisation and control. Here the word ”robust” means the optimisation and control

procedure would be made for the performance of worst-case system uncertainties. Although

the robust approach can rigorously satisfy system constraint requirements, the resulting op-

timisation decisions and control laws are conservative for many practical applications, as the

worst-case uncertainties usually have a really low probability of occurrence (Bertsimas et al.,

2011; Bhattacharyya, 2017). An alternative approach is stochastic optimisation and control

under uncertainty (Lewis et al., 2017). The stochastic approach does not need to take account

of all uncertain scenarios, where only some randomised finite sampling based cases are con-

sidered, hence exploiting the statistic description of uncertainties. In stochastic schemes, less

conservative chance requirements are utilized to replace the worst-case constraints, which

may significantly improve the performance of systems and reduce the computational costs.

Moreover, efficient uncertainty quantification strategies such as power series and polynomial

chaos expansion would be employed to speed up the computational requirements for large-

scale complex systems.

Lots of theoretical and practical studies have been performed for optimisation under un-

certainty. In (Rasoulian & Ricardez-Sandoval, 2014), a robust optimisation framework was

firstly proposed for multi-scale process systems, where partial differential equations describe

the macro-scale phenomena while a high-order lattice-based kinetic Monte Carlo simulator

captures the thin film micro-structure dynamics. Power series expansion was employed to per-

form model uncertainty propagation due to parametric uncertainty of the bulk mole fractions
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(boundary conditions) of the multi-scale model, which could result in irreducible effects of the

roughness and thickness of the final thin film productions. Second order PSE method could

accurately compute the lower and upper probabilistic bounds of output thin film thickness and

roughness, which made further optimisation procedure possible. During the dynamic opti-

misation of the multi-scale processes, the objective was to maximise the lowest expected thin

film thickness at the end of the batch deposition process subject to the parametric uncertainty,

while expected surface roughness and minimum growth rate constraints were considered at

the end of the batch process. Through adaptively adjusting the substrate temperature of the

multi-scale deposition process, the thin film thickness of the end batch point could be min-

imised, while the resulting growth rate and surface roughness requirements were robustly

guaranteed compared with optimisation under the nominal parameter values.

In (Li & Floudas, 2014), an optimal scenario reduction stochastic optimisation method

was presented for production planning problems with various uncertain parameters such as

selling price, production cost, storage cost and production capacity and demand. To reduce

the challenging computations due to the large number of scenarios derived from the various

unknowns, a small number of representative realisations were selected to capture the char-

acteristics of the scenarios as much as possible, which was formulated into a mixed integer

linear optimization problem, minimizing the probabilistic distance, the best, worst and ex-

pected performances of original scenario distributions and selected distributions. The first

production planning examples show that the proposed stochastic approaches could consis-

tently lead to high similarity between the original distribution and the reduced distribution.

Meanwhile, the proposed algorithm also exhibits smaller errors in terms of the best, expected,

and worst performance. The second planning examples show that the proposed approach pro-

duces better output performance than heuristic methods but compromises more computation

time because the objective function includes the output performances.

In (Zheng et al., 2020), a robust economic control framework was presented for dynamic

metabolic flux systems, which assumes that biological organisms could efficiently allocate

resources to satisfy a specific biological objective such as growth rate. As the core part of

the computational framework, a tree-based uncertainty propagation approach was proposed

to account for the worst case of each active set where each branch of the tree corresponds to

an active set of constraints with a relative probability according to the relative hypervolume
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occupied by the active set solutions in the parameter space. A linear dynamic flux balance

model was built to describe the behavior of the dynamic response of the bioprocess at each

time interval with uncertain parameters such as media composition, inoculum composition

and mass transfer variations. Then the robust control problem was reformulated into bi-level

optimization problem, with the outer level EMPC optimisation and the inner level robust

linear programming at each time interval for uncertain model parameters. The computational

case studies showed that the proposed robust controller was much faster than the traditional

Monte Carlo approach. Furthermore, the terminal biomass productivity could be improved

compared with the nominal control strategy.

In (Schwarm & Nikolaou, 1999), a stochastic model predictive control framework was

proposed using the process output constraints, formulating them as chance constraints em-

ploying the uncertain system models. The resulting successive online convex optimisation

problems could be efficiently solved with the standard model predictive control procedure.

The proposed algorithm was tested in a continuous-time high-purity distillation column case

study, where the two output stream compositions were controlled by adjusting the reflux ra-

tio and boilup rate. Different levels of chance constraints were incorporated into the model

predictive control framework. The computational results showed that the chance constraints

could enhance the robustness of performance of control systems compared with the standard

model predictive control strategy.

2.4 Model reduction

As previous sections discussed, optimisation, control and uncertainty quantification oper-

ations are really time consuming for large-scale systems. Current computational case studies

still stay at the level of small-size and/or medium-size problems. To deal with the computa-

tional challenges, efficient computational strategies need to be developed.

A promising way to deal with large-scale systems is to use projective model order re-

duction methods, which reduce the complexity of detailed models but preserve their main

input-output features (Schilders et al., 2008). Originally developed in the area of systems and

control theory, model order reduction approaches aim to quickly capture the dominant struc-

tures of dynamic systems, with sufficient accuracy to represent the original detailed models.
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Then model reduction techniques were adopted by scholars in other fields. There is no uni-

fied classification for model reduction techniques, which are sometimes divided into linear

model reduction approaches and nonlinear model reduction techniques. Here, several pop-

ular model reduction techniques are reviewed, such as inertial manifold methods (Jones et

al., 1995), proper orthogonal decomposition (Willcox & Peraire, 2002) and the equation-

free methods (Kevrekidis et al., 2004). In most situations, the model reduction techniques

would be combined into the optimisation, control and uncertainty quantification frameworks

for large-scale systems.

Inertial manifold method is one of popular model reduction techniques based on the in-

variant finite-dimensional Lipschitz manifold, which attracts every trajectory exponentially

(Christofides & Daoutidis, 1997). Explicit form of inertial manifold can only be obtained

for a specific class of PDEs. For more general and complex systems, approximated inertial

manifolds are employed instead of the standard inertial manifold methods. In (Christofides

& Daoutidis, 1997), a computational methodology for output feedback controllers was pro-

posed for large-scale distributed systems, employing both approximate inertial manifolds and

Galerkin methods. The computational framework for constructing low-dimensional inertial

manifolds could capture the characteristics of the original PDEs with desirable accuracy. In

(Armaou & Christofides, 2002), a model reduction based dynamic optimisation framework

was presented, where the empirical eigenfunctions were applied as global basis functions, and

a combination of the method of weighted residuals with approximate inertial manifolds was

employed. The diffusion-reaction application was used to validate the computational frame-

work. Only three low-dimensional inertial manifolds could accurate represent the large-scale

dynamics. The Kuramoto–Sivashinsky equation case study shows that the low-dimensional

approximate inertial manifolds could capture the original high-dimensional process responses

except for the special initial conditions where the high order modes are excited and exceed

the capability of low-order approximations.

Probably, the most popular model reduction technique is Karhunen-Loeve decomposition,

also termed principal component analysis (PCA) or proper orthogonal decomposition (POD).

As an efficient dimensionality reduction technique in data science (Hinton & Salakhutdinov,

2006), PCA has been widely applied in the unsupervised machine learning area. The idea

of PCA is to use the linear low-dimensional subspace to represent the high dimensional data
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sets. Generally, POD would be combined together with projection and/or surrogate model

approaches to construct reduced models. In (Theodoropoulou et al., 1998), a combination

of POD and Galerkin methods was employed to generate a low-order model for a three-zone

rapid thermal chemical vapor deposition system, where spatial wafer temperature patterns

leads to nonuniform polysilicon depositions. The reduced surrogate model could accurately

predict temperature profiles and the corresponding polysilicon deposition thickness under

different input power conditions, which significantly accelerated computational processes,

and was then utilised in a dynamic optimisation framework. The proposed model reduction

based algorithm was also exploitable for control applications in a similar manner.

In (Xie et al., 2015), a data-driven reduction based nonlinear model predictive control

framework was presented for general large-scale distributed parameter systems, where the

collected input-output data from black-box simulator and/or experimental information is first

employed to project the high system dimensionality onto only one time dimension through

the POD method, and then the time coefficients were computed by the ANN surrogate mod-

els. Offline ANN model sets were generated, providing alternatives for online nonlinear MPC

framework. The proposed computational strategy was validated for a tubular reactor with re-

cycle, where different control objectives including stabilizing and destabilizing the reaction

systems with eight actuators were tested. The computations show that the POD-ANN reduced

models could predict the dynamic behaviour of the tubular reactor with desirable accuracy,

and could be successfully used to compute the closed-loop system dynamics following a refer-

ence trajectory. The case study also illustrates that the presented nonlinear control framework

could be used to track different kinds of reference profiles.

In (Malik et al., 2018), the PCA method coupled with a Kriging surrogate model was pro-

posed for chemistry combustion systems, where complex thermo-chemical phenomena and

heavy species transport equations were employed to describe a wide range of spatiotemporal

events. PCA was firstly used to identify the low-dimensional manifolds and then Gaussian

process was exploited to fit the hidden nonlinear relationships of the complex systems. The

proposed model reduction technique was utilised for a syngas process with a complex fuel

and significantly large number of species and reactions in a perfectly stirred reactor. The re-

duction models could produce very accurate representation of temperature, major and minor

species and source terms using only a small number of principal components. Furthermore,
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equation-free methodologies offer another effective model reduction approach for large-scale

black-box systems, for optimisation and control purposes. Equation-free methods aim to

exploit the dominant eigendirections of the outputs of complex black-box system models,

or direct historical system data, to compute low-dimensional reduced Jacobian and Hessian

matrices. In (Bonis & Theodoropoulos, 2012), an equation-free based reduced sequential

quadratic programming method was proposed for the computation of low-dimensional Ja-

cobians and Hessians, to accelerate the optimisation procedure for large-scale steady state

nonlinear systems. A double projection strategy was utilised adaptively to first project the

system onto the computed low-order dominant subspaces and secondly onto the subspace of

the independent variables to speed up the computations of optimising large-scale PDE based

system models. This reduced optimisation algorithm was performed for a typical chemi-

cal reaction system where an exothermic, first-order irreversible reaction takes place. Case

studies showed that the proposed scheme is very efficient in terms of memory usage and

computational speed compared with conventional deterministic optimisation methods. The

computation procedure also successfully computed the optimal Damköhler number value and

temperatures of cooling zones to maximize the output product concentration at the exit of the

reactor. Then an aggregation function was subsequently applied to address general nonlinear

inequality constraints, extending the scope and capability of the equation-free reduced SQP

method (Petsagkourakis et al., 2018). The Kreisselmeier−Stainhauser (KS) aggregation func-

tion was employed to reduce the large number of inequality constraints to just one inequality.

Compared with the typical slack-variable technique transforming the inequality constraints

into equality ones, the number of the equality constraints would not be changed during the it-

erative optimisation procedure. The case study shows that the KS aggregation function-based

optimisation method requires the least computational time and iterations compared with the

typical reduced SQP and deterministic SQP methods.

Moreover, equation-free based optimisation and control methods have also been con-

structed using dynamic simulators. In (Bonis et al., 2013), an equation-free model reduc-

tion based model predictive control framework was presented, where equation-free model re-

duction techniques were employed to compute the low-dimensional subspaces and trajectory

piecewise linearization strategy was used to construct multiple reduced linear models. The

predictive controller synthesis framework could efficiently achieve stabilisation and destabil-
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isation objectives with significant computation savings. In (Luna-Ortiz & Theodoropoulos,

2005) , a static optimisation algorithm was developed using available dynamic simulators.

The approach employs the recursive projection method (Shroff & Keller, 1993) to identify the

slow dominant low-dimensional subspace for the large-scale distributed parameter systems

and then employ double projection schemes to accelerate the sequential quadratic program-

ming optimisation procedures. In (Theodoropoulos & Luna-Ortiz, 2006) the equation-free

scheme was incorporated into a multiple shooting computation approach, which success-

fully found the optimal solutions for dynamic process with lower computational resources.

In (Armaou et al., 2004), equation-free based linear control methodology was developed

for complex/multi-scale systems, where the coarse time-stepper was utilised to identify the

slow steady states and the corresponding low-dimensional subspace for design efficient lin-

ear quadratic regulator controllers. An extensive discussion about model reduction based

optimisation methodologies can be found in (Theodoropoulos, 2011).

Model reduction based uncertainty propagation approaches are important parts of uncer-

tainty quantification techniques, such as PSE and PCE methods. To some extent, PSE and

PCE based uncertainty propagation methods belong to surrogate model based uncertainty

quantification techniques. In (Zou & Kevrekidis, 2008), an equation-free based uncertainty

quantification method was developed for stochastic simulators, combining coarse-grained

computations and generalised polynomial chaos expansions. Coarse projective integration

and coarse fixed point computations were adopted to speed up the uncertainty computation to

converge on multiple steady states. The case study, a heterogeneous catalytic reaction mech-

anism with an uncertain kinetic parameter, shows that the proposed algorithm could achieve

uncertainty quantification with cheaper computational resources compared with traditional

techniques.

Moreover, the complexities of practical large-scale nonlinear systems are usually very

high. Often a single model reduction technique cannot easily deal with them. For exam-

ple, although optimal principal component regressions (PCRs)(Pires et al., 2008) are popular

to deal with high-dimensional input-output data, the linear or too low-complex models are not

accurate enough to replace high nonlinear complex system models. POD on the other hand,

is a very powerful method, but projecting the original system onto the global POD modes

is not always easy and requires full knowledge of the full-scale system model. Meanwhile,
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ANN models can capture highly nonlinear behaviours but usually require large-scale ANN

structures (increasing number of neurons and layers) due to the high dimensionality of the

original systems. Combining model reduction techniques, e.g. principal component analy-

sis (PCA) with artificial neural networks (ANNs)(Lang et al., 2009), can produce accurate

reduced surrogate models. These reduced ANN models could be explicitly utilised by the

general-purpose optimisation, control and uncertainty quantification algorithms.

2.5 Conclusions and summary

This chapter has reviewed and discussed some of the related literature regarding the method-

ologies and applications for the optimisation, control and uncertainty quantification for large-

scale systems (under uncertainty). At present, existing local optimisation methods with avail-

able model equations and derivative information could efficiently deal with large-scale sys-

tems (Biegler & Zavala, 2009). However, there is still a large number of practical problems

where the availability of system models may not be possible, such as some black-box com-

mercial software (Fluent, 2015; Schefflan, 2016) and complex process systems (Curtarolo &

Ceder, 2002). Even if the large volume of legacy codes were explicitly available to users, it is

still hard to employ fast model-based techniques. Moreover, local optimisation methods can

only guarantee local optima, which may only exploit sub-optimal performance for system op-

timisation. Rigorous global optimisation algorithms (Horst & Pardalos, 2013) require a huge

number of evaluations to ensure the global optimal conditions, which currently are applicable

to small to medium size problems. The computational costs for rigorous deterministic global

optimisation techniques on large-scale problems is too expensive, needing suitable strategies

to overcome these issues. As for more complex optimal control topics, real-time optimisation

makes model predictive control approach computationally prohibitive for large-scale systems.

Additional computations need to compensate for the robustness of online operations. Nowa-

days, more robust decisions need be made for large-scale systems under practical uncertainty.

However, uncertainty quantification for large-scale systems would be expensive. Polynomial

chaos and power series expansions provide efficient tools to deal with this challenge. Further-

more, optimisation and control under uncertainty are still challenging for complex large-scale

systems. Model reduction techniques can perform efficiently for large-scale systems, even if
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the system models are black-box, which has been used in local optimisation and control tech-

nique developments in previous literature (Bonis & Theodoropoulos, 2012; Theodoropoulos

& Luna-Ortiz, 2006).

In (Chapters 3-6), new methodologies for model reduction based global optimisation,

model predictive control and uncertainty quantification methodologies for large-scale dis-

tributed parameter systems are presented.
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Chapter 3

Model reduction based global

optimisation for large-scale steady state

nonlinear systems

3.1 Introduction

Optimisation techniques are important tools for performing decision-making . One im-

portant drawback of the most existing optimisation approaches is that only the local optima

can be identified, which is usually worse than the global optimal solution. Fortunately, deter-

ministic global optimisation strategies such as the branch and bound way, can be utilised to

seek the global optima with ε -convergence guarantee. Another challenge is the huge com-

putational costs for large-scale highly nonlinear systems, of which the system evaluations are

expensive. Model reduction approaches provide a promising solution to deal with complex

large-scale nonlinear systems.

This Chapter focuses on the development of a model reduction based global optimisation

computational framework for large-scale distributed parameter systems. Since the explicit

formulations of the common large-scale systems in the black-box or open-source commercial

modelling software are mostly unavailable, only inputs/outputs simulators can be employed

to construct the global optimisation framework.

Specifically, large-scale distributed parameter systems always present complex phenom-

ena, which could be described by PDEs. The direct use of steady-state PDEs is not practical
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since the infinite dimensional systems would lead to a large number of algebraic equations

through the discretisation in space, further causing huge computational burdens on the deter-

ministic global optimisation procedure. In this work, double model reductions were employed

to reduce the computational costs, where the principal component analysis (PCA) was first

used to construct the reduced low-dimensional models using the collected high-dimensional

simulation data, and then the surrogate artificial neural network (ANN) models were built in

the reduced space. The double model reductions could provide accurate but less expensive

models than the original large-scale models, accelerating the computations of the subsequent

global optimisation procedure.

Nevertheless, the complexity of ANN models includes highly non-convex terms of the

traditional hyperbolic tangent functions, which would lead to more expensive computations

of low and upper bounds in the global optimisation framework. Two alternative strategies

were adopted in this work. One is to approximate the highly hyperbolic tangent functions

using piecewise linear affine (PWA) models. Therefore the original nonlinear programming

problems could be converted into mixed integer linear programming (MILP) problems, which

could employ the advanced MILP solvers such as CPLEX to improve the computational ef-

ficiency. The other is to replace the highly hyperbolic tangent activation function with the

continuous piecewise linear activation function ReLU. Similarly, the original NLP problems

could be directly transformed into MILP problems. Fast MILP solvers could find the near

global optima within acceptable computational time.

The computational efficiency of the proposed model reduction based global optimisation

framework and improvements were tested through a highly non-convex peak function, a typ-

ical tubular reactor and a large-scale combustion process.
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1 | INTRODUCTION

Partial differential equation (PDE)-based process models, also termed distributed-parameter systems, have wide ap-
plicability in industrial engineering areas [1], such as chemical [2], biochemical [3], and mechanical engineering [4] and
aerodynamics [5]. However, complex PDEs are inherently high-dimensional and non-convex, including multiple local
optima, hence resulting in intensive computational costs when the computation of global optima is sought. Moreover,
most of the generic commercial PDE simulators [6, 7] are essentially black-box and offer no optimisation options.
Even if complex model codes are accessible in open-source software (e.g. [8]), the cost of direct optimisation is often
unacceptable. To date, performing optimisation tasks efficiently for large-scale complex systems, is still a challenge in
engineering design.

A promising way to deal with high dimensionality is to use projective model order reduction methods, which
reduce the complexity of detailed models but preserve their main input-output features [9]. The popular principal
component analysis (PCA) strategy, an efficient dimensionality reduction technique in data science [10], also termed
as Karhunen-Loeve decomposition or proper orthogonal decomposition (POD), is usually combined with projection
and/or surrogate model approaches to construct reduced models. POD together with Galerkin projection is capable
of producing high-fidelity low-dimensional models for optimisation tasks [11]. Similarly, the combination of POD
and ANN can construct reduced surrogate models for black-box large-scale dynamic systems, resulting in efficient
optimisation and control strategies [12]. In addition, PCA and Kriging models have been utilised to efficiently replace
complex process models [13].

Furthermore, equation-freemethodologies offer another effective model reduction approach for large-scale black-
box systems, for optimisation and control purposes. Exploiting the dominant eigendirections of the outputs of complex
black-box system models, or direct historical system data, low-dimensional reduced Jacobian and Hessian matrixes
can be computed. An equation-free based reduced SQP method was proposed exploiting the computation of low-
dimensional Jacobians and Hessians, to accelerate the optimisation procedure for large-scale steady state nonlinear
systems [14]. An aggregation function was subsequently applied to address general nonlinear inequality constraints,
extending the scope and capability of equation-free reduced SQP methods [15]. Furthermore, equation-free based
dynamic optimisation and control methods have also been constructed [16, 17]. An extensive discussion about model
reduction based optimisation methodologies can be found in [18].

To address non-convexity in complex nonlinear optimisation problems, both stochastic and deterministic algo-
rithms can be utilised. Stochastic search methods, such as simulated annealing [19] and genetic algorithms [20], can
globally explore the feasible solution space avoiding local optima. However, such stochastic search algorithms are slow
for large-scale problems and offer no theoretical guarantees on the global optimality of the computed solutions. Deter-
ministic global optimisation methods are capable of computing global optima utilising branch-and-bound techniques
[21], but they are often computationally intensive for large-scale systems due to the need for multiple evaluations of
the lower bounds of the optimisation problems.

The aim of this work is to construct an efficient model reduction-based deterministic global optimisation frame-
work for large-scale steady-state input/output (black-box) systems. Often a single model reduction technique cannot
easily deal with the complexities of large-scale nonlinear systems. For example, although optimal principal compo-
nent regressions (PCRs) [22] are popular to deal with high dimensional input-output data, the linear or low-complex
models are not accurate enough to replace high nonlinear complex system models. POD on the other hand, is a very
powerful method, but projecting the original system onto the global POD modes is not always easy and requires full
knowledge of the full-scale system model. Meanwhile, ANN models can capture highly nonlinear behaviours but usu-
ally require large-scale ANN structures (increasing number of neurons and layers) due to the high dimensionality of
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the original systems. Combining model reduction techniques, e.g. principal component analysis (PCA) with artificial
neural networks (ANNs) [23], can produce accurate reduced surrogate models. Then such reduced ANN models can
be explicitly utilised by global general-purpose optimisation solvers.

Nevertheless, performing global optimisation tasks with general ANN models is still time consuming (even for
reduced ANNs), hence most existing research focuses on local optimisation and/or small-scale problems. Surrogate
ANN models have been used to replace superstructure process models and have been optimised locally [24, 25].
Small-scale ANN models (1 hidden layer, 3 neurons) were constructed and optimised globally by the advanced global
solver BARON [26]. Larger ANN models are more expensive to optimise as high non-convexity often requires the re-
peated use of branch-and-bound algorithms. A reduced space-based global optimisation method, recently proposed
by Schweidtmann andMitsos [27], projected the iteration space of non-convex variables onto the subspace of depen-
dent variables, resulting in small-size sub-problems and, consequently, in significant computational savings.

In thiswork, two strategies are adopted to construct efficient reducedmodels in the PCA-ANNglobal optimisation
framework. The first is a piecewise affine (PWA) reformulation techniquewhile the second is the use of a deep rectifier
neural network. It should be noted that this work extends previous preliminary findings of the authors [28].

The rest of the paper is organised as follows. In Section 2, the basic PCA-ANN global optimisation framework is
proposed and the detailed theoretical basis and implementation are provided. In Section 3, the PWA-based reformula-
tion is outlined and illustrated with an example. In Section 4, the deep rectifier ANN-based improvement is employed
in the optimisation framework and validated using a large-scale combustion case study. In Section 5, conclusions and
further applications are discussed.

2 | PROBLEM FORMULATION

In this work, a model reduction-based optimisation framework is presented to deal with large-scale nonlinear steady-
state systems focusing on the optimisation of spatially distributed processes, described by sets of steady-state dissi-
pative PDEs:

∂y

∂t
= D { ∂y

∂x
,
∂2y

∂x2
, ...,

∂ny

∂xn
,d} + R (d,y) (1)

Here t ∈ Ò denotes time, x ∈ ÒNx , Nx the spatial dimensions, Nx=1,2, or 3. D ∈ Ò is the dissipative spatial differential
operator, d ∈ ÒNd the parameter variables and y ∈ ÒNy a set of state variables, R (d,y) : ÒNd × ÒNy → ÒNy are
the nonlinear terms. Considering steady state analysis and assuming that y (t , x ) −→ y (x ) , and ∂y/∂t = 0, the above
equations become:

0 = D { ∂y
∂x
,
∂2y

∂x2
, ...,

∂ny

∂xn
,d} + R (d,y) (2)

Therefore, the general optimisation problems for steady state PDE-based systems can be formulated as the fol-
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lowing problem P 1 :
(P 1) min

d
G (d,y)

s .t .0 = D { ∂y
∂x
,
∂2y

∂x2
, ...,

∂ny

∂xn
,d} + R (d,y)

A{ ∂y
∂x
,
∂2y

∂x2
, ...,

∂ny

∂xn
}
����
x=Ω

= hbds (d,y)

gcons (d,y) ≤ 0

(3)

where G (d,y) : ÒNd × ÒNy → Ò is the objective function. The equality constraints are the black-box system
PDEs with corresponding boundary conditions. hbds (d,y) : ÒNd × ÒNy → ÒNy are the right hand sides of the
boundary conditions, A is the operator of the boundary condition equations, Ω are the boundaries and gcons (d,y) :
ÒNd × ÒNy → ÒNy denote other general constraints, e.g. bounds and other constraints, for state variables y and
design parameter variables d.

In general, the unavailability of system equations inside commercial software prohibits the use of direct model-
based optimisation techniques. Even in the case that large-scale system equations are available, the optimisation
problemP 1 can not be efficiently handled by global optimisation algorithms [29]. In this work, this barrier is overcome
by employing accurate surrogatemodels to formulate a highly accurate approximate problemP 2, which is then utilised
by a general purpose global optimisation solver.

If we use explicit surrogate inputs-outputs to replace the black-box system equations in the above formulation,
then problem P 1 can be transformed into the following problem P 2:

(P 2) min
d

G (d,y′)

s .t .y′ = F (d)

gcons (d,y′) ≤ 0

(4)

where y′ are the outputs of surrogate models and F the black-box nonlinear operator.
The gap between problems P 1 and P 2 can be measured by the output errors (y − y′). If these errors are small

enough, the global optima of the reduced surrogate model-based problems P 2will be close to the global solutions of
the original problem P 1. Thus, accurate surrogate models are key to guarantee small errors across the design domain.
The accuracy of surrogate models depends on sampling quality and quantity and model building techniques. This
work assumes that enough representative/informative samples are available for building accurate models. Details
about efficient sampling approaches are discussed in Section 2.1.

Then model building procedures directly affect the accuracy and the complexity of constructed surrogate models,
which in turn have a significant effect on the computational accuracy and speed of the subsequent deterministic global
optimisation.

This work employs a double model reduction process through a combination of PCA and ANN and reformulation
techniques to generate an accurate reduced model, which is subsequently used to compute near global solutions for
the original problem P 1. In the following sections, we are discussing the basic components of our PCA-ANN-global
optimisation methodology.
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2.1 | Sampling and data collection

To build accurate surrogate models, suitable sampling methods are needed to collect highly representative samples
for a range of design variables. Inefficient sampling strategies, including too few samples and/or unrepresentative
sampling, would result in inaccurate reduced models, in turn producing inaccurate optimal solutions. While provably
representative sampling is still an open problem, there are several popular sampling techniques such as Hammersley
sequences [30], D-optimal designs [31] and Latin Hypercube (LHC)[32] that can produce good quality results. Hamers-
ley sequences employ quasi-deterministic sequences and generate less samples for convergence, while the D-optimal
design approach aims to reduce the number of experiment runs and maximise sample variances. The LHCmethod can
produce samples covering the whole design space and maximize the difference among the generated samples. Specif-
ically, the sample domain is divided into many sub-intervals where sample points are generated randomly in order to
represent the whole sub-domain. In this work, we choose LHC because it has been shown to be able to fill the design
space to capture input/output relationships given an adequate number of samples. The number of LHC samples is de-
cided by testing the model accuracy. In general, more LHC samples are more likely to contain the information needed
to capture the complex input/output relationships. LHC sampling for complex systems often requires a relatively large
number of samples, which is also the pre-condition to perform successful PCA reduction and ANN-based surrogate
models construction.

In the presence of constraints (such as gcons here), it is hard for the LHC algorithm to directly capture the com-
plex design space. Previous work [33] employed constraints to filter the LHC samples in order to reduce function
evaluations for expensive systems. In addition, a complex strategy was used to first decompose the design space
into many subdomains, where system features were represented through multiple low-fidelity models. Nevertheless
the adaptive optimisation performed within the constrained sampling strategy can be computationally intensive for
high-dimensional outputs y and/or inequality constraints for y.

In this work, we utilised universal ANN surrogate models to capture the nonlinear behaviour of the black-box
PDE equality in its entirety. The constrained sampling strategy may possibly lead to a discontinuous design space,
requiring much larger ANN structures to capture it [34]. Here we separated the expensive black-box PDE-based
equality constraintsfrom the "known" inequality constraints. We aim to construct accurate but simple ANN models
to replace the PDE-based equality constraints, which together with the known inequality constraints gcons , provide a
highly accurate explicit model formulation P 2 to the general-purpose global optimisation solvers.

Building accurate surrogate models requires enough representative/informative samples. However, too many
samples would lead to intensive computations for high-dimensional systems. Improving sampling efficiency can sig-
nificantly reduce computations. Exploiting process knowledge or advanced adaptive sampling approachesmay help to
achieve this goal. Prior knowledge about the processes can provide useful information to collect representative sam-
ples with higher probability. However, this requires case-by-case detailed experience about the black-box systems.
Adaptive sampling uses a few prior input/output samples to subsequently generate representative samples through
solving a set of optimisation problems. Most relevant previous studies in literature [35, 36] deal with low-dimensional
inputs/outputs, leading to small-size optimisation problems. This work, however, deals with high-dimensional outputs
y, possibly together with large numbers of inequality constraints gcons , hence the computation costs for performing
adaptive sampling could be high. Nevertheless adaptive sampling procedures are fully compatible with the algorithms
developed here provided that the relevant computations can be appropriately reduced.

In this work, we consider a more general approach without exploiting process knowledge and adaptive sampling
techniques. The assumption is that the sampling process takes place offline and does not directly affect the com-
putational efficiency of the online optimisation computations. Nevertheless, the proposed model reduction based
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global optimisation framework can be easily combined with prior knowledge and adaptive sampling approaches, as
mentioned above to speed-up the offline parts of the computations.

We collect samples across the space of design parameters d and corresponding input-output data sets (D ∈
ÒNd ×N , Y ∈ Òm×N ), where m ∈ Î is the number of discrete interval points, which for distributed parameter systems
tends to be be a large number, and N ∈ Î is the number of samples. The obtained data sets (D, Y ) are then used to
construct accurate reduced surrogate models through the combination of PCA and ANN.

2.2 | Principal Component Analysis (PCA)

Due to the high dimensionality of spatially discrete output dataY , directly constructing surrogate ANNmodels would
result in large ANN structures. Here, the popular PCA method is first employed to build a reduced model from output
data Y .

A sampling method (here LHC as discussed in the previous section) is firstly employed to construct a data en-
semble Y over a finite spatial interval Ω′ ∈ Ò. PCA then calculates a "small" set of principal components (PCs)
P = (p1, p2, ..., pk ) , k ∈ Î being the number of PCs, by projecting the data sample Y onto the subspace of the, k ,
principal components Ð.

U = PY (5)
HereU ∈ Òk×N is the projection of the original data Y onto Ð and P ∈ Òk×m is the orthogonal projector. In the PCA
method the matrix Ð is constructed through the covariance matrix,Cy ∈ Òm×m of the output data Y :

Cy =
1

m − 1
Y Y T (6)

Here we seek to minimise covariance between data and maximise variance i.e. minimise the off-diagonal elements of
Cy , while maximising its diagonal elements. This is equivalent to performing singular value decomposition (SVD) on
Cy :

Cy = ZTZ = ( 1
√
m − 1

Y T )T ( 1
√
m − 1

Y T ) = V D1V
T (7)

where D1 ∈ Òm×m is a diagonal matrix whose diagonal elements are the eigenvalues of ZT Z andV is the orthogonal
matrix whose columns are the eigenvectors of ZT Z , which as can be easily shown are equivalent to the principal
components of Y . In fact we can keep the first k PCs corresponding to the k dominant eigenvalues of Cy , where
usually k << m , hence V ∈ Òm×k and D1 now contains only the k most dominant eigenvalues of the system, D1 ∈
Òk×k . We can then set P = V T and perform data reduction through the projection in Eq. 5. The original data sample,
Y can be reconstructed from the projected data:

Y = PTU (8)
More details about the theory and application of PCA can be found in [37, 38, 39, 40, 41].

The PCA step aims to project the high dimensional output states arising from the discretisation of the PDE system,
onto a small number of dominant variables. Then the resulting low-dimensional relationship between inputs and
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projected outputs can be captured through small-size ANN structures, hence producing efficient doubly reduced
models that will significantly reduce deterministic global optimisation computations. Implementing the PCA step is not
always easy, as it is very sensitive to the quantity and quality of samples. Only with enough representative/informative
samples can PCA be efficiently performed and globally capture the accurate dominant PCs. Here we took a tubular
reactor case as an illustrative example to show how quantity and quality of samples affect the projection errors.

This is a typical chemical tubular reactor, where an exothermic reaction takes place [42]. The model of the reactor
consists of 2 differential equations in dimensionless form as follows :

0 =
1

P e1

∂2C

∂y 2
− ∂C

∂y
+ Da (1 − C )exp (T /(1 +T /γ))

0 =
1

LeP e2

∂2T

∂y 2
− 1

Le

∂T

∂y
− β

Le
T + BDa (1 − C )exp (T /(1 +T /γ)) + β

Le
Tw

b .c .

∂C

∂y
− P e1C = 0,

∂T

∂y
− P e2T = 0, at y = 0

∂C

∂y
= 0,

∂T

∂y
= 0, at y = 1

(9)

Here C andT are the dimensionless concentration and temperature respectively, while Cexi t is dimensionless output
concentration. Da is the Damköhler number, Le is the Lewis number, P e1 is the Peclet number for mass transport
and P e2 for heat transport, β a dimensionless heat transfer coefficient, C is the dimensionless adiabatic temperature
rise, γ the dimensionless activation energy,Tw is the adiabatic wall temperature and y the dimensionless longitudinal
coordinate. The system parameters are P e1 = 5, P e2 = 5, Le = 1, β = 1.5, γ = 10, B = 12,Tw=0. The resulting discretized
500 algebraic equations comprise our in-house black-box simulator. We want to represent the nonlinear behaviour of
500 outputs (distributed temperature and production concentration) with respect to single design variable Da, varying
in the range [0.121, 0.400]. For comparison purposes, 6 different sample groups were adopted to generate 10, 20,
30, 40, 50, 60 LHC samples, respectively. Then PCA projection was employed to compute the dominant PCs, where
the maximum energy/variance ratio was set to be 99.8 %. Finally, we utilised 500 uniform design points ( 250000
outputs) to test the projection accuracy as the Tb.1 below.
TABLE 1 Comparative results of projectors from different sample groups

Number of Samples Number of PCs Total errors (250000 points) Maximum absolute error

10 2 5220 3.16
20 2 5350 3.23
30 2 3680 0.86
40 2 4060 3.03
50 3 1170 0.16
60 3 1210 0.50

Tb.1 shows that the smaller sample groups (10, 20, 30, 40, respectively) require only 2 PCs to capture the vari-
ance of data set while more sample groups (50, 60, respectively) need 3 PCs, indicating that the less (representa-
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tive/informative) samples would miss some global information (PCs) of the whole design space. This is also the possi-
ble reason that the resulting projectors from the smaller sample groups generate higher errors in the validation process.
One "abnormal" case is that 40-sample projector is less accurate than 30-sample one despite the larger number of
samples. The possible explanation is that the generated 40 samples are less representative than the generated 30
LHC samples. Similar condition occurs between 50 and 60 sample groups. Both the total and the maximum errors
of 50-sample group are small enough, implying these 50 samples include enough informative samples to accurately
compute the three global PCs.

Moreover, the computed projections reduce the original 500 distributed state variables into only 3 projected vari-
ables, which significantly decreases the computations for training ANN models and deterministic global optimisation
of the trained models. We employed the previous 50 LHC samples for training Neural Networks. To avoid over- and
under-fitting, the defined domain is randomly divided into a training, a validation and a test set with respective size
ratios of 0.7 : 0.15 : 0.15. The MATLAB Neural Network Toolbox was utilised to fit the weights and biases by minimiz-
ing the mean squared error (MSE) between the ANNmodel and the training set using Levenberg-Marquardt algorithm
and the early stopping procedure. To obtain a suitable number of neurons in the hidden layer, the training process
is repeated using an increasing number of neurons until the MSE for all three sets becomes less than a pre-defined
tolerance, here 1x10−4. We tested the training process for the single input and projected three outputs, taking less
than 1s for the whole 849 iterations to become convergent with a 5-neuron shallow ANN to capture the nonlinear
behaviours in reduced space. While each iteration requires 12.41s for the single input and the original 500 outputs
to slowly reduce the training errors with the same hidden layer ANN structure. 20 runs for repeatedly training the
ANN all failed due to the large validation and/or test errors, implying that a larger ANN is needed to accommodate
the inputs/outputs information, which would lead to much more computations for deterministic global optimisation
of the trained ANN models. All runs were performed on a Desktop (Intel® Core(TM) CPU 3.3 GHz, 8 GB memory,
64-bit operating system) running Windows 7.

In this work, we choose to gradually add more samples or regenerate (a similar number of) new LHC samples to
obtain the global projections. Then a set of fresh samples is employed to validate the accuracy of the computed projec-
tions. Both adding more samples and regenerating new samples aim to produce as many representative/informative
samples as possible. When the test errors are small enough, i.e. smaller than the pre-defined tolerances, we assume
that accurate projections have been produced.

2.3 | Artificial Neural Networks (ANNs)

We employ ANNs on the reduced models (Eq.5) from the PCA step. ANN-based models are chosen due to both suc-
cessful practices and proven theoretical support that a shallow feed-forward neural network with one single layer is
sufficient to represent any smooth function [43]. Furthermore, advanced optimisation algorithms have been devel-
oped to handle the manipulated variables for ANN structures, such as Levenberg-Marquardt backpropagation [44]
and Bayesian regularization backpropagation [45]. Fig.1 shows a conventional feed forward neural network with a
hyperbolic tangent activation function t anh ( ·) .
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F IGURE 1 Feed-forward neural network with hyperbolic tangent activation function

Shallow ANNs, as the one displayed in Fig.1, are implemented in our basic PCA-ANN global optimisation frame-
work. The feed-forward ANN contains threemain components: The input layer, the hidden layer (only one in a shallow
ANN) and the output layer, which sequentially perform transformations on the input variables. The input variables,
d = (d1, d2, ..., dNd

) , are first linearly transformed and then non-linearly activated through the hidden layer, and further
forced by linear transformation and sequential activation in the output layer, to finally formulate the output variables
u′ = (u′1,u

′
2, ...,u

′
k
), ∈ Òk . The mathematical description is given in eq. (10) :

hj = f (
Nd∑
i=1

w 1
j ,i di + b1j ), [j ∈ {1, 2, ..., n }

u′l =
n∑
j=1

w o
l ,j hj + bol , [l ∈ {1, 2, ..., k }

(10)

Here hj ∈ Ò is the output value from the hidden layer with n ∈ Î neurons, j = 1, . . . , n and f ∈ Ò is the activation
function. Each neuron j contains two parameters: weights w 1

j ,i
∈ Ò and biases b1

j
∈ Ò which perform linear trans-

formations. Similarly, u′
l
∈ Ò is the final value from the output layer with k neurons, l = 1, . . . , k , including weights

w o
l ,j

∈ Ò and biases bo
l
∈ Ò. Three activation functions, the sigmoidal, the hyperbolic tangent and the linear function,

are widely used in neural networks. In this work, the hyperbolic tangent function f was utilised to convert the output
value into the range [0,1] in the hidden layer while the linear function was applied in the output layer. The configured
feed-forward neural network was subsequently trained through the back-propagation algorithm using the reduced
low-dimensional data sets (D,U ) from the PCA step. The detailed sampling and training methods used are the same
as in previous sections. Similar to the PCA technique, the performance of surrogate ANN models is significantly af-
fected by quantity and quality of collected samples. Here we chose a two-dimensional multi-modal peaks function
with the following mathematical formulation as an illustrative example:

gpeak s = 3(1 − x )2exp (−x2 − (y + 1)2) − 10( x
5
− x3 − y 5)exp (−x2 − y 2)

− 1

3
exp (−(x + 1)2 − y 2) x , y ∈ [−3, 3]

(11)

We treated this peaks function as a black-box input/output system and we employed the LHC sampling method to
collect snapshots. 300, 500, 1000, 1600 four groups of LHC samples were collected, respectively, to construct the
surrogate ANN models. We compared the different surrogate ANN models (ROM) with the original peaks function
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(FOM) using 961 (31 grid points in each direction) uniform grid points as below.

(a) The original peaks function with the
global optima being -6.551 at (0.228, -
1.626)

(b) 300 LHC samples, 50-neuron shallow
neural network with the global optima be-
ing -6.461 at (0.237, -1.625)

(c) 500 LHC samples, 55-neuron shallow
neural network with the global optima be-
ing -6.536 at (0.222, -1.632)

(d) 1000 LHC samples, 45-neuron shallow
neural network with the global optima be-
ing -6.540 at (0.220, -1.630)

(e) 1600 LHC samples, 52-neuron shallow
neural network with the global optima be-
ing -6.555 at (0.228, -1.625)

F IGURE 2 Comparison of the original peaks function (FOM) and different surrogate models (ROMs)

Fig.2 shows that all the four sample groups could locate the general nonlinear behaviours of peaks function and
the near global solutions of the peaks function. However, the prediction accuracy of the generated four ANN models
are different. The ANN models from relatively more samples can provide more accurate surrogates for the original
peaks function across the whole design space. the model across the whole design space would be distinct, smaller
as increment of samples. That is really important for constrained optimisation problems where possible nonlinear
inequality constraints may significantly change the non-linearity of the optimisation problems, leading to a totally dif-
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ferent global solution from the unconstrained optimisation problems. Thus more samples should be utilised to reduce
the model errors across the whole design space for complex problems, especially with highly nonlinear inequality
constraints.

2.4 | PCA-ANN global optimisation framework

To cope with the non-convexity of highly non-linear systems, deterministic optimisation methods are considered for
the reduced surrogate model from the PCA-ANN reduction. The black-box or grey-box global optimisation problem
can be transformed into the general explicit NLP optimisation problems as follows combining Eqs.(4,5,10):

min
d=[d1,d2,...,dNd ]

G (d,u′)

s .t .hj = f (
Nd∑
i=1

w 1
j ,i di + b1j ), [j ∈ {1, 2, ..., n }

u′l =
n∑
j=1

w o
l ,j hj + bol , [l ∈ {1, 2, ..., k }

u′ = (u′1,u
′
2, ...,u

′
k ),

gcons (d,PTu′) ≤ 0

(12)

In this work, gcons (d,PTu′) includes the box bound constraints and possible inequality constraints for design vari-
ables d and discretised state variables y′. The ANN-based nonlinear objection function G , can be reformulated
into constraints. The main non-convexity of the optimisation problems lies on the constraints hj = f ( ·) due to the
highly non-convex activation function, i.e. the hyperbolic tangent function t anh ( ·) in the feed-forward ANN structure.
General-purpose global optimisation commercial software, including ANTIGONE [46], BARON [26] and SCIP [47], are
efficient tools for the above problems due to the advanced bound tightening and branching techniques. Nevertheless,
these general global solvers can not identify t anh ( ·) formulation directly, as high performance algorithms need the
explicit model equations. Therefore the explicit algebraic form t anh (z ) = (ez − 1)/(ez + 1) is required [48]. The basic
formulation is further transformed into t anh (z ) = −2/(ez + 1) + 1 in order to produce a tighter under-estimator for
the global solver [27]. The flow chart of the basic PCA-ANN global optimisation framework is shown in Fig.3.
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F IGURE 3 Flow chart of the basic PCA-ANN global optimisation framework

Nevertheless, the general ANN constrained global optimisation is expensive. It will be first tested through the
previous small peaks function as an illustrative example for equality constrained problems, formulated as below, and
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then applied to large-scale nonlinear systems.
min
x1,x2

f

s .t .f = gpeak s (x1, x2)

x1, x2 ∈ [−3, 3]

(13)

The previously computed global optima was located at the point (0.228, -1.626) with the objective value being
-6.551. Then the trained 52-neuron shallow neural network from the 1600 collected samples as shown in Fig.2(e) were
employed to replace peaks function. 1600 samples may be a little excessive to compute the global optima but could
accurately capturemore global features of peaks function, which is more important for complex inequality constrained
problems. Meanwhile, we focus on improving optimisation process assuming enough informative samples,which could
be guaranteed through excessive samples. For practical large-scale problems, sampling reduction approaches could
be combined to improve computational efficiency. We utilised BARON 17.4.1 as the global solver with both relative
and absolute tolerances being 0.002 and a limit of 36000 seconds (10 hours). After 30294.26 CPU time, a near global
solution was computed at the point (0.228,-1.625) with an objective of -6.555, which is really close to the known
global solution of the original problems.

Furthermore, the surrogate model based global optimisation framework, with nonlinear inequality constraints,
may have advantages over existing sample based procedures in terms of the computed solution quality. Although
reconstructing simple but accurate surrogate models may require relatively more samples compared with sample
based procedures, the quality of computed global solutions from sample based procedures would highly depend on
the specific problems. Meanwhile, the feasibility and global optima issues caused by inequality constraints gcons ,
would be hard for black-box optimisation algorithms to cope with. While surrogate models based global optimisation
approaches could efficiently deal with the hardness. If simple but accurate models were built, highly approximate
global solutions could be obtained. Here the peaks function as the black-box equality constraints, together with
inequality constraints gcons formulate the following optimisation problem:

min
x1,x2

f

s .t .f = gpeak s (x1, x2)

x1f ≥ 1.1

x1x2 ≥ 0

x1, x2 ∈ [−3, 3]

(14)

The global optima could be computed at the optimal point (-0.226,-1.710) with an objective of -4.867 through
BARON 17.4.1 with both relative and absolute tolerances being 0.002. Then 1600 LHC samples (0.044 seconds)
based 52-neuron shallow neural network was utilised to represent the "black-box" peaks function. Only 9.23 seconds
computational times could produce a near global optimal (-0.226,-1.709) with the optimal objective of -4.862, which
is extremely close to the true global solution of the original problems. The possible reason for the fast computations is
that the inequality constraints perform excellent cuts for design space, enhancing the branch and reduce procedures
within BARON. Next, we test the same problem Eq.( 14) using the sample based search solver COBYLA [49] with
the convergence tolerance being 0.002 and maximum function evaluations of 2000. Since computational results
highly depend on initial points due to global optima issues, 50 runs were implemented with different LHC samples as
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initialisation points. Only 20 feasible solutions were found for the 50 LHC samples. The 50 runs took 0.081 seconds
to compute the best solution at the point (-1.387,0) with the objective function being -2.861, which was far away
from the true global solutions. The computational results imply that sample-based optimisation procedure may suffer
serious feasibility and global optima issues. The feasibility issues would become strong if the inequality constraints
involve high-dimensional outputs. Moreover, multiple initialisation requires more sample times to avoid local optima
but could not guarantee the close global solutions.

Although the above two illustrative examples show that the surrogate ANNs based global optimisation framework
with/without inequality constraints could produce near global solutions, the first onewithout nonlinear inequality con-
straints comprises intensive computations for deterministic global optimisation due to the complex ANN structures.
This drawback drive our further improvements for the basic PCA-ANN global optimisation framework. We expect
to reduce the complexity of built ANN models, leading to the faster computations for the general ANN constrained
problems. It should be noted that the PCA step is not necessary for the small peaks function example Eq.(14) with the
low-dimensional input-output variables, but is utilised for the two large-scale case studies, the tubular reactor and
the combustion process, where also the two improvements of the basic framework constructed are demonstrated.

3 | PIECE-WISE AFFINE BASED FORMULATION

In this section, a piecewise affine (PWA) reformulation is introduced to deal with the non-convex hyperbolic tangent
activation function in the reduced surrogate ANNmodel. Previous research has suggested the PWA technique for the
ANN model [34], which has been verified to be efficient [50]. Although these studies provided some computational
results, further detailed implement schemes and analysis have not been reported. In this work, the PWA reformulation
was utilised to approximate the highly non-convex NLP problem with a MILP problem. The global optimisation algo-
rithms for both NLP andMILP problems are based on the branch and bound framework. However, the branching step
is performed on continuous variables for the NLP problems and on auxiliary binary variables for the MILP problems
through the use of CPLEX 12.7.1. An adaptive procedure to construct PWA models is presented below.

3.1 | Adaptive procedure

The hyperbolic tangent activation function f (z ) = t anh (z ) is an odd function with central symmetry, which is concave
on (0, +∞] and convex on [−∞, 0) . Therefore the PWA approximation on [−∞, 0) can be directly computed from the
PWA formulation on (0, +∞]. Within the range of (0, +∞], t anh (z ) function first increases and then tends to level off
with a slight increase towards the limit value of 1. The adaptive PWA procedure starts from the interval (0, +∞] and
two points, the point of symmetry and one point close to the maximum value (equal to 1). Then a new point is chosen
between the two original points so that the error Eer o between f (z ) and its PWA approximation fPWA (z ) (currently
consisting of two intervals) is minimised.

Eer o =

∫
abs (f (z ) − fPWA (z ))dz , (15)

Then the segment with the largest error is chosen and a new point is added within to minimise Eer o in this segment.
This procedure continues iteratively until the error in eq. 15 becomes less than a pre-defined tolerance. Finally the
points chosen for the (0, +∞] interval are mirrored to the [−∞, 0) interval.

The iteration procedure efficiently produces a tight PWA representation of the t anh (z ) function. Fig.4 shows the
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adaptive process, narrowing the interval sizes and reducing the error (red shade) between multiple linear models and
t anh (z ) .

F IGURE 4 Adaptive PWA procedure for the hyperbolic activation function

There are different approaches to formulate the PWAmodels, such as classicmethod, linear segmentationmethod,
convex hull method and special structure methods. Classic method is the basic step of the other three methods and
may work less efficiently [51]. Here we employed the special order sets since the advanced MILP solvers including
CPLEX could smartly exploit the structures of special order sets and speed up the computations [52]. For N ′+1 gener-
ated grid points z1, z2, ..., zN ′+1 ∈ Ò and correspondingly N ′ linear models, the general PWA formulation introducing
the special sets variables h′

i
and λ′

i
, is as follows [53]:

f (z ) ≈ fPWA (z ) =
N ′+1∑
i=1

λ′i f (zi ),

z =
N ′+1∑
i=1

λ′i zi ,

N ′+1∑
i=1

λ′i = 1,

λ′1 ≤ h′1,

λ′i ≤ h′i + h′i−1, [i ∈ {2, 3, ...,N ′ }

λ′N ′+1 ≤ h′N ′ ,

λ′i ≥ 0, [i ∈ {1, 2, ...,N ′ + 1}
N ′∑
i=1

h′i = 1,

h′i ∈ {0, 1}N ′

(16)

It should be noted here that the above formulation allows only two adjacent λi ’s to be non-zero.

Substituting the highly non-convex f (z ) in the PCA-ANN optimisation formulation (Eq.12)with the above PWA
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reformulation (Eq.16), the general PCA-ANN-PWA based MILP optimisation problem can be obtained:
min
d

G (d,u′)

s .t .z j =

Nd∑
i=1

w 1
j ,i di + b1j , [j ∈ {1, 2, ..., n }

hj =
N ′+1∑
i=1

λ
j
i
f (zi ), [j ∈ {1, 2, ..., n }

z j =
N ′+1∑
i=1

λ
j
i
zi , [j ∈ {1, 2, ..., n }

N ′+1∑
i=1

λ
j
i
= 1, [j ∈ {1, 2, ..., n }

λ
j
1 ≤ h

j
1, [j ∈ {1, 2, ..., n }

λ
j
i
≤ h

j
i
+ h

j
i−1, [i ∈ {2, 3, ...,N ′ }, [j ∈ {1, 2, ..., n }

λ
j
N ′+1 ≤ h

j
N ′ , [j ∈ {1, 2, ..., n }

λ
j
i
≥ 0, [i ∈ {1, 2, ...,N ′ + 1}, [j ∈ {1, 2, ..., n }

N ′∑
i=1

h
j
i
= 1 [j ∈ {1, 2, ..., n }

h
j
i
∈ {0, 1}N ′

[j ∈ {1, 2, ..., n }

u′l =
n∑
j=1

w o
l ,j hj + bol , [l ∈ {1, 2, ..., k }

u′ = (u′1,u
′
2, ...,u

′
k ),

g ′cons (d,PTu′) ≤ 0

(17)

where g ′cons is a PWA formulation of the possible nonlinear inequality constraints. The following case studies con-
sider the optimisation problems with linear inequality constraints, which is enough to validate the efficiency of PWA
formulation of nonlinear ANN models on computational cost and accuracy.

3.2 | Illustrative example

To verify the efficiency of the above PWA formulation, global optimisation is performed for the surrogate ANNmodel
and the ANN-PWA model of the peaks function (Eq.(11)). Here, the ANN model is the reduced model (No PCA
reduction was necessary).Two different PWA models (with 30 and 58 linear segments, respectively) following the
above adaptive procedure. Tab.2 shows the comparison of optimal results of three reduced models. Almost the same
optimal solutions are computed, which are close to the global optimum value of the FOM. The proposed ANN-PWA
model with 30 linear segments could requires significantly less computational time compared to the other two. In
fact we can observe a 4-fold reduction compared to the ANN-PWA model with 58 linear segments and a major 30-
fold reduction compared to the ANN formulation. Furthermore, the typical uniform scheme based PWA formulation
produces worse solutions than the results from the propose non-uniform scheme, indicating the proposed scheme
couldmore efficiently reduce the errors generated by the PWAmodels than the common uniformmanner. Meanwhile,
solving the same-size MILP problem resulting from uniform partitioning scheme is more time-consuming, implying
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stronger relaxation tightness of the uniform scheme basedMILP than the one from the proposed non-uniform scheme.
TABLE 2 Comparative results of ANN model and ANN-PWA models

Model Solver Optimal value CPU time (s) Rel.tolerance

ANN(1 layer, 52 neurons, tanh) BARON -6.555 30294.26 0.002
ANN-PWA(30 linear segments) CPLEX -6.542 1004.71 0.002

ANN-PWA(30 linear segments, uniform) CPLEX -6.406 418.66 0.002
ANN-PWA(58 linear segments) CPLEX -6.540 4190.16 0.002

ANN-PWA(58 linear segments, uniform) CPLEX -6.489 2840.36 0.002

3.3 | Case study

To further investigate the computational efficiency of the PWAmethod, the PCA-ANN-PWA optimisation framework
is illustrated using previous chemical tubular reactor. The mathematical formulation of the optimisation problem is as
follows :

max
Twi

Cexi t

s .t . Eq .(9)

Tw (y ) =
3∑

i=1

(H (y − yi−1) − H (y ) − yi )Twi

(18)

Here Eq.(9) denotes the two PDEs based system equations. Cexi t is dimensionless output concentration. The system
parameters are P e1 = 5, P e2 = 5, Le = 1, β = 1.5, γ = 10, B = 12, Da=0.1. Tw is the adiabatic wall temperature andTwi

are the corresponding wall temperatures at the three cooling zones. H is the Heaviside step function.

Similar as before, the resulting discretized 500 algebraic equations comprise our in-house FOM simulator. PCAreduction is performed first to reduce the 500 state variables down to 12. Subsequently ANNs are used to obtain areduced PCA-ANN model comprising 3 inputs, 12 state variables, and 20 ANN neurons. The optimisation results, asdisplayed in Tab.3 and Fig.5, are computed to compare the optimisation performance using the PCA-ANN model andtwo PCA-ANN-PWA models with 30 and 58 linear segments, respectively. All three computational cases convergeto almost the same solutions, with objective function values close to 0.99998, which is the values computed by per-forming optimisation with the FOM. The maximum error is 1.52%, and the optimal solution profiles for concentrationand temperature distributions are very close to each other for all models (Fig.5). Fig.6 compares the computationaltime required to perform optimisation using the PCA- ANN and the PCA-ANN-PWAmodels with different number ofANN neurons. The limit time (max time for computations to stop) was set to 36000 seconds. The computational timeincreases rapidly with more neurons for all three surrogate models. The computational cost reaches the limit time forthe PCA-ANN model with 40 neurons while the CPU time required for the two PCA-ANN-PWA models is less than1000 seconds. It can be also seen that the computational time required is significantly less for both PCA-ANN-PWAmodels, irrespective of the number of ANN neurons, implying the high computational efficiency of the proposed PWAmethods.
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TABLE 3 Optimal result comparisons for surrogate models of tubular reactor
Model Optimal value True value (full model) Error Computational time(s)

PCA-ANN(1 layer, 20 neurons, tanh) 0.98682 0.99998 1.32% 455.09
PCA-ANN-PWA(30 linear segments) 0.98483 0.99998 1.52% 6.12
PCA-ANN-PWA(58 linear segments) 0.98623 0.99998 1.38% 14.32

(a) Solution profiles for temperature (b) Solution profiles for concentration

F IGURE 5 Solution profiles for dimensionless temperature and concentration

F IGURE 6 Computational time (seconds) for different numbers of neurons
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4 | DEEP RECTIFIER NEURAL NETWORK BASED FORMULATION

PCA-ANN-PWA global optimisation framework worked efficiently for the peaks function and the tubular reactor
cases. However, the ANN-PWA models will in general lead to additional approximation error especially for large-
scale problems. To preserve the computational accuracy and still use the advancedMILP solver, the continuous piece-
wise linear activation function is introduced and directly embedded in the ANN structures. Past efforts in computer
science have developed efficient activation functions, such as the sigmoid and the t anh ( ·) function. The traditional
S-shaped sigmoid function can transfer any input signal into the range [0,1] while the zero centered t anh ( ·) function
can map the output values in the interval [-1,1]. Both of them can learn features of high nonlinear functions efficiently.
Nevertheless, the high non-convexity of these functions makes ANN training hard to reach a satisfying result. The
continuous piece-wise linear functions, including the ReLU function and its variants, have been adopted to deal with
this problem. In this work, the widely applied standard ReLU function is utilised. Shallow neural networks require an
exponentially larger number of nodes in one hidden layer to successfully represent a complex function, while deep
neural networks result in more complex and non-convex training error [54] due to the multi-layer structure. Low-
complexity two- or three-hidden layer NNs are, however, enough to capture the low-dimensional nonlinear behaviour
of PCA-reduced systems.

Although deep rectifier NN-basedMILP problems have been formulated in previous studies [55], the combination
of PCA and deep rectifier NN has not been reported. The mathematical equations of deep rectifier NNs are similar to
fig. 1 with more hidden layers and activation function f (z ) = max (0, z ) , which can be reformulated into piece-wise
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linear function through the big-M method [56]:

z
j1
1 =

Nd∑
i=1

w 1
j1,i

di + b1j1
, [j1 ∈ {1, 2, ..., n1 }

z
j1
1 = z ′j11 − z ′′j11 , [j1 ∈ {1, 2, ..., n1 }

z ′j11 ≤ M1 (1 − bz
j1
1 ), [j1 ∈ {1, 2, ..., n1 }

z ′′j11 ≤ M1bz
j1
1 , [j1 ∈ {1, 2, ..., n1 }

z
j2
2 =

n1∑
j1=1

w 2
j2,j1

z ′j11 + b2j2
, [j2 ∈ {1, 2, ..., n2 }

z
j2
2 = z ′j22 − z ′′j22 , [j2 ∈ {1, 2, ..., n2 }

z ′j22 ≤ M2 (1 − bz
j2
2 ), [j2 ∈ {1, 2, ..., n2 }

z ′′j22 ≤ M2bz
j2
2 , [j2 ∈ {1, 2, ..., n2 }

· ·

· ·

· ·

z
jθ
θ

=

nθ−1∑
jθ−1=1

w θ
jθ ,jθ−1

h
jθ−1
θ−1 + bθjθ

, [jθ ∈ {1, 2, ..., nθ }

z
jθ
θ

= z ′
jθ
θ
− z ′′

jθ
θ
, [jθ ∈ {1, 2, ..., nθ }

z ′
jθ
θ

≤ Mθ (1 − bz
jθ
θ
), [jθ ∈ {1, 2, ..., nθ }

z ′′
jθ
θ

≤ Mθbz
jθ
θ
, [jθ ∈ {1, 2, ..., nθ }

z ′ji
i
≥ 0, [i ∈ {1, 2, ..., θ }, [ji ∈ {1, 2, ..., ni }

z ′′ji
i
≥ 0 [i ∈ {1, 2, ..., θ }, [ji ∈ {1, 2, ..., ni }

bz
ji
i
∈ {0, 1} [i ∈ {1, 2, ..., θ }, [ji ∈ {1, 2, ..., ni }

u′l =
nθ∑
jθ=1

w o
l ,jθ

z ′
jθ
θ
+ bol , [l ∈ {1, 2, ..., k }

(19)

where Mi is the big-M constant. Here we used a uniform Big-M value being 10000 , which has been showed
enough to capture the near global solutions of small peaks function example without numerical issues.z ′ji

i
and z ′′ji

iare the auxiliary non-negative variables, bz ji
i
is the auxiliary binary variable and h

ji
i
is the output value from the ji th

ReLU based neuron of the i th hidden layer. θ is the number of hidden layers and ni is number of neurons at i th hidden
layer.

Substituting the ANN model equations in the PCA-ANN optimisation formulation (Eq.12) with the above PWA
reformulation (Eq.20), the general PCA-DNN(ReLU) based MILP optimisation formulation can be obtained:

min
d=[d1,d2,...,dNd ]

G (d,u′)

s .t . Eq .(19) ;
u′ = (u′1,u

′
2, ...,u

′
k ),

g ′cons (d,PTu′) ≤ 0

(20)
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where Eq .(19) denotes the equality constraints of deep neural networks through the big-M method.
This way, an improved framework is formulated using a deep neural network (DNN) with rectified linear units

(ReLU) as illustrated in Fig.7. This improved framework is first tested with the small peaks function, and then extended
to a large-scale combustion process.

(a) ReLU activation function (b) Deep artificial neural network

F IGURE 7 Deep neural network with rectified linear units

4.1 | Illustrative example

To verify the superiority of the reLu-DNN models, in terms of computational efficiency global optimisation is firstconstructed for four surrogate models (ANN, ANN-PWA, tanh-DNN and relu-DNNmodel, respectively) for the peaksfunction previously presented. Tab.4 shows the optimisation results. The small-scale tanh-DNN could replace thelarger shallow ANN model, resulting in a significant computational saving, more than one order of magnitude. Therelu-DNN model requires much more neurons than the tanh-DNN model, due to the lower non-linearity of the r el uactivation function. Despite the fact that the relu-DNNmodel is larger, its optimisation cost is much lower, two ordersof magnitude less than the cost of the tanh-NN models. The rapid global optimisation computations using the relu-NN model is attributed to the advanced MILP solver algorithm utilised. Furthermore, the computation cost using therelu-DNN model is much less than that using the ANN-PWA model with 30 linear segments because of the large(r)number of linear models involved in the PWA formulation. More linear models lead to more binary variables, requiringmore branching steps reducing the computational efficiency.
TABLE 4 Comparative optimisation results of different ANN models

Model Solver Optimal value CPU time (s) Rel.tolerance

ANN(1 layer, 52 neurons, t anh) BARON -6.555 30294.26 0.002
ANN-PWA (30 linear segments) CPLEX -6.542 1004.71 0.002
DNN(2 layers, 8-8 neurons, t anh) BARON -6.558 2579.68 0.002
DNN(2 layers, 40-40 neurons, r el u ) CPLEX -6.543 25.93 0.002

4.2 | Case study

To verify the significant advantages of the deep rectifier neural network in our global optimisation formulation ob-
served in the previous section, a more challenging combustion process [57, 23] is considered here.
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4.2.1 | Process description

A combustion process taking place in a horizontal cylindrical combustor, 1.8m in length and 0.45m in diameter with a
fuel nozzle with diameter 0.0045m is considered here. The overall reactions in the combustor are as follows:

• CH4 + 2O2 →CO2 + 2H2O
• C2H4 + 3O2 →2CO2 + 2H2O
• C3H8 + 5O2 →3CO2 + 4H2O
• C4H10 + 8.5O2 →4CO2 + 5H2O

In addition a complex NO mechanism, comprising thermal NO, prompt NO and N2O intermediate mechanism is also
taken into account. Fuel NO mechanism was ignored due to the small amount of nitrogen in the feed. Thermal
efficiency can be improved by increasing combustion temperature, which however, inevitably leads to more pollutant
emissions, such as NOx. The NOx production is dominated by the thermal NOmechanism, given below, which is very
sensitive to temperature.

• O + N2 ⇌NO + N
• O2 + N⇌NO + O
• N + OH⇌NO + H

This work focuses on the optimisation of inlet operational conditions (shown in Tb. 5) in order to minimise NOx
emissions. In addition to chemical reactions, multiple physical phenomena are involved, including complex turbulent
flows, heat andmass transfer. Commercial CFD softwarewas used, namely ANSYS/FLUENT, to construct high-fidelity
CFD models to calculate velocity, temperature and component fraction fields.

4.2.2 | CFDModel Description

The computation domain for the CFD model consisted of a 2-dimensional axisymmetric depiction of the combustor
To ensure that computations are grid independent, numerical experiments using 5481, 6381, 9081 and 14832 com-
putational cells were performed for the maximum temperature. Finally, 9081 computational cells (9332 nodes) were
chosen as solutions did not change with more computational cells/nodes. The renormalisation group (RNG) k − ϵ

turbulence model for fluid flow is employed. The eddy-dissipation model was employed for the species transport
equations because the overall reaction rate is controlled by turbulent mixing. To take into account the effects thermal
radiation, including absorption and scatting coefficients, a discrete ordinates (DO) radiation model was used.

The second-order upwind scheme was applied for the space derivatives of the advection terms in all transport
equations. The SIMPLE algorithm was employed to handle the velocity-pressure coupling in the flow field equations.
Convergence criteria required the residual for the energy equation to be below 1 × 10−6 and the residuals for the
other model equations below 1 × 10−3. The mass-weighted-averages of temperature at the exit and the maximum
temperature of the entire fluid were also monitored as other convergence criteria.

The base case inlet conditions are given below. For fuel gas, the base value for inlet velocity was 100m/s and that
for inlet temperature was 298K. The inlet composition was as follows: CH4: 87.8%, C2H4: 4.6%, C3H8: 1.6%, C4H10:
0.5%, N2: 5.5%. For preheated air gas, the inlet velocity was 85 m/s and the inlet temperature 1473 K while the inlet
air composition was: O2: 19.5%, N2: 59.1%, H2O: 15%, CO2: 6.4%, NO: 110 ppm. Five independent variables were
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used to optimise the whole process. The independent variables along with their allowable ranges are listed in Tab.5
below.
TABLE 5 Range of independent variables

Variables Range Units

inlet air velocity [85,125] m/s
inlet fuel velocity [80,120] m/s

oxygen mass fraction (inlet air) [18.5, 19.5] %
inlet air temperature [1450, 1600] K
inlet fuel temperature [298, 398] K

F IGURE 8 Two-dimensional geometry of a single axisymmetric combustor can and its mesh

4.2.3 | Model reduction

Although the high-fidelity CFDmodel can provide accurate simulation results, its black-box characteristics and overall
complexity make further optimisation and control tasks coputationally tedious. Reduced surrogate models need to be
developed to deal with the challenges arising. The LHC sampling method was utilised to collect 1024 CFD samples,
which took around 6 days through 4-CPU parallel computing. The input variables are the ones listed in Tab.5, while
the output results are the physical field data along with the average NOx emission at the outlet surface. Due to the
high dimensionality of the FOM, direct mapping of the input-output relationship would result in very large-scale ANN
surrogate models, which often exceed the capability of current optimisation algorithms. Therefore, the PCA step was
first employed and then surrogate ANN models were constructed based on the PCA-reduced models.

ANN models were built for the field data, to construct the redcuced PCA-ANN constraints and for the average
output NOx emission to formulate the ANN-reduced objective function. The field data include axial and radial velocity,
Static Temperature, N2, H2O, O2, CO2, C4H10, CH4, C2H4, C3H8, and NO fraction concentrations (12 state variables).
It should be noted that the average output NOx emission is only one variable so does not require a PCA reduction
step. In this work, PCAwas performed separately for each state variable. While some PCAmethods compute principal
components for all state variables together, we found that working on each state variable we could generate more
accurate principal components. The standard criterion, of capturing 99.99% of the total energy, was set. This way,
the reduced surrogate models, were built, as displayed in Tab.6.
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TABLE 6 Number of PCs and corresponding ANN models
Variables Number of PCs DNN (2 layers, tanh) DNN (2 layers, relu)

No of neurons No of neurons

Axial velocity 4 14, 14 14, 14
Radial velocity 9 15, 15 22, 22
Temperature 6 16, 16 16, 16

N2 concentration fraction 7 19, 19 24, 24
H2O concentration fraction 8 15, 15 18, 18
O2 concentration fraction 6 17, 17 20, 20
CO2 concentration fraction 7 12, 12 14, 14
C4H10 concentration fraction 6 15, 15 17, 17
CH4 concentration fraction 7 26, 26 28, 28
C2H4concentration fraction 6 10, 10 18, 18
C3H8concentration fraction 6 18, 18 24, 24
NO concentration fraction 4 12, 12 14, 14

Objective: output NOx emission - ANN (1 layer, tanh) ANN (1 layer, relu)
- 14 30

4.2.4 | Model validation

Model validation was implemented on the reduced models before the subsequent optimisation step, taking into ac-
count two aspects, representation ability and prediction ability. The representation ability of the reduced models was
tested through the comparison between the FOM and ROMs on the base case inlet conditions. Computational re-
sults show only very small differences, especially for N2, C4H10, CH4, C2H4, C3H8, and NO fraction fields. The above
species fraction fields are close to uniform distribution across the combustor, except for the small area near the fuel
nozzle. Fig.9(a), 9(b), 9(c), 9(d), 9(e) give the velocity field, temperature field, O2 , CO2 and H2O concentration fraction
field of FOM, tanh-ROM and relu-ROM under the inlet being base values. The five contour diagrams illustrate that
flow, temperature and mass fraction fields of FOM and ROMs are very close, indicating the strong representation
ability of the ROMs. Moreover, the tanh-DNN reduced models show smaller difference than the relu-DNN reduced
models, especially for the temperature field, implying the better accuracy of the tanh-DNN models due to the non-
linearity of tanh function. Tab.7 shows the comparison of maximum field values between FOM and ROMs and the
corresponding errors. The largest error is only 0.56%. To test the ROMs prediction ability, 40 random inlet condition
points different than the base case ones were chosen and compered with FOM results. The largest error was less than
5% indicating that the ROMs can be reliably used for further optimisation studies. Furthermore, the ROMs exhibit
significant computational savings compared to the full-order CFD models as expected. The average CPU time for the
CFDmodel (run in ANSYS/FLUENT) is approximately 1560 CPU seconds, while each ROM requires less than 0.1 CPU
seconds and can be efficiently used to perform global optimisation studies.
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TABLE 7 Average value comparison of FOM and ROMs
Variables FOM relu-ROMs errors tanh-ROMs errors

Velocity(m/s) 29.82089 29.6652 0.40% 29.70166 0.56%
Temperature(K) 1625.259 1621.948 0.03% 1625.702 0.20%

H2O mass fraction 0.151743 0.1518191 0.02% 0.1517722 0.05%
O2 mass fraction 0.1906906 0.1908453 0.01% 0.1907176 0.08%
CO2 mass fraction 0.0663304 0.06627689 0.00% 0.06633245 0.08%

Computational time for each sample 1560 <0.1 - <0.1 -

4.2.5 | Global optimisation

In this section, global optimisation is implemented using the validated reduced models. The general mathematical
formulation is given in Eq.(20). In the combustion optimisation problem, d are the 5 inlet operation parameters, u′

are the 76 reduced state variables . The objective functionG (d,u′) represents the average outlet NOx emission. The
allowable ranges for the input variables are given in Tab.5, while the bounds for the state variables are given in Tab.8.
It should be noted that the state variable bounds are implemented through the inverse projection

l b ≤ PTu′ ≤ ub (21)
where l b and ub denote lower and upper bounds, respectively.

Finally, anMILP problemwith 29,903 linear constraints, corresponding to the equality constraints and 488 binary
variables corresponding to the total number of ANN neurons is formulated for the relu-based ROM, while an NLP
problem with 28247 linear constraints, and 392 nonlinear terms is constructed for the tanh-based ROM. The limit
value for the computational time was set to be 100 hours. Both of the relative and absolute tolerances were set to
be 0.002.

The NLP problem did not converge to a feasible solution in BARON within the allowable time, probably due to
the high non-convex activation function t anh and large number of variables than inhibited the branch-and-bound
algorithm. The r el u-basedMILP problem converged in 1001.94s in CPLEX. The computed optimal solution was: NOx
emission: 110.17 ppm, air velocity: 95.07 m/s, fuel velocity:119.08m/s, oxygen fraction concentration (air): 18.50 %,
air temperature: 1450 K and fuel temperature: 369.83K. To validate the computed optimal solutions, we performed
a full CFD simulation in ANSYS/FLUENt using the calculated optimal inlet conditions. The outlet NOx emission was
computed to be 113.26 ppm, which was very close to the calculated optimum with an error of approximately 2.73 %,
which is small enough for most industrial cases. Fig.10(a), 10(b), 10(c), 10(d) ,10(e), depicts a comparison of the main
field state varibales at the optimal; conditions computed by the reduced and the full models, respectively. As it can be
observed, the optimal solution computed through the ROM is very close to FOM simulation using the optimal inlet
conditions. Tab.9 gives a comparison of the corresponding max values across the whole domain. The performance of
the reduced model is very close to the full model with the biggest error being less than 3%. The computational cost
for the relu-based MILP problem is significanlty reduced compared to the NLP problem.
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(a) Velocity (m/s) comparison among full model and reducedmod-
els

(b) Temperature (K) comparison among full model and reduced
models

(c) H2Omass comparison among full model and reduced models (d) O2 mass comparison among full model and reduced models

(e) CO2 mass comparison among full model and reduced models

F IGURE 9 Comparison of velocity, temperature and concentration fraction field between FOM and ROMs
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TABLE 8 Range of state variables
State variables Range Units

Axial velocity [-150,150] m/s
Radial velocity [-150,150] m/s
Temperature [0, 2200] K

N2 concentration fraction [0,1] -
H2O concentration fraction [0,1] -
O2 concentration fraction [0,1] -
CO2 concentration fraction [0,1] -
C4H10 concentration fraction [0,1] -
CH4 concentration fraction [0,1] -
C2H4 concentration fraction [0,1] -
C3H8 concentration fraction [0,1] -
NO concentration fraction [0,1] -

(a) Velocity (m/s) comparison among full model and reducedmod-
els under optimal condition

(b) Temperature (K) comparison among full model and reduced
models under optimal condition

(c) H2Omass fraction comparison among full model and reduced
models under optimal condition

(d) O2 mass fraction comparison among full model and reduced
models under optimal condition

(e) CO2 mass fraction comparison among full model and reduced
models under optimal condition

F IGURE 10 Comparison of optimal velocity, temperature and fraction concentration field between FOM and
ROM
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TABLE 9 Average value comparison of FOM and ROMs
Variables FOM relu-ROMs errors

Velocity(m/s) 23.11901 23.73662 2.67%
Temperature(K) 1487.854 1456.745 2.09%

H2O mass fraction 0.1522371 0.1520701 0.11%
O2 mass fraction 0.1803872 0.1806236 0.13%
CO2 mass fraction 0.06699268 0.06689615 0.14%

Output NOx emission (ppm) 113.26 110.17 2.73%

5 | CONCLUSIONS

This paper presents a model-reduction based global optimisation framework for large-scale nonlinear steady-state
systems. A double model reduction, comprising principal component analysis and artificial neural networks, were
first employed to construct the reduced model, which was then utilised by deterministic global optimisation meth-
ods. The high non-convexity of the activation function in reduced ANN models affects the computational speed
branch-and-bound algorithms. To overcome this barrier, two improvements are proposed. Firstly, a piece-wise affine
reformulation to transform the nonlinear branching into binary variables resulting in an MILP problem with higher
computational efficiency. Secondly, the implementation of a continuous piece-wise linear activation function-based
deep ANN structure to improve computational accuracy. Applications including peaks function, a tubular reactor and
a complex large-scale combustion process were employed to illustrate the favorable performance of the improved
framework. Nevertheless, it is still a challenge to efficiently compute the global optimum for large-scale optimisation
problems. Firstly, this work assumes enough representative samples as a basis to construct the reduced order models.
Smart sampling methods to achieve optimal trade-off between quality and quantity are important for improving both
efficiency and accuracy, as well as verification methods to guarantee the accuracy of the computed solutions [58].
Secondly, global optimisation even using reduced surrogate models is still computationally expensive. Advanced data
techniques and MILP algorithms [59] may further improve computational efficiency of this optimisation framework.
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Chapter 4

Robust model predictive control of

large-scale distributed systems under

uncertainty

4.1 Introduction

A model reduction based global optimisation framework for large-scale distributed pa-

rameter systems has been presented in Chapter 3. Several practical computational cases were

employed to validate the computational advantages of the proposed framework. Successful

computational practices of the previous near global optimisation methodology motives the

further applications in optimisation based control field. Control of distributed parameter sys-

tems is a meaningful but challenging online task in practical engineering and science areas.

Efficient intelligent control strategies can significantly improve process performance and re-

duce the possibility of process safety problems. However, there are two key issues, preventing

practical control policy for large-scale distributed parameters. One is process uncertainties

such as significant parametric uncertainty and slight system disturbances, leading to plant-

model mismatch. While the other one is the intensive online computations due to expensive

evaluations of high dimensional systems from discretisation. Originated form these issues, a

general computational methodology for robust nonlinear model predictive control is proposed

in this work for large-scale distributed systems under parametric uncertainty.

Parametric uncertainty of large-scale complex systems needs to account for quantities of

80



interest, to robustly control systems and improve process performance.However, explicit so-

lution formulation of the quantities of interest with respect to uncertain parameters is gen-

erally unavailable for most practical large-scale systems. Furthermore, direct sample-based

uncertainty propagation, such as the traditional Monte Carlo methods, would lead to impracti-

cal computational costs for expensive distributed parameter systems The popular polynomial

chaos expansion method could be a promising solution for uncertainty propagation tasks.

Through systematic data collection and choice of polynomial chaos corresponding to the

type of uncertainty distribution, the low order polynomial chaos expansion approach could

compute the probabilistic bounds and/or lower-upper bounds for the original highly complex

systems with desirable precision, which could significantly reduce the computational costs of

the uncertainty propagation process.

Nevertheless, model-based control of large-scale distributed parameter systems is still

challenging due to the model-plant mismatch from system noises. A model predictive con-

trol strategy could be adopted to eliminate this error. Furthermore, Chapter 3 presents a sys-

tematic computational framework to calculate the near global optima of large-scale systems.

Here, the similar framework will be applied to perform a real-time optimisation procedure

within model predictive control, combining efficient data collection and model reduction. A

combination of proper orthogonal decomposition and recurrent neural networks will be em-

ployed to construct accurate surrogate models that can predict the robust bounds of quantities

of interest, computed by polynomial chaos based uncertainty propagation procedure.

The proposed robust model predictive control framework was tested through a typical

chemical tubular reactor and a novel continuous bioreactor with cell recycle. The compu-

tational cases show that the presented computational framework can efficiently control the

operating conditions to satisfy the safety and production requirements across time and space

scales and to maintain high product quality for the running reaction systems.
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Robust model predictive control for large-scale
distributed parameter systems under uncertainty

Min Tao, Ioannis Zacharopoulos and Constantinos Theodoropoulos

Abstract—Control of nonlinear distributed parameter systems
(DPS) under uncertainty is a meaningful task for many indus-
trial processes. However, both intrinsic uncertainty and high
dimensionality of DPS require intensive computations, while
non-convexity of nonlinear systems can inhibit the computation
of global optima during the control procedure. In this work,
polynomial chaos expansion (PCE) was used to account for
the uncertainties in quantities of interest. Then the proper
orthogonal decomposition (POD) method was adopted to project
the high-dimensional nonlinear system dynamics onto a low-
dimensional subspace, where recurrent neural networks (RNNs)
were subsequently built to capture the reduced dynamics through
a systematic data collection from the high-fidelity simulator.
Finally, the reduced RNNs based model predictive control (MPC)
would generate a set of sequential optimisation problems, of
which near global optima could be computed through MILP
reformulation techniques and advanced MILP solver. The effec-
tiveness of the proposed framework is demonstrated through two
case studies: a chemical tubular reactor and a cell-immobilisation
packed-bed bioreactor for the bioproduction of succinic acid.

Index Terms—Nonlinear model predictive control, distributed
parameter systems, uncertainty quantification, artificial neural
network, model reduction, data-driven methodology

I. INTRODUCTION

Spatial-temporal distributed parameter systems (DPS) ex-
ist widely in engineering practice [1], e.g in chemical [2],
biochemical [3] and mechanical engineering [4]. Complex
DPS usually exhibit uncertainty due to inherent stochastic
and/or incomplete knowledge of processes [5], which lead to
substantial model-plant mismatch. Efficient control strategies
for large-scale complex DPS under uncertainty could speed
up process production and ensure process safety [6]. Model
predictive control (MPC), a popular advanced control method
for multivariate plants with process constraints, reformulates
the original optimal control problem (OCP) into a finite
sequence of dynamic optimisation problems at each sampling
time to obtain the corresponding control actions [7]. Feedback
is introduced to this procedure through updating the state(s) of
nonlinear dynamic models. In spite of both improved optimisa-
tion algorithms and fast hardware, the computational demand
on MPC is still high for large-scale DPS problems. The high
dimensionality of the discretised DPS results in slow computa-
tional speeds, which is impractical for real-time control, while
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global optimisation of the non-convex MPC sub-problems
is usually computationally intractable. In addition, black-box
characteristics of high-fidelity commercial simulators [8], [9]
prevent the direct utilisation of model-based computational
techniques. Furthermore, dynamic model predictions are of-
ten significantly affected by parametric uncertainties [10],
which may lead to wrong decision-making computed from
MPC controllers. Therefore, efficient uncertainty quantifica-
tion methods are of great importance for developing MPC
strategies for large-scale DPS under parametric uncertainty.
Uncertainty quantification procedures for DPS however, often
require a large number of repeated computationally expensive
evaluations. Thus, control of DPS under uncertainty is an
important practical engineering challenge.

Uncertainty quantification (UQ) aims to measure the impact
of uncertainty on quantities of interest [5]. The direct Monte
Carlo (MC) sampling method is typically utilised to complete
UQ tasks for generalised complex problems, generating a
large number of realisations to accurately approximate the
uncertainty distributions. Compared with the expensive MC
method, both efficient sampling methods [11] and lower order
model-based methods [10] are more powerful in terms of
computational costs for complex large-scale systems. Efficient
sampling methods, such as Latin hypercube sampling [11]
and sparse grid methods [12], [13], [14], only require a few
representative samples to be propagated utilising the original
systems, which can greatly reduce computational demand.
However, less samples would lead to lower computational
accuracy for quantitative tasks. Lower order models on the
other hand, including popular power series expansions (PSE)
[15], [16] and polynomial chaos expansions (PCE) [17],
can lighten the computational load by replacing the original
expensive computational models [10], [18], which has been
commonly employed to estimate the statistics for large-scale
complex systems [19], [20]. Computational case studies have
shown that the PCE method is faster and more accurate
than the PSE method for large-scale thin film formation and
heterogeneous catalytic flow problems [21], [19]. In this work,
fast PCE-based uncertainty propagation method was employed
to address parametric uncertainty for large-scale complex
systems. Nevertheless, both high dimensionality and non-
convexity issues are still computational barriers for applying
MPC to large-scale distributed systems.

Model order reduction techniques are the most effi-
cient methodologies to address the high dimensional issues
for spatial-temporal distributed systems [22]. Together with
Galerkin method [23], [24] or ANN surrogate models [25], the
proper orthogonal decomposition (POD) approach, also named
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as Karhunen-Loeve decomposition, can generate accurate low-
dimensional models that can be efficiently used to perform
control and optimisation tasks for large-scale distributed sys-
tems. Additionally, inertial manifolds or approximate inertial
manifolds have been employed to construct stable controllers
for dissipative partial differential equation (PDE) systems [26],
[27]. Moreover, equation-free methodologies offer another ef-
fective model reduction approach for optimisation and control
purposes [28], [29], [30], [31]. Equation-free methods utilise
input/output data to compute dominant system eigendirections
that drive the system dynamics as well as low-dimensional
gradients that can accelerate computational evaluations for
large-scale dissipative systems. A detailed discussion about
model reduction based optimisation and control methodologies
can be found in [32].

To overcome the non-convexity issues for large-scale non-
linear optimisation problems, both stochastic and deterministic
methods can be used. Stochastic optimisation methods [33],
[34] can perform global searches across the design space
to avoid multiple local optima, but they can not guarantee
optimal conditions. Deterministic global optimisation methods
typically implement branch and bound procedures or their ex-
tensions to narrow the gap between low and upper bounds [35],
and are often extremely expensive for large-scale problems but
they can guarantee global optimality conditions.

The aim of this work is to construct a robust model
predictive control framework for large-scale distributed sys-
tems under uncertainty. Firstly, polynomial chaos expansion
approach is used to compute statistics for the quantities of
interest of DPS. Then a combination of POD and recurrent
neural networks (RNNS) is employed to capture the nonlinear
dynamics of the calculated statistic moments and/or bounds.
The resulting reduced ANN surrogate models can accurately
represent the dynamics of the (black-box) large-scale systems
and are efficiently implemented for MPC. In addition, the
resulting optimisation sub-problems are globally optimised
using advanced global optimisation solvers [36], [37], [38].

Since the high complexity of ANN structures leads to in-
tractable computational problems for advanced global solvers,
most previous studies of optimising surrogate ANN-based
models focus on local optimisation [39] and/or small problems
[40]. A reduced-space global optimisation algorithm [41] for
ANN-based models was proposed to reduce computational
costs and to allow an efficient nonlinear MPC formulation.
[42]. The reduced-space global optimisation algorithm focuses
more on the online reformulation techniques within global
optimisation procedures for general ANN models. Offline
reformulation strategies for constructing ANN models and
choosing ANN structures with activation functions have not
been involved to improve the computational performances. In
our previous work [43], offline reformulation strategies in-
cluding principal component analysis and deep rectifier neural
networks were employed to build accurate but relatively simple
ANN models for distributed parameter systems, which could
be then formulated into mixed integer linear programming
(MILP) problems and globally solved by advanced MILP
solver CPLEX [44]. Here, offline reformulations techniques,
POD and ReLU based RNN models were employed to de-

scribe the original high-dimensional nonlinear dynamics of
statistic moments and/or bounds for the quantities of inter-
est. Then the dynamic optimisation of distributed parameter
systems could be reformulated into MILP problems solved
by CPLEX, which could significantly reduce computational
costs and capture the approximate global optima. Global
NMPC studies have been performed in previous literature [45],
[46], employing advanced global solvers and mixed integer
programming strategies. The normalised multi-parametric dis-
aggregation technique was utilised to compute upper and lower
bounds in a spatial branch and bound formulation for global
NMPC with multiple operating conditions [47]. Also, rigorous
nonlinear MPC was reformulated into a sequence of mixed
integer nonlinear programming problems, which were then
solved globally [48]. However, all these works are limited
to small and or medium size problems. To the best of our
knowledge, global NMPC techniques have not been utilised
for controlling large-scale DPS under uncertainty. In addition,
no other work has been reported using a combination of
double model reduction involving POD and RNN for high
dimensional nonlinear systems, combined with PCE to address
parametric uncertainty. The novelty of this work is to provide
a PCE-POD-RNN based robust NMPC strategy for large-
scale distributed systems under uncertainty, where the resulting
surrogate model based optimisation sub-problems are glob-
ally solved. The performance of the proposed computational
framework is validated via a receding horizon NMPC formu-
lation for a chemical tubular reactor and a cell-immobilisation
packed-bed biochemical reactor.

The rest of the paper is organized as follows. In Section
2, the robust NMPC strategy framework is proposed. Fur-
thermore, the detailed theoretic basis and implementation are
provided. In Section 3, the model based control framework
is verified by practical chemical and biochemical reactors. In
Section 4, conclusions and further applications are discussed.

II. PCE-POD-RNN BASED ROBUST NMPC
METHODOLOGY

In this part, the PCE-POD-RNN based robust nonlinear
MPC strategy would be introduced. Firstly, the general optimal
control problem is formulated. Then detailed polynomial chaos
expansion, proper orthogonal decomposition and recurrent
neural network parts are discussed, respectively. Finally, the
general robust nonlinear model predictive control methodology
is illustrated.

A. Problem formulation

The general optimal control problem for PDE-based dis-
tributed parameter systems with parametric uncertainty:

min
λ

G(y, p,λ )

s.t.
∂y
∂ t

= D{∂y
∂x

,
∂ 2y
∂x2 , ...,

∂ ny
∂xn , p,λ}+R(y, p,λ )

A{∂y
∂x

,
∂ 2y
∂x2 , ...,

∂ ny
∂xn , p,λ}

∣∣∣∣
x=Ω′

= hbds(y, p,λ )

y|t=0 = y0

gcons(y, p,λ )≤ 0

(1)
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where G(y, p,λ ) : RNy ×RNp ×RNλ →R denotes the objective
cost function for the OCP, and the constraints are the PDE-
based system equations with corresponding boundary and
initial conditions. t ∈ R is the time dimension while x ∈ RNx

are the space dimensions, y(t,x) : R×RNx →RNy are the state
variables, p ∈ RNp the uncertain parameters, λ (t) : R→ RNλ

are the manipulated variables, D is the differential opera-
tor, R(y, p,λ ) are the nonlinear parts of PDEs, A is the
operator on the boundary conditions, Ω′ is the boundary,
hbds(y, p,λ ) : RNy ×RNp ×RNλ →RNy are the function values
for the boundary conditions, y0 ∈ RNy are the initial values
and gcons(y, p,λ ) : RNy × RNp × RNλ → RNcon are the Ncon
general constraints for state variables, manipulated variables
and uncertain parameters. Here, we assumed that the uncertain
parameters p ∈ RNp were time-invariant.

In general, the analytical solutions for the above Eq.(1) are
unavailable. Therefore, computing the numerical solutions is
more practical. If we transform the above continuous dynamic
systems into discrete ones, the discretised dynamic systems
can be formulated as below:

y′τ+1 = fdis(y′τ ,λ
′
τ , p)+wτ

zτ+1 = hdis(y′τ+1,λ
′
τ , p)+ vτ

y′0 = y0

(2)

where y′(t) ∈ RNy′ are the high dimensional discretised state
variables, y′τ ∈RNy′ the state variables at discretised time step
τ ∈ N, λ ′

τ ∈ RN
λ ′ the manipulated values at discretised time

step τ , zτ ∈ RNz the measurement values at discretised time
step τ . y′0 are the discretised initial values. fdis : RNy′ ×RN

λ ′ ×
RNp → RNy′ and hdis : RNy′ ×RN

λ ′ ×RNp → RNz denote the
discrete time nonlinear dynamic systems and output equations,
respectively while wτ ∈RNw and vτ ∈RNv represent the time-
varying additional noises to state variables and measurements,
respectively, which follow zero-mean normal distributions.

Then the time-space infinite dimensional original problem
Eq.(1) can be reduced as a time-space finite dimensional large-
scale stochastic (due to parametric uncertainty p) nonlinear
programming (NLP) problem:

min
λ ′

τ

G′(y′τ ,zτ , p,λ ′
τ)

s.t. y′τ+1 = fdis(y′τ ,λ
′
τ , p)+wτ ,τ = 0,1,2....k

zτ+1 = hdis(y′τ+1,λ
′
τ , p)+ vτ ,τ = 0,1,2....k

y′0 = y0

g′cons(y
′
τ , p,zτ ,λ

′
τ)≤ 0,τ = 0,1,2....k

(3)

where G′ is the discretised objective cost function, g′cons
denotes the general constraints for the discrete time state
variables, manipulated variables, output measurements and un-
certain parameters, and k is the number of time horizons. The
cost function G′ and the constraints g′cons will have a stochastic
representation due to the general parametric uncertainty p. In
the following parts, a combination of PCE and POD-RNN
techniques is employed to deal with the large-scale stochastic
nonlinear programming Eq.(3).

B. Polynomial chaos expansion

To address parametric uncertainty, probabilistic approaches
describe it by employing a probability density function (PDF)
[49]. PCE, one of the most efficient UQ methods, uses only a
few system samples to construct accurate stochastic surrogate
models. The key idea of PCE is to represent an arbitrary
random variable g with finite second-order moments as a
function of random variables θ [50]:

g(θ) = ∑abΘb(θ)

Θb(θ) = Π
Nθ

i=1Θbi(θi)
(4)

where θ ∈ RNθ are random variables such as the random
parameters p in this work, g is quantities of interest such as the
state variables and output values in this work; Θb : RNθ → R
are multivariate orthogonal polynomials from tensor products
of univariate polynomials Θbi : R → R and ab ∈ R are the
corresponding coefficients, b∈NNθ are multidimensional sum-
mation indices and bi denotes the degree of each univariate
polynomial Θbi(θi) of θi.

For generalised polynomial chaos, the choice of orthogonal
polynomials significantly depends on the types of the prob-
abilistic distributions of random variables θ . For example,
Hermite polynomials would commonly be chosen for normal
distributions. The equation below gives the expression for uni-
variate Hermite polynomials ΘH

bi
with respect to the standard

Gaussian distribution θ
g
i .

Θ
H
bi
(θ g

i ) = (−1)biexp(
1
2

θ
g2

i )
dbi

dθ gbi
i

exp(−1
2

θ
g2

i ) (5)

One of the most important properties of multivariate orthog-
onal polynomials is orthogonality, i.e. generalised polynomial
chaos terms are orthogonal to each other:

< Θb1(θ),Θb2(θ)>=

{
< Θ2

b1(θ)> ,b1 = b2
0 ,b1 ̸= b2

(6)

where <Θ2
b1(θ)> are often known as constants, whose values

depend on the chosen polynomial family and multidimensional
summation indice b1.

If the inner product <,> of any two random variables
g2(θ),g1(θ) are defined in corresponding probability space:

< g1(θ),g2(θ)>=
∫

Ω′
g1(θ)g2(θ)π(θ)dθ (7)

where Ω′ is integral space of inner product, π(θ) is the
probability density function.

Then the inner product between arbitrary random vari-
able g(θ) and any multivariate orthogonal polynomial chaos
Θb1(θ):

< Θb1(θ),g(θ)>=
∫

Ω′
Θb1(θ)g(θ)π(θ)dθ

=
∫

Ω′
Θb1(θ)∑abΘb(θ)π(θ)dθ

= ∑ab

∫
Ω′

Θb1(θ)Θb(θ)π(θ)dθ

= ∑ab < Θb1(θ),Θb(θ)>

= ab1< Θ
2
b1(θ)>

(8)
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According to Eqs.(7-8), any coefficient of the generalised
polynomial chaos terms can be computed as follows:

ab1 =
< Θb1(θ),g(θ)>

< Θ2
b1(θ)>

=

∫
Ω′ Θb1(θ)g(θ)π(θ)dθ

< Θ2
b1(θ)>

(9)

Here we adopt non-intrusive projection and quadrature meth-
ods calculate the integral term as Eq.(10) due to the black-box
characteristics of nonlinear dynamic systems.∫

Ω′′
Θb1(θ)g(θ)π(θ)dθ ≈

Nkk

∑
kk=1

wkkΘb1(θkk)g(θkk) (10)

where Nkk is the number of quadrature points, θkk and wkk
are the sampling points and the corresponding weights ,
respectively, according to the quadrature rules.

Then, the PCE-based stochastic surrogate models are
tractable and can be utilised to estimate the probabilistic
distributions of state variables and output values. The mean
value and covariance of quantities of interest g(θ) can be
calculated as below [51]:

g(θ)≈
L

∑
b=0

abΘb(θ)

µg = E(g(θ))≈ a0

σg =Var(g(θ))≈
L

∑
b=1

a2
b < Θ

2
b(θ)>

(11)

where L denotes the tensor product of the truncated order of
the arbitrary random variable g(θ).

The specific probability limits, such as the worst bounds in
low confidence levels under the defined probability P′, could
be evaluated through the PDFs obtained for g(θ) as follows:

gp(θ) = F−1
cd f (P

′)

P′(g(θ)< gp(θ)) = Fcd f (gp(θ))
(12)

where gp(θ) are probability bounds for the random variable
g(θ), and Fcd f the cumulative distribution function (CDF).
In this work, we focus on the mean values and lower-upper
bounds of state variables and output values as follows:

µy′τ
= E(y′τ)

α
lo
y′τ

= F−1
cd f ,y′τ

(
1
2

β )

α
up
y′τ

= F−1
cd f ,y′τ

(1− 1
2

β )

µzτ
= E(zτ)

α
lo
zτ
= F−1

cd f ,zτ
(

1
2

β )

α
up
zτ

= F−1
cd f ,zτ

(1− 1
2

β )

(13)

where µy′τ
, α lo

y′τ
,αup

y′τ
are the mean value, lower and upper

bounds of the discrete-time state variable y′τ , respectively;
µzτ

,α lo
zτ

,αup
zτ

are then mean value, lower and upper bounds
of discrete-time output values zτ , respectively; Fy′τ and Fzτ

are the CDFs of y′τ and zτ ; β is the small parameter value

to compute lower and upper bounds with a high confidence
level. In this work, β is set to be 0.05 with a 95 % level of
confidence.

In this manner, the above large-scale stochastic nonlinear
programming Eq.(3) can be transformed into the following
Eq.(14):

min
λ ′

τ

G′′(µy′τ
,α lo

y′τ
,αup

y′τ
,µzτ

,α lo
zτ
,αup

zτ
,λ ′

τ)

s.t. µy′τ+1
= fµ(µy′τ

,α lo
y′τ
,αup

y′τ
,λ ′

τ)+wτ ,τ = 0,1,2....k

α
lo
y′τ+1

= f
α lo(µy′τ

,α lo
y′τ
,αup

y′τ
,λ ′

τ)+wτ ,τ = 0,1,2....k

α
up
y′τ+1

= fαup(µy′τ
,α lo

y′τ
,αup

y′τ
,λ ′

τ)+wτ ,τ = 0,1,2....k

µzτ+1
= hµ(µy′τ+1

,α lo
y′τ+1

,αup
y′τ+1

,λ ′
τ)+ vτ ,τ = 0,1,2....k

α
lo
zτ+1

= h
α lo(µy′τ+1

,α lo
y′τ+1

,αup
y′τ+1

,λ ′
τ)+ vτ ,τ = 0,1,2....k

α
up
zτ+1

= hαup(µy′τ+1
,α lo

y′τ+1
,αup

y′τ+1
,λ ′

τ)+ vτ ,τ = 0,1,2....k

µy′0
= y0

g′′cons(µy′τ
,α lo

y′τ
,αup

y′τ
,µzτ

,α lo
zτ
,αup

zτ
,λ ′

τ)≤ 0,τ = 0,1,2....k+1
(14)

where G′′: the deterministic objective formulation of the previ-
ous stochastic one G′ through stochastic moments and bounds
µy′τ

,α lo
y′τ
,αup

y′τ
,µzτ

,α lo
zτ
,αup

zτ
. fµ , f

α lo , fαup ,hµ ,hα lo ,hαup and
g′′cons are transformed formulations in similar manners.

C. Proper orthogonal decomposition

Although the fast PCE-based uncertainty propagation
method decreases the computational complexity of calculat-
ing stochastic moments and bounds, the reduced problem
as illustrated in Eq.(14), is still black-box, high-dimensional
and non-convex. Double model techniques, proper orthog-
onal decomposition (POD) and recurrent neural networks
(RNNs), would be employed to capture the high-dimensional
dynamics of stochastic moments and bounds (state variables
and output values µy′τ

,α lo
y′τ
,αup

y′τ
,µzτ

,α lo
zτ
,αup

zτ
) obtained from

the fast PCE method. The key idea of the POD method is
to project the high-dimensional dynamics of the computed
stochastic moments/bounds onto a low-dimensional subspace,
which requires efficient sampling methods in order to collect
enough representative snapshots for a range of parameter
values. Details about the theory and applications of POD
can be found in the literature [52]. Here Latin hypercube
(LHC) sampling on the space of design variables λ ′, com-
bining PCE methods for discretised nonlinear dynamic sys-
tem Eq.(2) , was used to get high-dimensional dynamic
data sets (D ∈ RN

λ ′×N , [Yµy ∈ Rm×N′
y′ ,Y

α lo
y
∈ Rm×N′

y′ ,Y
α

up
y

∈

Rm×N′
y′ ,Yµz ∈Rm×N′

z ,Y
α lo

z
∈Rm×N′

z ,Y
α

up
z
∈Rm×N′

z ]), where m ∈
N is the number of discrete interval points, which for dis-
tributed parameter systems tends to be be a large number,
and N ∈ N is the number of samples, N′

y′ = Ny′ ∗N ∗ k is the
number of discrete time points for discretised variable y′ while
N′

z = Nz ∗ N ∗ k denotes the number of discrete time points
for discretised variable z, Yµy ,Yα lo

y
,Y

α
up
y
,Yµz ,Yα lo

z
,Y

α
up
z

are the
high-dimensional dynamic data sets of stochastic moments
and bounds µy,α

lo
y ,α

up
y ,µz,α

lo
z ,α

up
z , respectively, through the
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methods of PCE and snapshots. LHC method could system-
atically generate samples, covering the whole design space
and maximizing the difference among the produced samples.
Given relatively large number of samples, LHC strategy could
fill the design space to represent the dynamic features of
complex systems. More details about sampling techniques and
discussions can be found in the literature [43].

For the high-dimensional dynamic data set Yµy over a
finite spatial interval Ω′′ ∈ R, the POD method aims to
choose a ”small” set of dominant POD dynamic modes P′

µy
=

(p1, p2, ..., paµy
) ∈ Raµy×N′

y′ (aµy ∈ N is the number of POD
modes) through projecting the high-dimensional dynamics of
Yµy onto the subspace of the aµy POD modes P′.

U1 = P′
µyYµy (15)

Here U ∈ Raµy×N′
y′ is the projection of the original dynamic

data Yµy onto P′ and P′
µy is the orthogonal projector.

In the POD method, the matrix P′ could be constructed by
the covariance matrix Cy ∈ RNy′×Ny′ of the output data Yµy :

Cy =
1

N′
y′ −1

YµyY
T
µy (16)

Here we seek to maximise variance and minimise covariance
between data, i.e. maximising its diagonal elements, while
minimising the off-diagonal elements of Cy.

This is equivalent to implementing singular value decom-
position (SVD) on Cy:

Cy = ZT Z = (
1√

N′
y′ −1

Yµy
T )T (

1√
N′

y′ −1
Yµy

T ) =V1D1V T
1

(17)
where D1 ∈ RN′

y′×N′
y′ is a diagonal matrix whose diagonal

elements are the eigenvalues of ZT Z and V1 is the orthogonal
matrix whose columns are the eigenvectors of ZT Z, which as
can be easily shown are equivalent to the POD modes of Yµy .
In fact, we can keep the first aµy POD modes corresponding to
the aµy dominant eigenvalues of Cy, where usually aµy <<N′

y′ ,

hence V ∈ RN′
y′×aµy and D1 now contains only the aµy most

dominant eigenvalues of the system, D1 ∈ Raµy×aµy . We can
then set P′

µy = V1
T and perform data reduction through the

projection in Eq.(15). The original dynamic data sample, Yµy

can be reconstructed from the projected data:

Yµy = P′
µy

TU1 (18)

And the inverse projection model (reconstruction models)
could be obtained as:

µy′τ
= P′

µy
T uµy (19)

where uµy is the reduced low-dimensional variables.

In the similar manner, the inverse projection model (recon-
struction models) for α lo

y′τ
,αup

y′τ
,µzτ

,α lo
zτ
,αup

zτ
could be com-

Fig. 1. From fold RNN to unfold RNN

puted:
α

lo
y′τ

= P′
α lo

y

T u
α lo

y

α
up
y′τ

= P′
α

up
y

T u
α

up
y

µzτ
= P′

µz
T uµz

α
lo
zτ
= P′

α lo
z

T u
α lo

z

α
up
zτ

= P′
α

up
z

T u
α

up
z

(20)

where P′
α lo

y
,P′

α
up
y
,P′

µz ,P
′
α lo

z
,P′

α lo
z

are the corresponding orthog-

onal projectors to α lo
y′τ
,αup

y′τ
,µzτ

,α lo
zτ
,αup

zτ
, respectively while

u
α lo

y
,u

α
up
y
,uµz ,uα lo

z
,u

α
up
z

are the corresponding reduced vari-
ables.

D. Recurrent neural network

Previous POD model strategy has been employed to
project the high-dimensional nonlinear dynamics of stochas-
tic moments and bounds µy′τ

,α lo
y′τ
,αup

y′τ
,µzτ

,α lo
zτ
,αup

zτ
onto

the subspaces of the low-dimensional dominant dynamics
of uµy ,uα lo

y
,u

α
up
y
,uµz ,uα lo

z
,u

α
up
z

through the methods of snap-
shots. Then recurrent neural networks (RNNs) are adopted
to capture the temporal coefficients on the low-dimensional
subspace. In general, RNNs can be depicted as a folded com-
putational graph, illustrated in Fig.(1), which is unfolded into
a series of connected nodes. The mathematical formulation is
given in the equation:

sτ = fNN(UIτ +Wst−1 +B1)

Oτ = gNN(V sτ +C1)
(21)

where sτ are the time series of the low-dimensional variables
u while Iτ are the time series of the manipulated variables
λ ′

τ , and Oτ are the output time series. fNN and gNN are
RNN functions and output functions with weights U,W,V
and biases B1, C1, respectively. Here we choose the purely
linear activation function for the output function gNN since this
common choice allows large adjustments for output values.

Then multiple layers are set for RNNs because shallow NNs
are easier to be over-fitted, which also requires large-scale
structures (exponentially larger number of nodes in one hidden
layer) to represent the nonlinear dominant dynamics, resulting
in intensive computations for the upper-level optimisation and
control. Since the traditional NN activation functions such
as the sigmoid and the hyperbolic tangent functions, are
highly non-convex, leading to multiple local optima, here the
continuous piece-wise affine (PWA) activation function ReLU
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is adopted, since it can reformulate the trained RNN-based
optimisation problem into an MILP problem, which can be
applied in an open-loop control mode and be solved using
the advanced MILP solver CPLEX [44]. Here ReLU-RNNs
are employed to represent the low-dimensional dynamics of
uµy ,uα lo

y
,u

α
up
y
,uµz ,uα lo

z
,u

α
up
z

. Deep rectifier NN based MILP
problems have been formulated in previous studies [53].
However, combination of uncertainty quantification, model
reduction and deep rectifier NNs has not been reported in the
literature. The mathematical equations of deep rectifier NNs
for uµy = (uµy1,uµy2, ...,uµyaµy

) ∈ Raµy can be reformulated
into PWA functions through the big-M method [54] as the
equation Fuµy (λ

′
τ ,uµy) = 0.

In a similar manner, the trained RNN models for
u

α lo
y
,u

α
up
y
,uµz ,uα lo

z
,u

α
up
z

can be computed as

Fu
αlo

y
(λ ′
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y
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(λ ′

τ ,uα
up
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) = 0
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Fu
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(λ ′
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z
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up
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(λ ′

τ ,uα
up
z
) = 0

(22)

Therefore Eq.(14) can be transformed into the following large-
scale deterministic programming problem:

min
λ ′
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τ)≤ 0,

t = 0,1,2....k+1

(23)

So far, reduced surrogate models are built to represent
the high-dimensional dynamics of stochastic moments and/or
bounds for large-scale distributed parameter systems. The
detailed PCE-POD-RNN model construction algorithm is sum-
marised in Algorithm 1 below:

E. Nonlinear model predictive control

Eq.(23) gives the open-loop formulation of model reduction
based OCP problems, which could be used as an important
part of NMPC-based scheme because the solutions of closed-
loop NMPC would mainly depend on the online solution of
the open-loop problem Eq.(23). Here we assume only box
constraints for g

′′
cons, which commonly include the bounds for

manipulated variables and statistics of state and measurement

Algorithm 1 PCE-POD-RNN model construction algorithm
Inputs: N1, N2, wτ , vτ

Outputs: P′
µy ,P

′
α lo

y
,P′

α
up
y
,P′

µz ,P
′
α lo

z
,P′

α
up
z

,
Fuµy ,Fu

αlo
y
,Fu

α
up
y
,Fuµz

,Fu
αlo

z
,Fu

α
up
z

1: Generate N1 Latin hypercube samples of λ and collect the
distributed dynamic trajectories with system and output
noises wτ and vτ

2: Compute model coefficients of PCE method for time-
space trajectories as Eq.(9)

3: Generate N2 Monte Carlo samples (enough) of uncertain
parameters P

4: Compute distributed stochastic moments and/or bounds
(quantities of interest) through the computed PCE models
as Eq.(11-13)

5: Compute each POD global projectors for every stochastic
moment and/or bound as Eq.(15-20)

6: Compute each RNN surrogate in the computed low-
dimensional POD subspace as Eq.(21)

7: Check the accuracy of the generated POD-RNN models
using fresh samples and dynamic trajectories

8: if Model is accurate then
9: Go to Step 13

10: else
11: Go back to Step 1 and add more samples or regenerate

LHC samples
12: end if
13: return POD projectors and RNN models

variables as follows:

µy′ ≤ P′
µy

T uµy ≤ µy′

α
lo
y′ ≤ P′

α lo
y

T u
α lo

y
≤ α lo

y′

α
up
y′ ≤ P′
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up
y
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up
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up
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µz ≤ P′
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α
up
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up
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up
z

λ
′ ≤ λ

′ ≤ λ
′

τ = 0,1,2....k+1

(24)

where µy′ ,α
up
y′ ,µz,α

up
z ,αup

z ,λ ′,µy′ ,α
lo
y′ ,α

up
y′ ,µz,α

lo
z ,α

up
z ,λ ′

are lower and upper bounds of state variables and manipulated
variables, respectively.

The objective function G
′′
generally aims to minimize the

quadratic functions of desired set-points and/or maximize the
quantity of interest. In the following case study, we consider
maximizing the exit concentration(s) of products, leading to
a shrinking-horizon NMPC. In this way, the general model
reduction-based open loop problems Eq.(23) can be reformu-
lated into large-scale MILP problems , solved by the advanced
MILP solver CPLEX 12.0.

Moreover, multiple validated RNN models can be employed
to estimate the current statistical moments or bounds of the
state variables and quantities of interest, leading to convenient
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Fig. 2. Block diagram of reduced models based observer and NMPC structure

Fig. 3. An exothermic tubular reactor with reaction A→ B

online state estimation using off-line computational models.
Then a closed-loop scheme is implemented as shown in Fig.(2)
.

III. CASE STUDIES

In this section, we use a tubular chemical reactor and a
two-phase packed bed bioreactor to validate our PCE-POD-
RNN-NMPC framework.

A. Chemical tubular reactor

This is a chemical engineering application: a tubular reactor
as illustrated in Fig.(3), where an exothermic reaction takes
place. The reactor model consists of 2 differential equations
in dimensionless form as follows:

∂C
∂ t

=
1

Pe1

∂ 2C
∂y12 − ∂C

∂y1
+Da(1−C)exp(T/(1+T/γ))

∂C
∂ t

=
1

LePe2

∂ 2T
∂y12 − 1

Le
∂T
∂y1

− β

Le
T+

BDa(1−C)exp(T/(1+T/γ))+
β

Le
Tw

b.c.
∂C
∂y1

−Pe1C = 0,
∂T
∂y1

−Pe2T = 0, at y1 = 0

∂C
∂y1

= 0,
∂T
∂y1

= 0, at y1 = 1

(25)
Here C and T are the dimensionless concentration and tem-
perature, respectively. Da denotes the Damköhler number, Le
is the Lewis number, Pe1 is the Peclet number for mass
transport and Pe2 for heat transport, β a dimensionless heat
transfer coefficient, C is the dimensionless adiabatic temper-
ature rise, γ the dimensionless activation energy and y1 the
dimensionless longitudinal coordinate. The system parameters

are Pe1 = 5, Pe2 = 5, Le = 1, Da = 0.1, β = 1.5, γ =
10, B = 12; Tw is the adiabatic wall temperature of the
cooling problem with the cooling zone. A simulator of the
model in Eq.(25) was built with additional system and output
noises, and solved through the pde solver in MATLAB with
200 space discretisation nodes and was subsequently used
in inputs/outputs (black-box) mode. Here inputs include the
manipulated variable Tw and two uncertain parameters Da ∼
N(0.08,0.0082) and B ∼ N(8,0.82) while the outputs are 400
distributed concentration/temperature profiles. The system and
outputs noises satisfy wτ ∼N(0,diag(0.00001∗1∈R400)) and
v′τ ∼N(0,diag(0.000001∗1∈R400)), respectively. Meanwhile
the reporting time sampling interval was 0.4 for the dynamic
simulator.

We aim to improve the performance of this chemical pro-
duction process through an efficient control strategy under
uncertainty based on the constructed black-box simulator
. Specifically, The objective of the controller design is to
maximize E(Cexit), the mean value of concentration at the
exit, satisfying the upper bound constraints of temperature
T up(y1, t) across the whole reactor. Here Latin hypercube
sampling (N1 = 20) was employed to collect enough repre-
sentative trajectory samples through the black-box simulator.
Second order polynomial chaos and 4000 realisations (N2)
of uncertainty distributions were used to compute the high-
dimensional dynamics of statistical moments E(C(y1, t)) and
bounds T up(y1, t). Then double model reduction, First POD
and then RNNs, was employed to generate the reduced models
for online NMPC. Here only 2 dominate POD modes could
capture 99.8 % of the system energy for both E(C(y1, t))
and T up(y1, t), which were then represented by the same size
RNNs, 2 hidden layers (15 neurons, 15 neurons) ReLU-based
RNNs. All computations were implemented in MATLAB
R2019a on a Desktop (Intel Core(TM) i7-8700 CPU 3.2 292
GHz, 16 GB memory, 64-bit operating system, Windows 10).

To avoid over-fitting and under-fitting, the data set was
randomly divided into a training, a validation and a test
set with respective size ratios of 0.70: 0.15 : 0.15. The
MATLAB Neural Network Toolbox was utilised to fit the
weights U,W,V and biases B1, C1 by minimizing the mean
squared errors (MSE) on the training set using Levenberg-
Marquardt algorithm and the early stopping procedure. To
obtain the preferable NN structure (numbers of neurons and
hidden layers), the training process was repeated until desired
accuracy was obtained by adding more nodes and layers.
Fig.(4) gives the predicted time profiles of E(C(y1, t)) and
T up(y1, t) at the exit of the tubular reactor while Fig.(5)
compares the space profiles at steady state. Both time and
space profiles show that the POD-RNN reduced models can
approximate the true time-space dynamic process with a high
accuracy.

Then the accurate reduce POD-RNN models could be
employed into the model based state estimator and control
strategy. Therefore the general open-loop OCP Eq.(23) could
be applied as formulation Eq.(26) for the above chemical
reaction process, which could be reformulated into MILP
problems. The MILP problems would be iteratively solved by
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Fig. 4. Comparison of full order and POD-RNN time profiles of E(C(y1, t))
and T up(y1, t) at the exit of the tubular reactor

Fig. 5. Comparison of full order and POD-RNN space profiles of E(C(y1, t))
and T up(y1, t) at steady state

CPLEX 12.0 in GAMS.

max
Tw,t

E(Cexit)

s.t. RNN Equations;

P′
T up

t

T uT up
t
≤ 4− ε1

0 ≤ Tw,t ≤ 2
−ε2 ≤ Tw,t −Tw,t−1 ≤ ε2

tn = 1,2...,k

(26)

where T up
τ (y1) is the high-dimensional discrete upper bounds

of distributed temperature at time horizon t. Tw,t is the discrete
manipulated variable, the temperature of cooling zone. uT up

t
denotes the low-dimensional variables of the projected T up

t (y1)
through the projector P′

T up
t

. ε1 is a relaxation parameter to
decrease the impact of approximation errors. ε2 is a limitation
parameter for smoothing the jump of manipulated variable.
Here ε1 = ε2 = 0.1.

Therefore the reactor system, reduced model based state
estimator and above open-loop controller make up of the
closed-loop control scheme as Fig.(2) for this chemical re-
action process. Running the close-loop control system, the
close-loop optimal profiles were automatically generated as
the dynamic profiles of the manipulated variable Tw in Fig.(6),
time dynamic profiles Fig.(7) at the end of the tubular reactor
and space profiles Fig.(8) at steady state for both E(C(y1, t))
and T up(y1, t). Then the robustness of the computational
framework was tested through running the systems under the
computed optimal control policy and 200 random realisations
of uncertain parameters. The resulting concentration and tem-
perature profiles are compared in Fig.(9) (time profile) at
the exit of the reactor and Fig.(10) (space profile) at steady
state. The time profiles of Fig.(9) illustrate that the random

Fig. 6. Optimal control policy of heating temperature Tw

Fig. 7. Predictive space profiles of E(C(y1, t)) and T up(y1, t) at the steady
state under the optimal control policy

time trajectories of C(y1, t) at the exit surround the predicted
E(C(y1, t)) as expected, while the trajectories of T (y1, t)
mostly appear below the predicted T up(y1, t), except for short
periods near t=0. One of possible reason for this discrepancy
is that the errors coming from the model reduction steps are
relatively big compared with the small state values at the initial
stage.

Meanwhile, the behaviour of spatial profiles is much better.
Across the whole length of reactor, spatially distributed con-
centrations fluctuate around the predicted E(C(y1, t)) profile.
Meanwhile the spatially distributed temperature trajectories
always appear below the predicted T up(y1, t). Furthermore, all
time-space profiles obey the rigorous constraints T up(y1, t) =
P′

T up
t

T uT up
t
≤ 4 for the upper bound variables T up(y1, t).

B. Packed-bed bioreactor with immobilised cells

Here we extend the model-reduction based robust NMPC
strategy to a more complex two-phase (two physical scales)
packed bed-bioreactor shown in Fig.(11). Here a fermentation

Fig. 8. Predictive time profiles of E(C(y1, t)) and T up(y1, t) at the exit under
the optimal control policy
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Fig. 9. Comparison between random time trajectories (blue dash)and statistic
moments (red/black solid) of C(y1, t) and T (y1, t) at the exit under the optimal
control policy

Fig. 10. Comparison between random space trajectories (blue dash) and
statistic moments (red/black solid) of C(y1, t) and T (y1, t) at the steady state
under the optimal control policy

process of glycerol to succinic, acetic and formic acid was
optimally controlled. A two-phase model was built for the
heterogeneous process, where one-dimensional PDEs Eq.(27)
describe the transport-phenomena in the bulk phase of the re-
actor, while another set of steady-state PDEs Eq.(28) illustrate
the reaction behaviours in the bead phase.

Fig. 11. Schematic diagram of packed bed bioreactor with immobilised cells
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y1=0

= 0,
∂xsa

∂y1

∣∣∣∣∣
y1=L

= 0

xaa

∣∣∣∣∣
y1=0

= 0,
∂xaa

∂y1

∣∣∣∣∣
y1=L

= 0

x f a

∣∣∣∣∣
y1=0

= 0,
∂x f a

∂y1

∣∣∣∣∣
y1=L

= 0

(27)

where xgly ,xsa,xaa, x f a are the concentrations of glucose,
succinic, acetic and formic acid, respectively; ε denotes the
void fraction of the packed bed ; v is the velocity of the fluid
while Rtotgly , Rtotsa , Rtotaa and Rtot f a are the reaction source
terms, respectively; Dgly, Dsa, Daa, D f a are the diffusion
coefficients of species in the fluid, respectively.

d
dr

[
r2D′

gly
∂x′gly

∂ r

]
− r2 · rgly = 0

d
dr

[
r2D′

sa
∂x′sa

∂ r

]
+ r2 · rsa = 0

d
dr

[
r2D′

aa
∂x′aa

∂ r

]
+ r2 · raa = 0

d
dr

[
r2D′

f a
∂x′f a

∂ r

]
+ r2 · r f a = 0

x′gly

∣∣∣∣∣
y1=0

= xgly,
∂x′gly

∂y1

∣∣∣∣∣
y1=L

= 0

x′sa

∣∣∣∣∣
y1=0

= xsa,
∂x′sa

∂y1

∣∣∣∣∣
y1=L

= 0

x′aa

∣∣∣∣∣
y1=0

= xaa,
∂x′aa

∂y1

∣∣∣∣∣
y1=L

= 0

x′f a

∣∣∣∣∣
y1=0

= x f a,
∂x′f a

∂y1

∣∣∣∣∣
y1=L

= 0

(28)

where D′
gly, D′

sa, D′
aa, D′

f a are the diffusion coefficients of
species in the beads, respectively; rgly, rsa, raa, r f a are the



PREPRINT SUBMITTED TO IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2022 92

reaction rates of species in the beads, respectively.

Rtoti =
∫ R

0
ri 4πR2dR ·ρbead(1− ε),∀i ∈ {gly,sa,aa, f a}

ri = (αiµ +βi) ·Xcons,∀i ∈ {gly,sa}
ri = βi ·Xcons,∀i ∈ { f a,aa}

µ = µmax ·
x′gly

KSgly + x′gly +
x′2gly

KIgly

·
xCO2

KxCO2
+ xCO2

·
(

1− x′sa

SA∗

)nSA

(29)
where R is the radius of alginate beads, Xcons denotes the
biomass concentration inside the alginate beads; ρbead is the
density of beads ; µ , αi and βi denote the coefficients of
reaction rates of species; xCO2 is the concentration of CO2;
KIgly , KSgly , KxCO2

, SA∗ and nSA are the coefficients of intrinsic
kinetics.

Here v=0.1; L=20, Dgly= 0.01, Dsa=0.01, Daa=0.02, D f a=
0.02, ε=0.55, ρbead=2.12, R =0.15, Xcons=0.21, αgly=2.39,
αsa=4.5, βgly=0.187, βsa=0.21, β f a=0.011, βaa=0.0055,
µmax=0.2568, KSgly=5.4,KIgly =119.99, xCO2=0.03, KxCO2

=0.03,
SA∗ =45.6, nSA=5, D′

sa= 0.00989, D′
f a= 0.01835, D′

aa=
0.01384;

A simulator of the model in Eqs.(27-29) was built with
additional system and output noises, and solved through the
ODE 113 solver in MATLAB with 100 space discretisation
nodes and was subsequently used in inputs/outputs (black-
box) mode. Here inputs include the manipulated variable
nominal substrate glycerol concentration xgly0 and two un-
certain parameters the true substrate glycerol concentration
xgly0 ∼U(xgly0−2.5,xgly0+2.5) and the diffusion coefficients
of glycerol in bead phase D′

gly ∼ U(0.008,0.012). while the
outputs are 400 distributed reactant/product (glycerol, succinic,
acetic and formic acid ) concentration profiles. The system and
outputs noises follow wτ ∼ N(0,diag(0.000001 ∗ 1 ∈ R400))
and vτ ∼ N(0,diag(0.000001∗1 ∈R400)), respectively. Mean-
while the reporting time sampling interval was 15 hours for
the dynamic simulator.

We aim to improve the performance of this biochemical pro-
duction process through an efficient control strategy under un-
certainty based on the built black-box simulator. Specifically,
the objective of controller design is to maximize the expected
main product (succinic acid) concentration E(xexit

sa (t))) at the
exit while observing upper bound concentration (xup

aa(y1, t) and
xup

f a(y1, t)) constraints of byproducts acetic and formic acid in
the whole bioreactor length. Similar to the settings for the
previous tubular reactor case study, Latin hypercube sampling
(N1 = 20) to collect enough representative samples using the
constructed system simulator in black-box mode. Here second
order polynomial chaos and 4000 realisations (N2) of uncertain
parameters were used to perform the uncertainty propagation
procedure. Then a single RNN (2 hidden layers, 15 neurons
and 15 neurons) model was employed to capture the dynamics
of the mean value of succinic acid at the exit, while POD-
RNN double models were built for time -space upper bound
profiles of acetic and formic acid. Only 2 dominant POD
modes are enough to capture 99.8 % energy of acetic and
formic acid dynamics. In addition, two RNNs (2 hidden layers
with 15 neurons and 15 neurons, and 2 hidden layers with

Fig. 12. Comparison of expected succinic acid concentration from full
systems and predictive POD-RNN models at the exit

Fig. 13. Comparison of upper bound acetic and formic acid concentrations
from full systems and predictive POD-RNN models at the exit of the reactor

20 neurons and 20 neurons) were utilised to construct the
low-dimensional dynamic models for acetic and formic acid,
respectively. The training process setting was similar to the
previous implementation for the chemical tubular reactor. Then
Fig.(12-14) compare the product concentrations from the full
system and predictive POD-RNN models. Fig.(12) illustrates
that the predicted expected succinic acid concentrations are
extremely close to the ones computed from the original system,
indicating the high accuracy of the reduced model prediction.
In addition, there are only small errors (less than 3 % on the
stable stage) between the predictions of the reduced and the
full model as can be seen in Fig.(13)-14))h accuracy of the
POD-RNN models for the computation of acetic and formic
acid profiles. In general, the constructed reduced surrogate
RNN model could accurately predict the complex bioprocess
behaviours. Then the accurate reduce POD-RNN models
could be employed into the model based state estimator
and control strategy. Therefore the general open-loop OCP
Eq.(23) could be applied as formulation Eq.(30) for the above

Fig. 14. Comparison of upper bound acetic and formic acid concentrations
from full systems and predictive POD-RNN models at the steady state
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Fig. 15. Diagram of the optimal control policy and expected succinic acid
concentration at the exit

fermentation process, which could be reformulated into MILP
problems.

max
xgly0(t)

E(xexit
sa )

s.t. RNN Equations;

P′
xup

aa

T uxup
aa
≤ 4.1− ε

′
1

P′
xup

f a

T uxup
f a
≤ 2.1− ε

′
3

50 ≤ xgly0(t)≤ 70
−ε

′
2 ≤ xgly0(t)− xgly0(t −1)≤ ε

′
2

t = 1,2...,k

(30)

where ε ′1 = 0.1 and ε ′3 = 0.1 are the relaxation values to
decrease the impact of approximation errors. ε ′2 = 1 is an addi-
tional limitation value for smoothing the jump of manipulated
variable. uxup

aa
and uxup

f a
are the low dimensional variables of

the projected xup
aa and xup

f a with the projectors P′
xup

aa
and P′

xup
f a

,

respectively.
Therefore the reactor system, reduced model based state

estimator and above open-loop controller make up of the
closed-loop control scheme as Fig.(2) for this biochemical
fermentation process. Running the close-loop control system,
the close-loop optimal profiles were automatically generated.
Fig.(15) depicts the generated optimal control policy of the
manipulated variable substrate glycerol concentration and the
dynamic profile of the expected predicted succinic acid at
the exit under the control policy. The substrate concentration
first went up quickly and then gradually decreased beyond
150 hours, possibly in order to satisfy the requirements for
byproduct concentrations. Meanwhile, the computed succinic
acid concentration went through initial fast dynamics and then
reached steady state. In addition, Fig.(16-17) illustrate the
time-space profiles of byproducts acetic and formic acid with
similar dynamic behaviours. Time profiles at the exit of the
reactor (Fig.(16) ), showed that the byproduct concentrations
grew up quickly , and then became more stable with a
little bit final decrease. While space profiles at steady-state
stage (Fig.(17) ) illustrate that the byproduct concentrations
increased dramatically along with the reactor and then went
down slightly, indicating the nonlinear spatial distributions of
byproduct concentrations.

Then the robustness of the proposed control framework
was tested through running the systems under 100 random
realisations of uncertain parameters within the computed op-

Fig. 16. Comparison upper bound acetic and formic acid concentrations at
the end of reactor under optimal control policy

Fig. 17. Comparison upper bound acetic and formic acid concentrations at
the steady state under optimal control policy

timal control policy. The resulting succinic acid concentration
profile is illustrated in Fig.(18). Generally, the computed
concentration profiles are as excepted, with the exception of
a small overestimation during the fast dynamic period and a
small underestimation for the steady state value, which may
be caused by the model reduction steps.

Moreover, the computed acetic and formic acid concen-
tration are displayed in Fig.(19-20). Almost all of random
trajectories followed the dynamic profiles below the predicted
upper bounds except for an extremely small initial period for
the formic acid and a small period at the end of the exponential
phase for both formic and acetic acids. Meanwhile, the gap
between the predicted bounds and the random trajectory
profiles was not distinct, especially when the profiles were
close to the exit of reactor or steady state, which may be
caused by the model reductions. That indicates that the addi-
tional relaxation parameters ε1 and ε2are necessary to reduce
the impact of model errors on the rigorous product quality
constraints. Without the relaxation parameters, the limitation
constraints of byproducts may be destroyed due to the errors
from model reductions. Furthermore, all of the 100 random
time-space trajectories could satisfy the upper bound con-
straints xup

aa(y1, t) = P′
xup

aa

T uxup
aa

≤ 4.1,xup
f a(y1, t) = P′

xup
f a

T uxup
f a
≤

2.1, implying the rigorous product quality constraint could be
guaranteed with the relation parameters under the computed
optimal control policy.

IV. CONCLUSION

This work has proposed a robust model predictive control
strategy for large-scale distributed systems under parametric
uncertainty. Firstly, the PCE method is used to efficiently
compute the high-dimensional dynamics of statistic moments
and probabilistic bounds for time-space state variables and
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Fig. 18. Comparison between random space trajectories (blue dash) and
predictive mean value of succinic concentration (red solid) xsa at the end
of reactor under the optimal control policy

Fig. 19. Comparison between random space trajectories (blue dash) and upper
bounds (red/black solid) of xaa(y, t) and x f a(y, t) at the steady state under the
optimal control policy

measurement outputs. Then, the double model reductions,
POD and RNN, are employed to construct simple but accurate
predictive models for the nonlinear dynamics of statistic
moments and upper/lower bounds. Next the MILP models are
used to reformulate online optimisation scheme and solved
globally within the NMPC. The proposed methodology is
verified by a typical chemical tubular reactor and a packed
bed bioreactor with immobilised cells for production. The two
cases shows that the proposed NMPC strategy could efficiently
improve process production and also satisfy the requirements
of process safety (time-space temperature constraints) and
product quality (time-space byproduct constraints). In the
future, less conservative strategy would be exploited to further
enhance the process performances. Moreover, online adaptive
control was considered when offline samples are not enough.

Fig. 20. Comparison between random time trajectories (blue dash)and upper
bounds (red/black solid) of xaa(y, t) and x f a(y, t) at the exit under the optimal
control policy
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Chapter 5

Uncertainty quantification for distributed

parameter systems: deterministic and

stochastic cases

5.1 Introduction

A robust model predictive control framework for large-scale distributed parameter systems

under parametric uncertainty has been presented in Chapter 4. Two practical case studies were

employed to validate the computational advantages of the proposed framework. The proposed

framework employed polynomial chaos expansion to account for uncertainty quantification.

Polynomial chaos expansion (PCE) methods can efficiently deal with many parametric uncer-

tainties with relatively cheap computational resources. However, the PCE method requires

prior knowledge about the type of uncertainty distribution to choose the suitable polynomi-

als. Wrong choice of polynomials may lead to loss of computational accuracy. Furthermore,

the PCE method would not be so accurate for highly complex systems due to its inherent

low order characteristics. This chapter therefore, focuses on developing a novel uncertainty

propagation method to deal with complex distributed parameter systems.

Although the traditional Monte Carlo method could accurately account for uncertainty

quantification without prior knowledge of uncertainty distribution, the computational cost is

high for large-scale distributed parameter systems. Derived from this issue, this work aims

to develop a novel uncertainty propagation approach, where “equation-free” techniques are
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employed to speed up the propagation process of the Monte Carlo related uncertainty quan-

tification algorithms.

The proposed model reduction-based uncertainty quantification approach can efficiently

compute the distributional steady states for both deterministic and stochastic cases under gen-

eral uncertainty distributions. For deterministic large-scale systems, large volumes of uncer-

tain realisations are generated to approximate different kinds of uncertain distributions. The

recursive projection method is then employed to accelerate the propagation of large-scale

dynamic systems to steady states, which significantly decreases the required computational

resources. For stochastic complex systems, including lifting and restriction operations are

coupled with equation-free techniques, to compute the coarse-scale steady states using only

small sets of data from the stochastic simulators.

The proposed reduced model-based uncertainty analysis algorithms are validated through

a typical chemical tubular reactor, the FitzHugh-Nagumo model and a stochastic catalytic

surface reaction case for both single parametric and multivariate uncertainties. Deterministic

cases show that the proposed algorithms improve the computational speed by almost one

order of magnitude compared to the traditional Monte Carlo method, while the computational

accuracy is much better than that of power series and polynomial chaos expansion methods.

The stochastic case illustrates that the presented method could efficiently compute the coarse-

scale distributional uncertainty with a slight decrease in computational time.

The main possible reason why less gains are obtained for stochastic problems than for de-

terministic ones is the relatively small number of spatially distributed areas and lattice size

due to the limitation of our computational resources. Small number (only four) of spatially

distributed areas results in less computational accelerations while the ”healing time” of lift-

ing errors and process stochastics require relatively large ”coarse-scale” time step to capture

slow dynamics, leading to more computational burdens on the RPM accelerations and lifting-

restriction operations.
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UNCERTAINTY QUANTIFICATION FOR DISTRIBUTED1

PARAMETER SYSTEMS: DETERMINISTIC AND STOCHASTIC2

CASES∗3

MIN TAO AND CONSTANTINOS THEODOROPOULOS†4

Abstract. A novel uncertainty quantification (UQ) methodology is proposed for both determin-5
istic and stochastic distributed parameter systems, combining Monte Carlo (MC) simulations with6
”equation-free” (EF) techniques. The highly accurate MC method is first utilised to generate nu-7
merous sample realizations for parametric uncertainty quantification, and then, the large number of8
MC simulations are propagated to their corresponding steady states through EF-based acceleration.9
We demonstrate UQ computations on both deterministic and stochastic cases: an illustrative deter-10
ministic tubular reactor with single and multivariate uncertain parameters, the FitzHugh-Nagumo11
model with multivariate uncertain parameters and a stochastic heterogeneous catalytic surface reac-12
tion example with one uncertain parameter, where equation-free lifting and restriction operations are13
performed for information exchanges between the fine-scale evolution and the coarse-scale observ-14
ables. The results show that our proposed UQ approach can achieve a good computational perfor-15
mance with less computations than the standard MC methods and higher accuracy than power series16
and polynomial chaos expansions for deterministic cases, and capture the coarse-scale distributional17
uncertainty with a slight decrease in computational time for the stochastic case.18

Key words. uncertainty quantification, distributed parameter systems, Monte Carlo, equation-19
free, multiscale20
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1. Introduction. Complex distributed parameter systems, which can be de-22

scribed through continuum models in the form of partial differential equations [10]23

cover a wide range of applications in engineering and science. Arising from the inher-24

ent system stochasticity and/or insufficient prior knowledge about the process [17],25

uncertainty results in mismatch between model results and true process observations.26

In particular, random parameters in process models including initial and boundary27

conditions could result in distinct spatiotemporal behaviours [25], which may sig-28

nificantly impact the computation-based decision making for design and operations.29

Thus, efficient uncertainty quantification techniques need to be developed to robustly30

address uncertainty propagation in large-scale distributed parameter systems.31

Uncertainty quantification (UQ) techniques are typically performed using system32

models to generate multiple realisations from probability distributions of uncertain33

parameters [17]. Then the propagated results are used to compute stochastic moments34

for quantities of interest. Based on the consequences of the law of large numbers [7],35

standard Monte Carlo (MC) methods can produce samples to accurately approximate36

random distributions. Moreover, standard MC and its extensions [14, 1] can generate37

a sequence of random samples, converging to a complex target of probability distri-38

butions. However, large number of samples from MC methods will result in intensive39

computations, especially for large-scale applications.40

Computational challenges drive the developments for efficient uncertainty quan-41

tification computational tools. One class of methods exploits efficient sampling ideas42

such as the Latin hypercube sampling method [15] and sparse grids [4], reducing the43
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number of sample points while preserving the computational accuracy. To reduce the44

variance from standard Monte Carlo estimators, the Multilevel Monte Carlo (MLMC)45

method [6], an efficient sampling method, utilises discretisation with different step46

sizes, leading to much fewer samples at the fine discretisation level. The quasi-Monte47

Carlo sampling method [3] employs deterministic quasi-random sequences to obtain48

MC samples in a systematic manner, which converges to probability distributions49

much faster than the standard MC method. Although the number of samples needed50

to describe random parameters can be reduced, leading to faster computation speeds,51

a large number of realisations are still necessary to support enough computational52

accuracy.53

Another class of methods aim to construct efficient low-order closed-form mod-54

els to replace the original expensive system models, including popular power series55

expansion (PSE) [13] and polynomial chaos expansions (PCE) [23] methods. Power56

series expansion, as a perturbation method, utilises sensitivity information to rebuild57

the relationship between output observations and uncertain parameters, which only58

requires a small number of system evaluations for the low-order sensitivity informa-59

tion. The PSE approach can address parametric uncertainty with desirable precision60

for slightly perturbed systems, where small fluctuations on quantities of interest occur61

around average values with respect to random parameters. However, computational62

results highly depend on the size of the perturbation steps, needing extra computa-63

tions to enhance computational stability. Moreover, costly high-order sensitivities are64

required to preserve computational accuracy for strongly nonlinear systems. Polyno-65

mial chaos expansion, firstly introduced in [21], represents the observable variables66

with a series of polynomials with uncertain parameters, and then truncates the ex-67

act representation into finite order polynomials [22]. Low-order PCE models, with68

the coefficients of polynomials computed by the collocation method or Galerkin pro-69

jection, can accurately account for the impacts of typical probabilistic distributions.70

Extensions and ramifications of PCE approach can deal with more complex uncer-71

tainty problems [20]. However, the PCE method requires a prior knowledge of the72

type of uncertainty distributions, because ”suitable” orthogonal polynomials need to73

be chosen that correspond to the specific uncertainty distribution, which significantly74

affects computational accuracy [22].75

The equation-free (EF) approach was proposed to enable black-box time-stepping76

simulators to efficiently perform a number of computational tasks such as coarse77

integration, coarse bifurcation analysis, optimisation and control [9, 19, 18, 2] for a78

wide range of deterministic and stochastic dissipative systems. A key component is to79

employ a computational algorithm, called the recursive projection method (RPM)[16],80

to accelerate the convergence of microscopic/macroscopic integrators toward steady81

state through adaptively computing the low-dimensional subspaces of the (typically)82

few dominant modes of the systems. Through only input-output information from83

deterministic or stochastic simulators, numerical tasks for unavailable (black-box)84

models could be completed with desirable computational speeds.85

Previous works have exploited an equation-free uncertainty quantification frame-86

work in combination with general polynomial chaos [24, 26]. In this context, evolving87

time coefficients of PCE could be computed and utilised to perform continuum-level88

steady state and bifurcation analysis around the unavailable atomistic level simula-89

tor through short bursts of direct model simulations. A combination of multi-scale90

simulations and the PCE method was built for a computational UQ framework to per-91

form continuum-level UQ tasks involving parametric uncertainties of the atomistic-92

level simulations. The EF-PCE approach is an accelerated multi-scale PCE tech-93
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nique exploiting only existing input/output microscopic simulations. However, this94

uncertainty quantification method still requires a prior knowledge of the type of un-95

certainty distributions due to the adopted PCE formulation, which also decides the96

upper bounds of the computational accuracy for the EF-PCE approach.97

In this work, we present a novel equation-free uncertainty quantification approach98

based on MC method and its extensions for continuum-level tasks. The key idea is99

to accelerate the computations towards the respective steady states around the us-100

ing the dynamic MC integrators through the equation-free technique exploiting the101

short-term dynamics of appropriately initialised MC simulations. The EF-MC ap-102

proach can significantly reduce the computational requirements of MC-related UQ103

methods, but also inherits the main advantages of MC methods, e.g., high accuracy104

and capability to deal with general uncertainty distributions. The proposed EF un-105

certainty quantification approach is applicable for both deterministic and stochastic106

distributed parameter systems. The difference is that additional multi-scale tech-107

niques that link microscopic simulations and ”coarse-scale” observations need to be108

combined into the computational framework for the stochastic cases.109

Here two deterministic cases are demonstrated including a chemical tubular re-110

actor with multivariate uncertainty (Damkohler number and adiabatic temperature111

rise) and a FitzHugh-Nagumo model with two uncertain parameters. In addition, a112

stochastic lattice kinetic Monte Carlo simulator for oxidation of CO on a catalytic113

surface with a single uncertain operation parameter is also shown as the stochastic114

case.115

The paper is organized as follows: Section 2 outlines the uncertainty quantification116

problems for distributed parameter systems. Section 3 introduces the standard Monte117

Carlo algorithm. Then Section 4 and 5 give two equation-free Monte Carlo algorithms118

for deterministic and stochastic cases with corresponding applications, respectively.119

Section 6 presents the deterministic and stochastic case studies and finally, conclusions120

and future works are discussed.121

2. Problem formulation. In this work, a model reduction-based uncertainty122

quantification framework is presented on the continuum-level descriptions for both123

deterministic and stochastic distributed parameter systems. The continuum-level124

equations with accompanying boundary and initial conditions (the governed PDEs125

for deterministic cases generally exist while the corresponding ”coarse-scale” PDEs126

for stochastic cases only conceptually exist without closed-form equations [9]) could127

be described as follows:128

(2.1)

∂y

∂t
= D{∂y

∂x
,
∂2y

∂x2
, ...,

∂ny

∂xn
,p}+R(p,y)

A{∂y
∂x

,
∂2y

∂x2
, ...,

∂ny

∂xn
,p}

∣∣∣∣
x=Ω

= hbds(p,y)

y|t=0 = y0(p)

129

Here t ∈ R denotes time dimension, x ∈ RNx is spatial dimensions Nx the number130

of spatial dimensions, Nx=1,2, or 3. D ∈ R is the spatial differential operator,131

p ∈ RNp are the uncertainty parameters and y ∈ RNy a set of state variables, R(p,y) :132

RNp × RNy → RNy are the nonlinear terms. hbds(p,y) : RNp × RNy → RNy are133

the right hand sides of the boundary conditions, A is the operator of the boundary134

condition equations, Ω are the boundaries and y0 ∈ RNy are the initial values of the135

state variables. Considering steady state analysis and assuming that y(t,x) −→ y(x),136
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and ∂y/∂t = 0, the above equations become:137

(2.2)

0 = D{∂y
∂x

,
∂2y

∂x2
, ...,

∂ny

∂xn
,p}+R(p,y)

A{∂y
∂x

,
∂2y

∂x2
, ...,

∂ny

∂xn
,p}

∣∣∣∣
x=Ω

= hbds(p,y)

138

In practical situations, random parameters p can significantly affect the values of the139

state variables. So the objective of the proposed UQ algorithms is to compute the140

probabilistic solutions of the above PDEs with random parameters. In general, the141

unavailability of the system equations inside commercial software prohibits the use142

of direct model-based techniques for deterministic cases. For micro/mesoscopic-level143

simulators only evolution rules exist, while the corresponding coarse-scale PDEs only144

exist conceptually without explicit equations. Here we consider the cases where only145

input/output dynamic simulators (macroscopic or microscopic) are utilised to perform146

UQ tasks, exploiting the dissipativity of the underlying systems to apply model re-147

duction techniques. These techniques take advantage of the separation of times-scales148

dissipative systems exhibit, to compute (typically) low-dimensional eigendirections of149

the dominant slow dynamics [11]. The large-scale time integrator or dynamic models150

resulting from spatial discretisation could be written into inputs-outputs fashion with151

a time interval tt:152

(2.3) Y n+1 = F (Y n,pi; tt)153

where n is the number of iteration time steps, uncertain realisation pi Yn ∈ Rm154

are the m spatially discretised state variables at time step n, F (Y n,pi; tt) : Rm ×155

Rnp → Rm, denotes a system time-stepper over a time interval tt on m spatial grid156

points. In the above computational formulation, inputs are the current values of state157

variables Y nand uncertain realisation pi while the outputs Y n+1 are the values of158

state variables in next time step n + 1. Steady-state solutions are often computed159

simply through using the above computational formulation Eq.(2.3) to integrate the160

dynamic inputs/outputs systems for large times.161

3. Monte Carlo-related UQ algorithm. Sampling methods, such as Monte162

Carlo method and its extensions, use adequate samples to represent propagated ran-163

dom outputs. These methods are particularly useful when the explicit equations of164

complex black-box systems are unavailable and no information about the type of the165

parametric uncertainty exists. From the point of view of computational accuracy166

and ability to handle the general uncertainty, the direct Monte Carlo method could167

efficiently perform UQ tasks for complex large-scale systems.168

Monte Carlo methods are a broad class of computational algorithms that rely on169

repeated random sampling (or high-quality pseudo-random sampling) and statistical170

analysis to obtain sample based numerical results. Specifically, Monte Carlo methods171

are popularly used in numerical integration problems for UQ calculations of complex172

large-scale systems, which are based on the consequences of the law of large numbers.173

Here y(t,x,p) are the quantities of interest, for which we wish to compute statistical174

moments with respect to uncertain parameters p in the domain of Ω′ as follows:175

(3.1)

E(y(t,x,p)) =
∫
Ω′

y(t,x,p)π(p)dp

V(y(t,x,p)) =
∫
Ω′
(y(t,x,p)− E(y(t,x,p)))2π(p)dp

176
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where E(y(t,x,p)) and V(y(t,x,p)) are the mean value and variance of y(t,x,p)177

with respect to the probability density π of p, respectively. However, here we deal178

with large-scale black-box systems, implying that explicit equations of quantities of179

interest y(t,x,p) are not available. According to the law of large numbers, enough180

samples generated from the Monte Carlo method to approximate the random domain181

Ω′, can be employed to calculate the above quantities. Assuming {pi}Mi=1(p
1, p2, ...182

pM ) is a sequence of i.i.d. (independent and identically distributed) M samples from183

the probability density π of parametric uncertainty distribution, which could be gen-184

erated through efficient pseudo random number (instead of ”truly random numbers”)185

generators and statistical transformation methods, then186

(3.2)

E(y(t,x,p)) = lim
M1→∞

1

M1

M1∑
i=1

y(t,x,pi)

V(y(t,x,p)) = lim
M1→∞

1

M1

M1∑
i=1

(y(t,x,pi)− E(y(t,x,p)))2
187

Although the above Eq.(3.2) only holds at the limit of M1 →∞, we are able to make188

approximation of the left hand side with a finite value of M . High order statistical189

moments can be computed by a similar manner.190

The above formulation Eq.(3.2) can be employed to compute statistical moments191

with respect to uncertain parameters p. The Monte Carlo-based UQ algorithm could192

be seen as algorithm193
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Algorithm 3.1 EF-MC uncertainty quantification algorithm for deterministic case

Input: random parameters p, Nm1 maximum number of random samples for p, initial
conditions y0, initial basis Z0, integration time horizon t0, time interval tt for the
input/output integrator and tolerance σ

Output: statistic moments E(Y (p)) and V(Y (p))
1: Generate N2 (N2 ≤ Nm1) i.i.d. samples for parametric uncertainty through the

Monte Carlo method
2: Rearrange the sequence of the N2 MC samples according to the greedy algorithm

4.1
3: i← 1
4: while i ≤ N2 do
5: Compute the initial conditions y0(p

i) from Eq.(4.7)
6: Compute the initial basis Z0(p

i) from Eq.(4.8)
7: Perform time integration for time horizon t0
8: Check the steady state convergence condition ∥Y n − F (Y n,p)∥ ≤ σ ?
9: if Yes then

10: i← i+ 1, go to the next sample
11: else
12: kk ← 1
13: Perform Newton-Picard iterations as in Eq.(4.6)
14: Check the steady state convergence condition ∥Y n − F (Y n,p)∥ ≤ σ ?
15: if Yes then
16: i← i+ 1, go to the next sample
17: else
18: if kk ≥ Nm2 then
19: Recompute the basis Z
20: kk ← 1
21: end if
22: kk ← kk + 1
23: Repeat steps 13-24
24: end if
25: end if
26: end while
27: Compute the statistical moments E(Y (p)) and V(Y (p)) from Eq.(3.2)
28: return E(Y (p)) and V(Y (p))

However, the general input-output dynamic integrators need to be running for194

long time to perform steady state UQ tasks. The computational challenges motivate195

our developing equation-free Monte Carlo algorithms in the following sections.196

4. Equation-free Monte Carlo Algorithm 1: deterministic case. The197

above Monte Carlo-based UQ algorithms generate a large number of MC samples198

(pi)i∈M and then directly perform steady state UQ tasks under these uncertain re-199

alisations (pi)i∈M . This section introduces equation-free techniques to accelerate200

the computations of Monte Carlo-based UQ algorithms for deterministic distributed201

parameter systems, where the UQ calculations are performed directly on the deter-202

ministic dynamic input/output simulator.203

For dissipative systems we can take advantage of the separation of time scales204

which can be observed as a gap in the eienspectrum of the system as in Fig.1 where205

the bulk of the eigenvalues (the blue points) are close to the origin, while a small206
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cluster of eigenvalues (the red points) relatively close to the boundary of the unit207

circle. This gap in the eigenspectrum is exploited as a model reduction technique,208

by adaptively capturing the low-dimensional subspace of the few dominant eigen-209

values. This is achieved by the recursive projection method (RPM) [16] which works210

”around” the time integrator Eq.(2.3) to accelerate the computations of steady states.211

RPM is employed to decompose the solution space Rm into two sub-spaces: the low-212

dimensional P ∈ Rk, slow subspace corresponding to the red eigenvalues in Fig.1, and213

its orthogonal complement Q ∈ Rm−k, corresponding to the blue eigenvalues in Fig.1:214

(4.1) Rm = P
⊕

Q215

Fig. 1. Eigenspectrum of a discrete-time dissipative system, exhibiting a timescale gap

Let Z ∈ Rm×k be an orthonormal basis for the slow subspace P, which can be216

efficiently computed by matrix-free algorithms, such as the Arnoldi method. Then217

the following equalities hold:218

(4.2)
ZZT = P

ZTZ = Ik ∈ Rk×k
219

where P ∈ Rm×m is the orthogonal projection operator onto the subspace P, m is the220

index of the dimensionality of P.221

(4.3) Q = Im − P222

where Q ∈ Rm×m is the high dimensional orthogonal complement of the projector P223

onto the subspace Q.224

The low dimensional Jacobians on the subspace P can then be approximated225

by directional perturbations as following. Firstly, the matrix-vector product can be226

computed227

(4.4) FY Z =
(F (Z + ϵZ)− F (Z + ϵZ))

2ϵ
228

where ϵ is a small perturbation on the direction of Z. Then the low-order Jacobian229

H ∈ Rk×k is given by:230

(4.5) H = ZTFY Z231
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The idea of RPM is to perform simultaneous iterations: Newton iterations on the232

low-order subspace P of the dominant modes and Picard iterations on the orthogo-233

nal complement Q. Assuming a numerically stable time integration, the main RPM234

steps include the solution space decomposition (Eq.(4.3)), Newton-Picard iterations235

Eq.(4.6) on the two subspaces and a Picard iteration on the final sum to check con-236

vergence
∥∥Y n − F (Y n,pi; tt)

∥∥ ≤ σ:237

(4.6)

p01 = PY 0(pi), q01 = QY 0(pi)

pn+1
1 = pn1 + (IN −ZHZT )−1 × (PF (Y n,pi; tt)− pn1 )

qn+1
1 = QF (Y n,pi; tt)

Y n+1 = pn+1
1 + qn+1

1

238

where σ is the tolerance, pn1 and qn1 denote the projection parts of Y nonto two sub-239

spaces at the nth iteration.240

One important step of our equation-free Monte Carlo algorithm is to recycle infor-241

mation between systems under different uncertain realisations, i.e. exploit similarity242

between systems to provide good initialisations. We assume that the more similar-243

ity of systems could be exploited if the (Euclidean) distance between two neighbor244

samples under probability space of uncertain parameters is smaller. Therefore the245

precondition operation is to rearrange the sequence of the generated MC samples246

with the objective being minimizing the distances among neighbor samples under247

probability space. In this work, we adopted a greedy algorithm 4.1 for rearranging248

the sequence of generated MC samples. The key idea is to find the sample with the249

minimum distance to the current sample as the next sample in the new sequence of250

sample sets.251

Algorithm 4.1 Greedy algorithm for rearranging the sample sequence

Input: i.i.d. samples {p′i}Mi=1 with the initial sequence of M samples from the Monte
Carlo method

Output: i.i.d. samples {pi}Mi=1 with a rearranged sequence of M samples
1: Find the sample with the minimum coordinate value(s) as the first sample p1in

the rearranged sequence of samples {pi}Mi=1

2: i← 1
3: M0 ← ∅
4: while i ≤M do
5: Put the current sample pi into the set M0

6: Compute the Euclidean distances between the current samples with all samples
{p′i}Mi=1 except ones in the set M0

7: Find the sample with the minimum distance to the current sample as the next
sample in the new sequence of sample set M ′

8: i=i+1
9: end while

10: return i.i.d. samples {pi}Mi=1 with a rearranged sequence of M samples

It should be noted that the above greedy algorithm 4.1 could generate a new se-252

quence of sample {pi}Mi=1 with relatively small distance between two neighbor samples253

for relatively small probability space (such as one or two dimensions in this work).254

However, the greedy algorithm could hardly ensure the small distances for complex255
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high-dimensional probability space cases. More efficient rearrangement operations256

should be combined for more complex uncertainty distributions, e.g. cluster methods257

such as K-mean approach could be adopted to first classify the generated MC sam-258

ples into multiple sample clusters and then perform the above algorithm 4.1 for each259

cluster. With the rearranged sequence of samples, similarity between systems under260

neighbor uncertain realisations could be then exploited. Here first-order continuation261

was adopted among adjacent samples. The initial guess y0(p
i) can be computed as262

follows:263

(4.7) y0(p
i) =


yss(p

i−1) +
∥pi−pi−1∥

∥pi−1−pi−2∥ (yss(p
i−1)− yss(p

i−2)), i = 3, 4...M

yss(p
i−1), i = 2

y0, i = 1

264

where y0(p
i) denotes the initial value for the system with uncertain realisation pi(i =265

1, 2...M), yss(p
i) is the corresponding steady-state value, y0 is the given initial value.266

The initial values of basis Z0(p
i) can be calculated though a similar manner of com-267

puting y0(p
i) as follows.268

(4.8) Z0(p
i) =


Z0(p

i−1) +
∥pi−pi−1∥

∥pi−1−pi−2∥ (Z0(p
i−1)−Z0(p

i−2)), i = 3, 4...M

Z0(p
i−1), i = 2

Z0, i = 1

269

The above has introduced how to employ the RPM procedure and good initialisa-270

tions to accelerate the computations of previous Monte Carlo-related UQ algorithms.271

The whole equation-free Monte Carlo algorithm in the deterministic steady state UQ272

context could be summarised below as Algorithm 4.2.273
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Algorithm 4.2 EF-MC uncertainty quantification algorithm for deterministic case

Input: random parameters p, Nm1 maximum number of random samples for p, Nm2

maximum number of Newton-Picard iterations, initial conditions y0, initial basis
Z0, integration time horizon t0, time interval tt for the input/output integrator
and tolerance σ

Output: statistic moments E(Y (p)) and V(Y (p))
1: Generate N2 (N2 ≤ Nm1) i.i.d. samples for parametric uncertainty through the

Monte Carlo method
2: Rearrange the sequence of the N2 MC samples according to the greedy algorithm

4.1
3: i← 1
4: while i ≤ N2 do
5: Compute the initial conditions y0(p

i) from Eq.(4.7)
6: Compute the initial basis Z0(p

i) from Eq.(4.8)
7: Perform time integration for time horizon t0
8: Check the steady state convergence condition ∥Y n − F (Y n,p)∥ ≤ σ ?
9: if Yes then

10: i← i+ 1, go to the next sample
11: else
12: kk ← 1
13: Perform Newton-Picard iterations as in Eq.(4.6)
14: Check the steady state convergence condition ∥Y n − F (Y n,p)∥ ≤ σ ?
15: if Yes then
16: i← i+ 1, go to the next sample
17: else
18: if kk ≥ Nm2 then
19: Recompute the basis Z
20: kk ← 1
21: end if
22: kk ← kk + 1
23: Repeat steps 13-24
24: end if
25: end if
26: end while
27: Compute the statistical moments E(Y (p)) and V(Y (p)) from Eq.(3.2)
28: return E(Y (p)) and V(Y (p))

The equation-free Monte Carlo (EF-MC) algorithm 4.1 could significantly ac-274

celerate the steady-state UQ computations for large-scale deterministic distributed275

parameter systems. Some improvements could be used to further enhance the com-276

putational efficiency for more complex cases. More advanced rearrangement approach277

for the sample sequence could be employed to provide good initialisations for the com-278

plex uncertainty cases. Meanwhile, the fixed size of slow subspace was employed in279

this work. Adaptively computing the low-dimensional the dominant subspace under280

different uncertain realisations may improve the computational speeds.281

5. Equation-free Monte Carlo Algorithm 2: stochastic case. In this sec-282

tion, we present a novel equation-free Monte Carlo algorithm for stochastic cases,283

where only a fine-scale stochastic simulator as in Eq.(5.1) is available for coarse-scale284
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UQ tasks as in Eq.(2.1).285

(5.1)
∂Y
∂t

= f(Y ,pi; tt)286

where Y denotes spatially distributed microscopic states over the different sub-lattice287

areas δx, f is a fine-scale simulator evolving over a fines-scale time interval tt and288

different sub-lattice areas δx under uncertain realisation pi.289

Since coarse-scale PDEs (Eq.(2.1)) only conceptually exist without closed-form290

equations, equation-free lifting and restriction techniques are required to perform291

information exchange in a multi-scale context as Fig.2 between the fine-scale stochas-292

tic simulator and coarse-scale simulations for coarse-level UQ computations. Similar293

to deterministic cases, coarse time-steppers in the formulation Eq.(2.3) need to be294

constructed for stochastic cases, which would contain lifting operation, fine-scale sim-295

ulations and restriction operation []. Two operators, lifting (µ) and restriction (M),296

are defined as follows Eq.(5.2,5.3) to build a communication bridge between the dis-297

tributed microscopic states Y and coarse values Y :298

(5.2) µ : Y n(pi) 7→ Yn(pi) = µ[Y n(pi)]299

300

(5.3) M : Yn(pi) 7→ Y n(pi) =M[Yn(pi)]301

where n is the number of iteration coarse time steps. (Lifting operator is one-to-302

many mapping from a coarse to a fine-scale state, i.e. reinitialization of the fine-303

scale model consistent with a prescribed coarse state while restriction operator is the304

inverse operation of lifting operator, mapping from a fine scale to a coarse state, i.e.305

observation (estimation) of the coarse state from the corresponding fine-scale state.)306

Here a coarse time-stepper would be constructed as the algorithm 5.1 for spatially307

distributed stochastic systems as Fig.2.308

Algorithm 5.1 Coarse time-stepper for spatially distributed stochastic systems over
a fines-scale time interval tt and different sub-lattice areas δx

Input: Initial distributed coarse-scale conditions Y n(pi), N0 number of repeated
stochastic simulations, a fine-scale simulator f over a fines-scale time interval tt
and sub-lattice areas δx

Output: Next time step coarse-scale conditions Y n+1(pi)
1: Lift each of distributed coarse values onto N0 different fine-scale distributions

across each sub-lattice area δx as Eq.(5.2)
2: Perform microscopic evolution from the lifted N0 fine-scale states through the

fine-scale simulator over a fine-scale time interval tt and the sub-lattice areas δx
as Eq.(5.1)

3: Restrict N0 fine-scale states at the next time-step states into distributed coarse-
scale values Y n+1(pi) as Eq.(5.3)

4: return Next time step coarse-scale conditions Y n+1(pi)

The built inputs/outputs coarse time-stepper d309
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Fig. 2. Schematic of a coarse-scale lifting and restricting operations in a spatially distributed
stochastic system

The direct Monte Carlo method for uncertainty quantification tasks requires310

multi-level computations across microscopic stochastic simulation level, coarse-scale311

time and space level, and uncertain parameter level, which is extremely expensive.312

In this work, we try to accelerate the multi-level computations through equation-free313

strategies, similar to the Algorithm 4.2. The main difference here is that on-the-fly314

lifting and restriction operations are introduced to perform coarse-scale computations315

with only stochastic simulators available. The whole computational procedure is il-316

lustrated in detail as Algorithm 5.2.317

318
Algorithm 5.2 EF-MC uncertainty quantification algorithm for stochastic cases319

Input: random parameters p , Nm1 maximum number of random samples for p, Nm2320

maximum number of Newton-Picard iterations, N0 number of repeated stochastic321

simulations, initial conditions y0,initial basis Z0, integration time horizon t0,322

coarse-scale time interval tt and tolerance σ323

Output: statistical moments E(Y (p)) and V(Y (p))324

1: Generate N2 (N2 ≤ Nm1) i.i.d. samples through the Monte Carlo method or its325

extensions to approximate the uncertainty distributions326

2: Rearrange the sequence of the N2 MC samples according to the distance to each327

other328

3: k ← 1329

4: while k ≤ N2 do330

5: Compute the coarse-scale initial conditions yk
0 as in Eq.(4.7)331

6: Lift the coarse-scale initial conditions yk
0 onto N0 stochastic simulations332

7: Compute the coarse-scale initial basis Zk
0 in the similar manner333

8: Perform t0 coarse-scale time integration onto N0 stochastic simulations334

9: Restrict N0 stochastic simulations to compute coarse-scale states335

10: Check coarse-scale steady state convergence condition ∥Y n − F (Y n,p)∥ ≤ σ ?336

through lifting-restriction on N0 stochastic simulations with tt time interval337

11: if Yes then338

12: k ← k + 1, go to the next sample339

13: else340

14: kk ← 1341

15: Perform coarse-scale Newton-Picard iterations as Eq.(4.6)342

16: Lift the coarse-scale conditions onto N0 stochastic simulations343

17: Perform t0 coarse-scale time integration onto N0 stochastic simulations344
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18: Restrict N0 stochastic simulations to compute coarse-scale states345

19: Check coarse-scale steady state convergence condition ∥Y n − F (Y n,p)∥ ≤ σ346

? through lifting-restriction on N0 stochastic simulations with tt time interval347

348

20: if Yes then349

21: k ← k + 1, go to the next sample350

22: else351

23: if kk ≥ Nm2 then352

24: Recompute the basis Z353

25: kk ← 1354

26: end if355

27: kk ← kk + 1356

28: Go to step 13357

29: end if358

30: end if359

31: end while360

32: Compute coarse-scale statistical moments E(Y (p)) and V(Y (p)) as in Eq.(3.2)361

33: return E(Y (p)) and V(Y (p))362

6. Case studies. Practical case studies were employed to verify the above EF-363

MC uncertainty quantification algorithms 4.2 and 5.2, with three case studies: A (de-364

terministic) chemical tubular reactor, the (deterministic) FitzHugh-Nagumo model,365

and the (stochastic) catalytic oxidation of CO on a lattice catalyst surface. The com-366

putational results show that the important initialisation step Eq.4.7 could speed up367

the UQ computations of our EF-MC algorithms by three to five times. For com-368

parison purposes, we perform the same initialisation step in both the standard MC369

and our EF-MC algorithms for all the computational cases below. All computational370

algorithms were implemented in MATLAB R2019a on a Desktop (Intel Core(TM)371

i7-8700 CPU 3.2 GHz, 16 GB memory, 64-bit operating system, Windows 10).372

6.1. Deterministic case study 1: chemical tubular reactor. A chemical373

tubular reactor[8] with an exothermic first-order reaction, was utilised as an applica-374

tion to illustrate deterministic EF-MC uncertainty quantification algorithm 4.2. The375

mathematical formulation of the corrsponding reaction-transport processes is given376

as follows along with the boundary conditions:377

(6.1)

∂C

∂t
=

1

Pe1

∂2C

∂x2
− ∂C

∂x
+Da(1− C)exp(

T

1 + T
γ

)

∂T

∂t
=

1

LePe2

∂2T

∂x2
− 1

Le

∂T

∂x
− T

Leβ
+

B

Le
Da(1− C)exp(

T

1 + T
γ

) +
βTw

Le

∂C

∂x
− Pe1C = 0

∂T

∂x
− Pe2T = 0, at x = 0

∂C

∂x
= 0

∂T

∂x
= 0, at x = 1

378

Here C and T are two state variables, the dimensionless concentration and temper-379

ature respectively, and x is the dimensionless longitudinal coordinate. The system’s380
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parameters are the Damkohler number Da, the Lewis number Le, the Peclet number381

for mass transport Pe1, the Peclet number for heat transport Pe2, the dimension-382

less heat transfer coefficient β, the dimensionless adiabatic temperature rise B, the383

dimensionless adiabatic wall temperature Tw and the dimensionless activation energy384

γ.385

The above two PDEs were spatially discretised on 250 computational nodes by386

central finite differences, resulting in a system of ODEs with 500 unknown variables.387

An explicit fourth-order Runge–Kutta method was chosen to integrate the dynamic388

system with the time step being 1.0e− 06 seconds. The dynamic simulator was then389

used as a black-box, input-output time integrator, where inputs were the system pa-390

rameters and outputs the distributed dimensionless temperatures and concentrations.391

This work studied how the uncertainty in the system parameters affects the output392

concentration in this reaction-transport process. Cexit is the dimensionless output393

concentration, µ(Cexit) is the mean value of the uncertain output concentration and394

σ(Cexit) is the standard variance value of the uncertain output concentration. For395

illustration purposes, a simple case with single parametric uncertainty was firstly396

studied. Here system parameters were Le = 1.0, P e1 = Pe2 = 5.0, γ = 20.0, β =397

1.50, B = 12.0, Tw = 0.0, while the distributional uncertainty parameter was the398

Damkohler number Da, satisfying Da ∼ N(0.1, 0.012).399

The above standard distribution needs to be approximated by a large number400

of Monte Carlo samples. As illustrated in Eq.(3.2), only an infinite number of dis-401

crete samples can completely represent the true distribution. Here a finite number of402

MC samples was utilised to replace the distribution. Independent experiments were403

performed to choose a suitable number of MC samples, achieving a good trade-off404

between computational cost and accuracy. Four tests with 1000, 2000, 3000, 4000405

(Nm1 maximum number of random samples) samples respectively were conducted.406

The errors for the mean values and variances are firstly decreasing and then becom-407

ing stable as the number of samples is increasing. Thus 3000 samples were chosen for408

the subsequent computations.409

Using the generated 3000 samples to represent the distribution of the uncertain410

parameter Da, it is necessary to resort the sequences of samples for subsequent uncer-411

tainty propagation. Here only one uncertain parameter with the realisations round412

the normal value 0.1, one-dimensional rearrangement is enough to provide good initial413

values for most samples. It should be noted that more efficient rearrangement oper-414

ations should be adopted for more complex uncertainty distributions. For example,415

cluster methods such as K-mean approach could be adopted to classify these samples416

into multiple clusters before resorting samples. Except for rearranging samples and417

computation methods Eq.(4.7) for initialisation, the equation-free method displayed418

in Eq.(4.5) was used to accelerate the computation to steady state for each sample.419

One of the most important components of the method is the computation of the420

low-dimensional projected Jacobian matrix. Here matrix-free Arnoldi iterations were421

utilised to adaptively compute the dominant eigendirections of the system. Conse-422

quently, only a few short-time dynamic simulations, using the black-box simulator423

were required. In this work, the dimension m of projected Jacobian was fixed to424

be 10 while 60 iterations were set to be the limit number Nm2 for checking whether425

Newton-Picard iterations were convergent or not. Still the computation for the low-426

dimensional Jacobian is the most expensive part of the whole procedure. Two ways to427

overcome this were used. One was to run the short-time (t0 was 0.05 seconds) dynamic428

solver before the Newton-Picard iterations, avoiding the costly Jacobian computations429

and leading to fast computations for the fast dynamic cases. The time horizon tt was430
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0.01 seconds. The other one was to adaptively compute the low-dimensional basis.431

The low-dimensional basis was updated only when the previous basis could not make432

the Newton-Picard iterations convergent in the desirable number of iterations, result-433

ing in much less computations. Computational practice in this work shows that the434

previous basis is almost always accurate enough for later computations because adja-435

cent samples are close after rearrangement operations. Thus the presented adaptive436

method may be more suitable for uncertainty quantification. The tolerance σ was set437

to be 1.0e− 06.438

To verify the computational efficiency of the proposed EF-MC uncertainty quan-439

tification method, the standard MC method, second-order PSE, second-order PCE440

and our novel algorithm 4.2 was used for the single parametric uncertainty case.441

For the standard MC method, advanced precondition techniques, including the same442

sample rearrangement and first-order continuation were employed. Independent ex-443

periments need be performed to choose suitable parameters for the low-order PSE and444

PCE methods. The perturbation step size can significantly affect the computational445

results of the PSE method. Thus the independent experiments with perturbation446

step size being 0.001, 0.01, 0.03, respectively were constructed, leading to the chosen447

perturbation step size to be 0.01. Similarly, 9 points of the original system were used448

for the PCE method after independent experiments with the number of points being449

6, 9, 12, respectively.450

Tab.1 gives the comparison of the computational results and costs among the451

standard MC, PSE, PCE and EF-MC methodologies. As displayed in Tab.1 , the452

standard MC method utilising the original dynamic solver is the most time-consuming453

among the four uncertainty propagation methods. Compared with the standard MC454

method, equation-free strategies significantly accelerated the computations with more455

than 87% saving and achieved almost identical results as displayed in Tab.1, with less456

than 0.001% error. Although PSE and PCE based methods seem to take much less457

computational times, as shown in Tab.1 , choosing the proper perturbation size and458

number of points for system simulations increased the actual total costs. In fact, the459

total cost including independent experiments was 0.24 hours for the PSE method while460

it was 0.40 hours for the PCE-based method. Compared with PSE, PCE produced461

more accurate mean values, lower and upper bounds. However, both PSE and PCE462

methods generated much smaller variances as can be seen in Tab.1. Generally, the463

EF-MC uncertainty quantification algorithm achieved much less computational cost464

than the standard MC method but higher degree of computational accuracy than the465

low-order PSE and PCE methods.466

Table 1
Uncertainty analysis for a single parameter (95% confidence level) for a number of uncertainty

propagation methods.

Models Lower bound Upper bound µ(Cexit) σ(Cexit) Computational
(Cexit) (Cexit) time (hours)

MC 0.1204 0.3136 0.1963 0.0999 5.32
EF-MC 0.1204 0.3136 0.1963 0.0999 0.67

(Relative) Error: ≤ 0.0009% Error:≤0.0004% Error:≤0.0006% Error:≤0.001%
PSE 0.1266 0.2856 0.1869 0.0418 0.07

(Relative) Error:5.15% Error:8.93% Error:4.79% Error:-58.16%
PCE 0.1215 0.3018 0.1876 0.0478 0.15

(Relative) Error:-0.91% Error:-3.61% Error:-4.43% Error:-52.15%
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Then uncertainty analysis for multivariate cases was performed to further inves-467

tigate the efficiency of the EF-MC procedure. Here the system parameters were468

Le = 1.0, P e1 = Pe2 = 5.0, γ = 20.0, β = 1.50, Tw = 0.0, while the two un-469

certain parameters were the Damkohler number Da and the adiabatic temperature470

rise B. Firstly, independent parameters were studied, satisfying the distributions:471

Da ∼ N(0.08, 0.0082) and B ∼ N(8, 0.82). Then the dependent cases were in-472

vestigated with the different covariances being

(
0.0082 0.002
0.002 0.82

)
,

(
0.0082 0.005
0.005 0.82

)
,473 (

0.0082 0.006
0.006 0.82

)
. After independent experiments, the number of samples was set to474

be 4000. The standard Monte Carlo method was utilised to generate 4000 random475

samples and then the samples were rearranged. MC and EF-MC methods were used476

to propagate the parametric uncertainty. Tab.2 shows the comparison of computa-477

tional results between EF-MC procedure and the standard MC method. For all the478

computational cases, EF-MC method could reduce more than 90% computational479

time compared with the standard MC method but still kept almost identical results480

with the standard MC method with less than 0.00105 % error. Moreover, the mean481

value and standard variance increased slightly with stronger correlation between the482

uncertain parameters.483

The computational results between the accelerated procedure and the direct MC484

simulation are almost the same, illustrating the high accuracy of thr accelerated EF-485

MC procedure. However, the computational time with accelerated procedure can486

be reduced by more than 90% for all the simulation cases, verifying its efficiency.487

Moreover, the correlation between the random Da and B slightly affects the mean488

value and standard variance of the final output concentration, while the correlation of489

random parameters changes the PDF a lot, especially when the correlation is strong.490

6.2. Deterministic case study 2: FitzHugh-Nagumo Model. This section491

would apply the EF-MC uncertainty analysis method to the two-variable reaction-492

diffusion FitzHugh-Nagumo model [19] shown below:493

(6.2)

∂x1

∂t
=

∂2x1

∂x2
+ x1 − x2 − x1

3

∂x2

∂t
= D

∂2x2

∂x2
+ ϵ(x1 − t1x2 − t0)

∂x1

∂x
=

∂x2

∂x
= 0, at x = 0

∂x1

∂x
=

∂x2

∂x
= 0, at x = L

494

where x1, x2 are the two state variables,495

D, t1, t)0 the process parameters, and L the length of the spatial domain x. Here496

D = 4.0, L = 20, t0 = −0.03, and ϵ and t1 are two uncertain parameters satisfying497

ϵ ∼ N(0.4, 0.042) and t1 ∼ N(2, 0.12)498

The two PDE equations were discretised by spatial 200 nodes and then solved by499

the MATLAB pdepe tool. The reporting time horizon tt was set to 0.5 seconds. The500

MATLAB simulator was used as a black-box dynamic simulator with inputs being501

the process parameters and the time horizon, and outputs being the values of the two502

variables along the domain.503
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Table 2
Computational results of multivariate uncertainty (95% confidence level) for standard MC and

EF-MC method.

Covariances Methods µ(Cexit) σ(Cexit) Probability Computational
density functions time (hours)

(
0.0082 0.00
0.00 0.82

)
MC 0.0982 0.0124 34.96

EF-MC 0.0982 0.0124 1.31

(
0.0082 0.002
0.002 0.82

)
MC 0.0985 0.0139 34.24

EF-MC 0.0985 0.0139 1.33

(
0.0082 0.005
0.005 0.82

)
MC 0.0988 0.0149 34.10

EF-MC 0.0988 0.0149 1.36

(
0.0082 0.006
0.006 0.82

)
MC 0.0992 0.0156 34.01

EF-MC 0.0992 0.0156 1.36

Similar to the previous tubular reactor case, 4000 random samples were generated504

for the two uncertain parameters to approximate the uncertainty distributions. Other505

algorithm parameters were set to be the same as in the tubular reactor case. Then506
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both standard Monte Carlo and EF-MC propagation methods were used for steady-507

state uncertainty propagation with tolerance σ set to be 1.0e − 06. Tab.3 and Fig.3508

give the comparison of computational results from the two methods. At nominal509

parameter values ϵ=0.4 and t1=2, the outputs at x = L stayed at their nominal values510

x̂1=-0.4471 and x̂2=-0.2089. The results were really close to the mean values from511

the computational cases with parametric uncertainty but still could not reflect the512

uncertain fluctuations of outputs when parametric uncertainty was present, indicating513

the high demand for uncertainty quantification. It terms of computational efficiency,514

the proposed EF-MC method took only 2.14 computational hours, more than 90%515

time saving compared with the standard MC method. Moreover, the almost same516

mean value, covariance, lower and upper bounds of the state variables x1, x2 as seen in517

Tab.3 and the similar distributions from the two methods depicted in Fig.3 implies the518

high accuracy of the proposed EF-MC uncertainty propagation method. The possible519

explanation could be that that the final Picard iterations on the full computational520

space attract the lower-order approximation results onto the accuracy steady state521

trajectory although low-order approximations would produce errors. Meanwhile, the522

standard variance of state variable x̂2 is much smaller than the variance of x̂1 while523

fluctuation of x̂2 in the distribution figure is smaller than that of x̂1, indicating that524

x̂2 is less sensitive than x̂1 to parametric uncertainty. In terms of computational cost525

and accuracy, the proposed EF-MC method is more powerful over the standard MC526

method.527

(a) PDF of average x1from standard MC (b) PDF of average x1 from EF-MC
method

(c) PDF of average x2 from standard MC (d) PDF of x2 from EF-MC method

Fig. 3. Probability density functions of the average steady-state values of x1 and x2 at the end
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Table 3
Uncertainty analysis for Fitzhugh Naguma model (95% confidence level)

Methods Lower Upper µ σ Computational
bound bound time (hours)

Standard MC x̂1 -0.5069 0.3585 -0.4460 0.0196 27.13
EF-MC x̂1 -0.5069 0.3585 -0.4460 0.0196 2.14

Standard MC x̂2 -0.2264 -0.1889 -0.2085 0.0047 27.13
EF-MC x̂2 -0.2264 -0.1889 -0.2085 0.0047 2.14

6.3. Stochastic case study: oxidation of CO on a lattice catalytic sur-528

face. In many chemical and biochemical processes, fine-scale stochastic phenomena529

significantly impact system performances, which requires microscopic-level simula-530

tions to exploit process characteristics. Moreover, uncertain parameters would always531

occur in the complex processes, such as operating conditions at the microscopic level.532

This section applies the proposed EF-MC uncertainty quantification algorithm 5.2 to533

a distributed lattice kinetic Monte Carlo process [12]: a catalytic surface reaction .534

The surface elementary reactions are as follows:535

(6.3)

• COgas + (∗)i → CO∗
ads,i

• O2,gas + (∗)i + (∗)j → O∗
ads,i +O∗

ads,j

• CO∗
ads,i +O∗

ads,j → CO2,gas + (∗)i + (∗)j

• CO∗
ads,i → COgas + (∗)i

• CO∗
ads,i + (∗)j → CO∗

ads,j + (∗)i

536

Here COgas, O2,gas, CO2,gas are gas molecules in the bulk gas phase around the537

surface, (∗)i and (∗)j are two types of empty absorbed sites, while CO∗
ads,i and O∗

ads,j538

are adsorbed species on the surface sites i and j, respectively. The reaction mechanism539

involves the adsorption of gas molecules COgasand O2,gas onto vacant sites (∗)i and540

(∗)j , a reactive event between two adsorbed molecules CO∗
ads,i and O∗

ads,j , desorption541

of the absorbed molecule CO∗
ads,i into the gas molecule COgas, and diffusion of the542

absorbed molecule CO∗
ads,i to a neighboring empty site (∗)j . The diffusion process543

is slow and could be negligible. Hence only the first four elementary reactions were544

considered in this work. The coarse-scale distributed parameter system was focused545

on the average coverages of absorbed the molecules in the sub-lattice areas as shown546

in Fig.2 . For the same sub-lattice coverages, the spatial distributions of molecules547

could be different due to the inherent stochasticity as in Fig.2 .548

In this work, 200 × 200 size lattices were employed with only four sub-lattice areas549

in the whole reaction surface. It should be noted that this is only a test to validate550

the proposed EF-MC uncertainty analysis method 5.2, which is still applicable for551

the cases with more sub-lattices. The lattice kinetic Monte Carlo method [5] was552

utilised to simulate the above reaction mechanism. This is an inherently input/output553

dynamic simulator where inputs are uncertain parameters while outputs are the eight554

coarse-scale coverage values of CO∗ and O∗ in the 4 sub-lattices.555

For test purposes, one uncertain parameter, the partial pressure of gaseous CO2,556

was considered satisfying the distribution: PCO2 ∼ N(600, 802). Since the stochastic557

simulator for coarse-scale tasks is really expensive, 500 (N2) Monte Carlo samples were558

obtained to approximate the distribution. Furthermore, an obvious characteristic of559

the above stochastic simulator is the noise within the output responses. Multiple560

This manuscript is for review purposes only.



118 M. TAO, C. THEODOROPOULOS

copies need be used to reduce the output noise. Here the N0 number of repeated561

stochastic simulations was set to be 1000. The 1000 stochastic simulations were em-562

ployed to compute the coarse-scale coverages of CO∗ and O∗ through the restriction563

operation, which provides a precondition for further projection based acceleration564

to generate approximate coarse-scale coverages toward steady state.565

Then the approximate steady-state coarse-scale coverages would be lifted onto the566

random distributions, which need to take a ”healing time ” to change from random567

distributions into ”equilibrated distributions” and then travel on the normal dynamic568

trajectories within the stochastic simulator.569

The coarse-scale time step should be large enough to capture the healing time.570

Here, the coarse-scale reporting time horizon tt was chosen to be 5.0e − 05. The571

integration time horizon t0 was also set to be 5.0e−05. m = 8 the full space Newton-572

Raphason iteration573

was more accuracy to capture the whole dynamics.574

The tolerance σ was set to be 1.0e − 03. Tab.4 shows a comparison of results575

from both standard MC and EF-MC methods. The difference was less than 0.3%576

for the average coverage values for different sub-lattices, which may be due to the577

process stochasticity. The EF-MC method reduces the computational time by more578

than 3%, much less than the value in the above deterministic cases. This is mainly579

because of the large coarse-time step to capture the slow dynamics. If more copies580

were used, smooth dynamics could possibly be obtained with smaller coarse-time581

steps, leading to better computational savings, more accurate coarse-scale values but582

more computational resources.583

The resulting output coverage distributions in the sub-lattice areas are given as584

follows. Fig.4,5 depict the fluctuations around the normal values of the coverage585

in different sub-lattices for both CO∗ and O∗, implying the significant impact of586

parametric uncertainty. Meanwhile, the distributions for the adsorbed molecules are587

different from each other, which indicates the necessity to consider the effect of the588

spatial distribution. In the future, a larger number of sub-lattices can be used to589

better investigate coarse spatial distribution.590

Table 4
Uncertainty analysis for lattice catalytic surface reactions

Areas Methods µ(CO∗) σ(CO∗) µ(O∗) σ(O∗) Computational
time (hours)

Area1 MC 0.4511 0.0924 0.5071 0.0960 184.32
EF-MC 0.4528 0.0923 0.5052 0.0958 178.50

Area2 MC 0.4551 0.0883 0.5027 0.0914 184.32
EF-MC 0.4560 0.0895 0.5017 0.0927 178.50

Area3 MC 0.4538 0.0905 0.5041 0.0938 184.32
EF-MC 0.4539 0.0902 0.5040 0.0935 178.50

Area4 MC 0.4549 0.0895 0.5028 0.0927 184.32
EF-MC 0.4555 0.0881 0.5022 0.0911 178.50

This manuscript is for review purposes only.



UNCERTAINTY QUANTIFICATION FOR DISTRIBUTED PARAMETER SYSTEMS 119

Fig. 4. Probability density function of a coarse-scale steady-state CO* coverage value in dif-
ferent sub-lattices

Fig. 5. Probability density function of a coarse-scale steady-state O* coverage value in different
sub-lattices.

7. Conclusions. This paper proposes novel equation-free Monte Carlo uncer-591

tainty quantification algorithms for dynamic black-box simulators of large-scale dis-592

tributed parameter systems . Equation-free techniques can quickly accelerate steady593

state computations of the black-box dynamic simulators. Deterministic practical ex-594

amples including a chemical tubular reactor and the FitzHugh-Nagumo model were595

employed, demonstrating that the proposed EF-MC algorithm 4.2 can reduce the596

computational costs up to 90% with highly accurate results. While the stochastic597

case study of the oxidation reactions of CO on a lattice catalytic surface shows that598

the EF-MC algorithm 5.2 could accurately compute the coarse-scale output distri-599

butions with slightly less computations. In such stochastic cases, the ”healing-time”600

during lifting-restriction operations increase computation costs in spite of projection601

based acceleration. In the future, multivariate cases and higher spatial distribution602

for the stochastic problems should be employed to investigate the efficiency of our603

EF-MC algorithms.604
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Chapter 6

Robust steady-state optimisation of

large-scale distributed systems under

uncertainty

6.1 Introduction

A model reduction based uncertainty analysis framework for large-scale distributed pa-

rameter systems has been presented in Chapter 5. Three practical production cases, includ-

ing both deterministic and stochastic examples, were employed to validate the computational

advantages of the proposed framework. The proposed framework uses ”equation-free” tech-

niques to speed up steady-state uncertainty propagation through complex dynamic systems.

This chapter focuses on constructing an efficient robust steady state optimisation framework

for large-scale distributed parameter systems under parametric uncertainty.

Firstly, the uncertainty propagation techniques from Chapter 5 are employed to account for

parametric uncertainty for complex large-scale dynamic systems. Through a few short-term

time integrations using the dynamic simulators, the distributed output steady states are easily

computed for complex systems. Nevertheless, complex system under parametric uncertainty

are still computationally expensive for further optimisation operations, especially for com-

puting derivative information within the popular gradient-based optimisation approaches.

Moreover, accurate gradient information may be hard to generate due to the unknown un-

derlying equations and/or parameters of the complex systems with parameter uncertainty.
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Complex systems under uncertainty are more likely to present high stochastic characteristics,

which may lead to wrong derivatives and hence sub-optimal results. Furthermore, almost all

derivative based optimisation methods will tend to be stuck on the local optima, missing the

true global solution.

To deal with these issues, a Bayesian global optimisation strategy was adopted in this

work. Using prior knowledge, Bayesian optimisation can find good solutions through the

trade-off between exploitation and exploration operations. Exploitation operations aim to

search better solutions as much as possible while exploration procedures seek the unknown

optimisation domains to globally optimise the objective cost functions. Furthermore, here

Kriging surrogate models are employed to represent the complex system under uncertainty,

which can efficiently predict the system performance and calculate the uncertainties in closed

form to speed up process computations.

The proposed robust steady state optimisation framework was tested through a typical

chemical tubular reactor under single and multivariate parametric uncertainties. In the previ-

ous chapter, the developed model reduction-based uncertainty propagation method has been

validated and its ability to accelerate the computation by one magnitude compared with the

traditional Monte Carlo method was demonstrated. Here, the test cases on the gradient-based

optimisation method show that wrong derivative information can lead to zigzag optimisation

paths, which may result in more computational cost and worse solutions. The Bayesian op-

timisation approach used here, is able to compute better solutions than the derivative-based

methods through the same limited number of expensive function evaluations. The computa-

tional results also illustrate that Bayesian optimisation procedure can escape from the neigh-

borhood of local optima to perform global search for better optimal solutions.

6.2 Author’s contribution
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Robust steady-state optimisation for large-scale

distributed parameter systems with uncertainty

Min Taoa, Constantinos Theodoropoulosa,∗
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Abstract

Complex distributed parameter systems usually exhibit uncertainty, derived
from inherent stochastic and/or incomplete knowledge of the underlying pro-
cesses, leading to substantial model-plant mismatch. In this work, a robust
steady-state optimisation framework is proposed for large-scale distributed
systems with parametric uncertainty. Our equation-free Monte Carlo uncer-
tainty quantification algorithm [1] is utilised to efficiently account for uncer-
tainty distribution. Nevertheless, large-scale systems including uncertainty
are costly often simulated through black-box models, including stochastic
noise and are highly non-convex, all of which significantly affects computa-
tional speed and solution quality of derivative-based optimisation algorithms.
Here a Kriging model-based Bayesian optimisation strategy is adopted to
compute a globally optimal solution for large-scale systems including uncer-
tainty with a limited number of system evaluations. The performance of
the proposed robust steady-state optimisation framework is demonstrated
through practical chemical tubular reactor cases.

Keywords: Robust optimisation, Distributed parameter systems,
Uncertainty, Equation-free, Bayesian optimisation, Kriging model

1. Introduction

Large-scale industrial processes are commonly modelled by distributed-
parameter systems [2], exhibiting uncertainty due to the inherent stochastics
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and/or incomplete disclosure of physical phenomena [3, 4]. Uncertainty of-
ten causes mismatch between model outputs and true process observations,
requiring uncertainty quantification (UQ) to address the relevant challenges.
However, UQ methods traditionally require a large number of repeated com-
putationally expensive evaluations especially when large-scale distributed pa-
rameter systems (DPS) are involved. Furthermore, optimisation-based intel-
ligent decision-making can significantly improve the performance of industrial
production [5, 6, 7, 8]. Nevertheless, uncertainty in large-scale DPS presents
complex characteristics, such as high stochasticity and non-convexity, which
in addition to the frequent lack of explicit availability of system equations,
prevents the implementation of many existing optimisation solvers including
gradient based methods and stochastic search approaches. Thus, robust op-
timisation of DPS under uncertainty is an important practical engineering
challenge.

Uncertainty quantification aims to measure the impact of uncertainty
on quantities of interest [9]. Explicit analytical solutions may be obtained
if system models are available and simple enough. However, process mod-
els are mostly black-box for large-scale complex DPS. Even if the system
models are explicit, direct analytical solutions cannot be computed for the
highly complex models. Fortunately, uncertainty propagation techniques can
be employed for practical large-scale problems through simulating black-box
system models for a large number of realizations. The large volume of prop-
agated results can be then used to calculate the probability distributions of
quantities of interest. For example, numerous samples from standard Monte
Carlo methods can accurately represent uncertainty distributions, leading to
highly accurate propagated results. However, computing a large number of
samples for large-scale systems would be a heavy burden for computing [10].
The computational challenges drive the development of fast-computing UQ
methods. One class of such UQ methods is efficient sampling methods includ-
ing Latin hypercube [11], sparse grid [12] and multilevel Monte Carlo [13, 14]
sampling methods. These efficient sampling methods use relatively fewer
representative samples to be propagated, which significantly reduces compu-
tational times. However, smaller numbers of samples result in loss of com-
putational accuracy. Another class of UQ methods is low-order model based
Monte Carlo methods, such as power series and polynomial chaos expan-
sions [10, 15, 16] methods. These low-order model-based methods construct
efficient surrogate models to replace the original costly large-scale models,
leading to much faster propagation processes [15]. However, loss of compu-
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tational accuracy may be caused due to the errors between the approximate
models and the original models. Moreover, some of the lower-order meth-
ods are limited to certain types of uncertainty distributions. For example,
polynomial chaos expansion method requires prior knowledge of the type of
uncertainty distributions to choose suitable polynomials for the approximate
models [17].

A recent novel ”equation-free” Monte Carlo (EF-MC) steady-state un-
certainty quantification methodology has been developed for large-scale dis-
tributed parameter systems [1]. The EF-MC algorithm is an improved Monte
Carlo-based UQ algorithm, which firstly generates a large number of samples
by the standard Monte Carlo sampling method or its extensions, and then
propagates the samples using the available dynamic models with efficient
initialisation procedures. The key step of EF-MC algorithm is the recursive
projection method (RPM) [18], exploiting the dissipativity of systems [19] to
accelerate propagation computations of dynamic systems to steady states for
each sample. Computational results show that the EF-MC uncertainty quan-
tification technique not only inherits the advantages of standard Monte Carlo
methods, i.e. high accuracy and more generalisation to different types of un-
certainty distributions, but also achieves significant computational savings.
Here the EF-MC uncertainty quantification method is utilised to account for
parametric uncertainty.

Nevertheless, optimisation of large-scale systems including uncertainty is
still challenging. Since large-scale systems with uncertainty are commonly
black-box, derivatives as the key elements for gradient-based optimization
algorithms, need to be computed by numerical approximations [20]. How-
ever, computational noise including truncation and round-off errors can sig-
nificantly decrease the computational accuracy of derivatives, leading to bad
and/or local convergence performance. Moreover, the computation of deriva-
tives, even of low-order ones, is costly due to the multiple evaluations of the
systems with uncertainty. Furthermore, traditional gradient-based optimisa-
tion techniques can be easily stuck at the neighborhood of local optima, which
are possibly much worse than the true globally optimal solutions. Derivative-
free stochastic optimisation algorithms seem to be possible solutions to han-
dle the ill-conditioned derivatives and the global optima computation issues.
However, these global search algorithms such as simulation annealing [21]
and genetic algorithms [22], require large number of function evaluations,
which would cause huge computational costs when dealing with expensive
systems including uncertainty.
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An efficient global optimization method [23], a Bayesian optimisation
strategy [24, 25] and its extensions [26, 27] have been developed successfully
for expensive black-box systems. This method employs surrogate Kriging
models [25, 28] to predict the mean values and the related uncertainty for
locally searching the minimums and global exploring the design space. By
controlling exploitation and exploration operations, good optimal solutions
can be obtained with limited function evaluations. Here, the Bayesian global
optimisation strategy combining Kriging surrogate models and expected im-
provement functions was utilised. The objective of this work is to propose a
robust optimisation framework for large-scale distributed systems with un-
certainty, combining the EF-MC uncertainty quantification algorithm and
the Bayesian global optimisation strategy. It should be noted that this is an
extension of our previous findings [29].

The rest of the paper is organized as follows: in Section 2, the detailed
robust optimisation framework is introduced. In Section 3, single parameter
and multivariate uncertainty cases for a tubular reactor are used to verify
this framework. Finally, conclusions and future work are discussed in Section
4.

2. Robust steady-state optimisation framework

Here we consider the following large-scale spatially distributed system
model with uncertainty:

∂y

∂t
= D{∂y

∂x
,
∂2y

∂x2
, ...,

∂ny

∂xn
,p,d}+R(y,p,d)

A{∂y
∂x

,
∂2y

∂x2
, ...,

∂ny

∂xn
,p,d}

∣∣∣∣
x=Ω′

= hbds(y,p,d)

y|t=0 = y0(p)

(1)

Eq.(1) gives the governing PDE as well as the corresponding initial and
boundary conditions. D and A denote dissipative spatial differential oper-
ators, d ∈ Rnd are the design variables, p ∈ Rnp are the uncertain param-
eters and y ∈ Rny are the state variables, R(y,p,d) : Rny × Rnp × Rnd →
Rny are the nonlinear functions, Ω′ are the system boundaries, hbds(y,p,d):
Rny ×Rnp×Rnd → Rny are the right hand sides of the boundary conditions.
y0: Rnp → Rny are the initial values. t ∈ R and x ∈ Rnx are the time and
space coordinates, respectively.
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Typically, the spatiotemperal PDEs are spatially discretised into large-
scale ODE models, and then solved through time integration schemes using
commercial software [30, 31, 32]. The resulting input-output iterations in
time using black-box simulators can be expressed into the following Picard
iteration formulation:

Y n+1 = F (Y n,p,d; tt) (2)

where n ∈ N is the number of the current iteration step, Yn ∈ RN denotes
the spatial variables at time step n, F (Yn,p,d) : RN × Rnp × Rnd → RN ,
is the time-stepper over a reporting time horizon tt. Then the steady-state
conditions using time integration are reached for n → ∞. Here, a tolerance
η ∈ R+ is introduced to identify the steady-state condition ∥Y n+1 − Y n∥ ≤ η
for practical computations.

Then the general robust steady-state optimisation problem for PDE-
based distributed parameter systems could be formulated as the following
stochastic programming due to uncertain parameters p:

min
d

G(Y ss,p,d)

s.t.

Y ss = f(p,d)

gcons(Y
ss,p,d) ≤ 0

(3)

where Y ss ∈ RNdenotes the steady-state solutions (also the quantities of
interest) satisfying ∥Y n+1 − Y n∥ ≤ η , f(p,d) : Rnp × Rnd → RN is the
unknown map from the uncertain parameters p and design variables d to
steady-state solutions Y ss. G(Y ss,p,d) : RN ×Rnp ×Rnd → R is the objec-
tive cost function for the robust optimisation problem, and gcons(Y

ss,p,d) :
RN × Rnp × Rnd → RNcon are the Ncon general constraints for quantities of
interest, design variables and uncertain parameters.

In the following parts, a combination of the EF-MC uncertainty quantifi-
cation technique and the Kriging model based Bayesian optimisation strategy
is employed to deal with the above stochastic nonlinear programming Eq.(3).

2.1. ”Equation-free” Monte Carlo uncertainty propagation method

To address parametric uncertainty, probabilistic approaches describe it
by employing a probability density function (PDF) [33]. ”Equation-free”
Monte Carlo uncertainty propagation method [1], was proposed to efficiently
perform stead-state UQ tasks for large-scale distributed parameter systems.
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The key idea is to employ the recursive projection method (RPM) [18, 34]
to accelerate the computations of the Monte Carlo-related UQ algorithm.

2.1.1. Monte Carlo-related UQ algorithm

The MC-based steady-state UQ algorithm employs repeated random sam-
pling (or high-quality pseudo-random sampling) and statistical analysis to
compute statistics of quantities of interest through Monte Carlo based nu-
merical integration as below:

E(Y ss(p,d)) =

∫
Ω′
Y ss(p,d)π(p)dp

V(Y ss(p,d)) =

∫
Ω′
(Y ss(p,d)− E(Y ss(p,d))2π(p)dp

(4)

where E(Y ss(p,d)) and V(Y ss(p,d))denotes the expected value and the vari-
ance of quantities of interest Y ss(p,d) with respect to the probability density
π of uncertain parameters p in the random domain Ω′. Here Y ss(p,d) is the
steady-state solution of the Picard iterations Eq.(2) without explicit solu-
tion formulations. Therefore, the sample-based Monte Carlo method can be
utilised to compute the above integration in Eq.(4). If {pi}Mi=1 is a sequence of
i.i.d. M samples from the probability density function of p, then the zero mo-
ment of quantities of interest can be calculated by Eq.(5). The consequences
of the law of large numbers [35] can provide mathematical guarantees on
the convergence of the Monte Carlo methods when M →∞. Here a finite
value of M is adopted to approximately compute the left hand side. Other
statistical moments can be computed by a similar sample based manner.

E(Y ss(pi,d)) = lim
M→∞

1

M

M∑
i=1

Y ss(pi,d)

V(Y ss(pi,d)) = lim
M→∞

1

M

M∑
i=1

(Y ss(pi,d)− E(Y ss(pi,d)))2

(5)

Since the quantities of interest Y ss(pi,d) are steady-state solutions computed
through Eq.(2), good initialisation could significantly accelerate the compu-
tations. Here we adopt a greedy algorithm and the first-order continuation
method Eq.(6) to transfer information between systems under different un-
certain realisations pi to provide good initialisations for system evaluations.
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More details can be seen in [1] .

Y 0(pi,d) =


Y ss(pi−1,d) +

∥pi−pi−1∥
∥pi−1−pi−2∥(Y

ss(pi−1,d)− Y ss(pi−2,d)), i = 3, 4...M

Y ss(pi−1,d), i = 2
Y 0, i = 1

(6)
Here Y 0(pi,d) denotes the initial value for the system with uncertain reali-
sation pi(i = 1, 2...M), Y ss(pi,d) is the corresponding steady-state value, ∥∥
denotes the Euclidean distance, Y 0 is the spatially discretised initial value
of y0.

2.1.2. The recursive projection method

The above Monte Carlo-based UQ method employs a large number of
samples to approximate the probability distributions of uncertain parameters
p, which ensures the high accuracy and generalised ability to handle differ-
ent types of uncertainty distributions. However, the computational costs of
standard Monte Carlo are extremely intensive if directly propagating these
samples for large-scale distributed systems. Fortunately, the recursive pro-
jection method [18, 34], a key step of the EF-MC uncertainty propagation
method, can be employed to achieve significant computational savings [29].

The recursive projection method focuses on dissipative systems, and ex-
ploits the separation of their timescales to fast and slow ones, which can be
seen in the eigenspectrum of linearized discrete-time systems. Fig.1 shows the
eigenspectrum as such a dissipative system exhibiting separation of scales.
On the one hand, the small number of slow modes, corresponding to the
eigenvalues close to the boundary of the unit circle depicted in Fig.1 repre-
sent the slow dynamics, which are also the dominant dynamics of the sys-
tem. On the other hand, the large cluster of fast modes, corresponding to
the eigenvalues around the original in Fig.1, represent the fast dynamics of
the dissipative systems.
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Figure 1: Eigenspectrum of a discrete-time dissipative system, exhibiting a clear separation
of modes

Let P be the low-dimensional subspace corresponding to the slow modes
of the discrete-time disspative systems, and Q be its orthogonal complement,
so

P
⊕

Q = Rm (7)

where P ∈ Rk and P ∈ Rm−k, m being the dimension of the subspace P .
Let P and Q be the projectors onto the subspace P and Q respectively, then

Q ∈ Rm×m = Im − P

P = ZZT ∈ Rm×m
(8)

where Z ∈ Rm×k is the orthogonal basis for the subspace P, which can be
efficiently computed by matrix-free Arnoldi iteration methods.

RPM performs Newton iterations on the low-dimensional subspace P
and Picard iterations on its complement Q until the convergence conditions
(∥Y− F (Y,p,d)∥ ≤ η) are satisfied as follows:

p0 = PY0(p,d), q0 = QY0(p,d)

pn+1 = pn + (I − ZHZT )−1 × (PF(Yn,p,d)− pn)

qn+1 = QF(Yn,d)

Yn+1 = pn+1 + qn+1

(9)
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where η ∈ R+ is the tolerance, pn and qn denote the projection parts of
Y nonto two subspaces at the nth iteration. In the above iteration pro-
cess Eq.(9), the low-order Jacobian H ∈ Rk×kas illustrated in Eq.11 can be
computed through the matrix-vector product FYZ obtained by directional
perturbations in Eq.10

FYZ =
(F(Y+ ϵZ)− F(Y− ϵZ))

2ϵ
(10)

H = ZTFYZ (11)

where ϵ ∈ R a small perturbation on the direction of Z. The initial values
can be calculated though first-order continuation [1] .

Therefore, the whole equation-free Monte Carlo algorithm can be sum-
marised below as Algorithm 1. More details can be referred to the literature
[1].

Algorithm 1 EF-MC uncertainty quantification algorithm

Input: random parameters p, Nm1 maximum number of random samples
for p, Nm2 maximum number of Newton-Picard iterations, initial condi-
tions y0, initial basis Z0, integration time horizon t0, the input/output
integrator over a time interval tt and tolerance σ

Output: statistical moments E(Y ss(p,d)) and V(Y ss(p,d))
1: Generate M (M ≤ Nm1) {p′i}Mi=1 i.i.d. samples to compute parametric

uncertainty through the Monte Carlo method
2: i← 1
3: Find the sample with the minimum coordinate value(s)
4: M0 ← ∅
5: while i ≤M do
6: Put the current sample pi into the set M0

7: Compute the Euclidean distances between the current samples with
all samples {p′i}Mi=1 except ones in the set M0

8: Find the sample with the minimum distance to the current sample as
the next sample in the new sequence of sample set {pi}Mi=1

9: i=i+1
10: end while
11: i← 1
12: while i ≤ N2 do
13: Compute the initial conditions Y 0(pi,d)from Eq.(6)
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14: Compute the initial basis Z0(p
i,d)

15: Perform time integration for time horizon t0
16: kk ← 0
17: Compute Y n+1 at the next time step through time integration Y n+1 =

F (Y n,pi,d; tt)
18: while ∥Y n+1 − Y n∥ > η do
19: if kk ≥ Nm2 then
20: Recompute the basis Z(pi,d)
21: kk ← 0
22: end if
23: Perform Newton-Picard iterations as in Eq.(9)
24: kk ← kk + 1
25: Compute Y n+1 at the next time step through Y n+1 = F (Y n,pi,d; tt)
26: end while
27: Y ss(pi,d) = Y n(pi,d)
28: i← i+ 1
29: end while
30: Compute the statistical moments E(Y ss(p,d)) and V(Y ss(p,d)) from

Eq.(5)
31: return E(Y ss(p,d)) and V(Y ss(p,d))

Then the statistical moments EY (d) = E(Y ss(p,d)) and VY (d) = V(Y ss(p,d))
can be computed through the Algorithm 1 under different design points of d.
Thus, the above stochastic programming Eq.(3) could be transformed into
the following deterministic nonlinear programming (NLP) formulation:

min
d

G′(EY , VY ,d)

s.t.

EY ∈ RN = f1(d)

VY ∈ RN = f2(d)

g′cons(EY , VY ,d) ≤ 0

(12)

where G′(EY , VY ,d) and g′cons(EY , VY ,d) are the deterministic formulations
of G and gcons.

If we eliminate the equality constraints EY = f1(d) and VY = f2(d), then
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the above problem Eq.(12) could be transformed into the following:

min
d

G′(f1(d), f2(d),d)

s.t.

g′cons(f1(d), f2(d),d) ≤ 0

(13)

Generally, the above problem Eq.(13) could be reformulated into uncon-
strained nonlinear programming problems if g′cons only includes simple bound
constraints. However, the relationship functions f1 and f2 are unknown (may
exploit complex non-linearity) and expensive to evaluate due to costly un-
certainty propagation processes, requiring efficient optimisation strategies to
deal with the problem Eq.(13). It should be noted that we only use the mean
value and variance in this work. High order statistical moments and bounds
can be computed through the similar manner Eq.(5) based on the propagated
distributions of Y ss(p,d).

2.2. Bayesian global optimisation

Although the EF-MC uncertainty propagation algorithm speeds up the
computations of steady states Y ss(p,d) for large-scale distributed systems
with uncertainty, the above optimisation problems 13 are still challenging due
to the unavailable relationships expensive f1 and f2. Black-box map functions
between the statistics (quantities of interest) and the design variables d may
exploit the complex nonlinear characteristics e.g. non-convexity and non-
smoothness, which can lead to the ill-conditioned derivatives and difficulties
to compute global optima for derivative-based optimisation algorithms [36,
37]. Moreover, it is hard to employ the efficient surrogate models such as
artificial neural networks (ANNs) because it would require a large number of
expensive samples.

Fortunately, Bayesian optimisation strategy can efficiently handle black-
box systems since it does not require any function information and can often
find a good solution within the limited number of function evaluations. The
key components of Bayesian optimisation strategy are a probabilistic surro-
gate model to predict the expected output value and variance (uncertainty)
of the predictions, and an acquisition function including the predictive in-
formation of mean value and variance to compute the next sampling point.
Moreover, the surrogate model would be updated with additional samples
(next sampling points) to give more accurate predictive information. Here
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we adopt the popular Kriging model as the surrogate model and the expected
improvement function as the acquisition function.

2.2.1. Kriging model

Originated from the geological research [38], Kriging models have been
applied as common surrogate models across multiple disciplines [39, 40, 41,
42]. In modern data science, Kriging models are also used as Gaussian process
regression [43]. Compared with other surrogate models, Kriging models have
been found to be really efficient for expensive nonlinear problems [44].

Different from other surrogate models, the outputs of Kriging models are
random variables including mean value and variance due to their statistical
background. The mean value can be used to estimate the nominal function
value while the variance can be utilised to predict the uncertainty or the
errors, which enables more advantages of Kriging models over other surrogate
models. Here, we want to employ Kriging model to build the maps f1 and
f2 from d to the G′ ∈ R with an assumption that g′cons being simple bounds
constraints.

The prior knowledge of Gaussian process model indicates the random
output variable G′(·): Rnd → R at any location point of design space d ∈ Rnd

with mean value µ and variance σ2, aGaussian distribution for the finite
random variables can be as follows:

G(d) ∼ N(µ(d), K(d,d)) (14)

where G(d) = (G′(d1), ..., G
′(dN ′)) : Rnd×N ′ → RN ′

denotes the results of
the given inputs d = [d1, ...,dN ′ ]T ∈ Rnd×N ′

, N ′ is the number of function
evaluations, µ(d) = (µ(d1), ..., µ(dN ′)): Rnd×N ′ → RN ′

is the mean values,
and K(d,d): Rnd×N ′ → RN ′×N ′

is the covariance with Kij = k′(di,dj) as
the kernel function.

In this work, the smooth and stationary squared-exponential kernel [43]
was used, assuming that the function values G′(d1) and G′(d2)are close when
the locations d1 and d2 of design space are close:

k′(di,dj) = σ2
fexp(−

1

2l2
(di − dj)

T (di,dj)) (15)

where σ2
f and l are kernel parameters, denoting the covariance magnitude and

characteristic length-scale parameters, which could be estimated through in-
ference method such as maximum likelihood estimation (MLE). MLE method
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seeks the above parameter values to maximize the probability of the function
values ρ(G|σ,l,d), which is equal to the log likelihood of the observed points
as following [45, 46]:

log ρ(G|σ,l,d) = −
nd

2
log 2π−1

2
log |Kσ,l(d,d)|−

1

2
(G−µ(d))T (Kσ,l(d,d))

−1(G−µ(d))
(16)

where (d,G) is the observed dataset.
Ignoring constant terms, the log likelihood could be simplified into the

equation below:

log ρ′(G|(σ,l,d)) = −
1

2
log |Kσ,l(d,d)|−

1

2
(G−µ(d))T (Kσ,l(d,d))

−1(G−µ(d))
(17)

Then the hyperparameters σ, l could be estimated by maximising Eq.(17),
which could be employed to compute the prediction at new samples points.

Meanwhile, the current variables and the unknown variables G′(d∗) given
new location d∗ satisfy a joint Gaussian distribution:[

G(d)
G′(d∗)

]
∼ N

([
µ(d)
µ(d∗)

]
,

[
K k′(d,d∗)

k′(d∗,d) k′(d∗,d∗)

])
(18)

Then the posterior predictive G′(d∗) would satisfy the Gaussian distributions
as below:

G′(d∗)|G(d),d,d∗
∼ N(µ∗, σ

2
∗) (19)

where µ∗ = µ(d∗)+k′(d∗,d)K
−1(G(d)−µ(d)), σ2

∗ = k′(d∗,d∗)−k′(d∗,d)K
−1k′(d,d∗).

Here, we could choose a zero mean function such that µ(d) = 0, which
could be achieved by normalizing the dataset beforehand, leading to more
straight computations. Latin hypercube sampling (LHC) method is employed
to produce these sample sets (d,G) around the feasible search space. The
general LHC sampling method is employed to choose the samples according
to two rules, spanning the whole design space and maximizing the difference
among the samples [47]. Specifically, the sample domain is divided into N ′

sub-intervals, where sample points are generated randomly to represent the
whole sub-regions.

Then hyperparameters σ, l could be estimated through the Eq.(17) and
the collected dataset (d,G). Here, the limited-memory Broyden–Fletcher–Goldfarb–Shanno
algorithm (BFGS) [48] was used with 10 restarting times to avoid local op-
tima for the first computations . The recursive optimisation procedure of
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updating the parameters would employ one starting point , the previous
computational result. Thus, surrogate Kriging models could be constructed
to predict the function information G′ in any location d including the ex-
pected mean value and variance (uncertainty), which would be which would
be then employed by the acquisition function for calculating the location of
the next sample point or find a better solution over the current best observe.

2.2.2. Expected improvement function

In Bayesian global optimisation, acquisition functions are the powerful
tools to quantify the predictive information of mean value and variance,
computing the next sampling point. Acquisition functions are also used as
active learning functions in machine learning areas [49, 50]. The utilisation
of acquisition functions provides the capability of the Bayesian optimisation
procedure to achieve a good balance between local exploitation and global
exploration. The local exploitation ability is derived from exploiting the
information of mean value µ∗ to search a minimum function value, while
the global exploration capability relies on the information of variance σ2

∗ to
explore more uncertain feasible space. The popular acquisition functions in-
clude probability of improvement and expected improvement (EI) functions,
which has been discussed in literature [51]. More improved functions can
be seen in these works[52, 53, 54, 55]. Here EI function with Kriging model
was used to deal with the trade-off between exploitation and exploration as
below [23].

I(d∗|d,G′(d)) = max(G′(d∗)−G′(d+)− j, 0)
∣∣
d,G′(d)

(20)

where I(d∗|d,G′(d)) is the improvement function. Since G′(d) is a random

variable, I(d) is also a random variable. G′(d+) is the maximum function
value for the history samples (d, G′(d)) and d+ is the location for the sam-
ple with the maximum function value, i.e. d+ = argmaxd∈dG

′(d), j is a
parameter that determines the explore-exploit trade-off during the Bayesian
optimisation process. Higher j values imply less importance of the posterior
mean value but more importance of variance, leading to more exploration
to reduce the uncertainty. In this work, j was set to be 0.01. Then the
probability of the improvement function could be denoted as below:

ϱ(I(d∗|d,G′(d))) = Φ

(
µ∗ −G′(d+)− j

σ∗

)
, σ∗ > 0 (21)
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where Φ is the cumulative distribution function of the standard normal distri-
bution, µ∗ and σ∗ are the mean value and variance of the posterior prediction
G′(d∗), respectively.

And the expectation of the above EI function Eq.(20) is expressed:

EI(d∗|d,G′(d)) = E|d,G′(d) max(G′(d∗)−G′(d+)− j, 0) (22)

The close-form equations of the expectation improvement can be expressed
as following [23]:

EI(d∗|d,G′(d)) =

{
(µ∗ −G′(d+)− j)Φ

(
µ∗−G′(d+)−j

σ∗

)
+ σ∗ϕ

(
µ∗−G′(d+)−j

σ∗

)
, σ∗ > 0

0 , σ∗ = 0

(23)
where ϕ are the probability density function of a standard normal distri-
bution. The EI function includes two terms, the first one representing the
relative importance of exploitation while the second one indicating the weight
of exploration.

Then the optimisation procedure would be employed to compute the lo-
cation d∗ for the next sample pair (d∗, G

′(d∗)). Here the limited-memory
Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) [48] was used with
20 restarting times to avoid local optima.

So far, the whole procedure of the robust steady-state optimisation frame-
work have been introduced, which could be summarised as the following Al-
gorithm 2.

Algorithm 2 Robust steady-state optimisation of distributed parameter
systems under uncertainty

Input: random parameters p, Nm1 maximum number of random samples for
p, Nm2 maximum number of Newton-Picard iterations, initial conditions
y0, initial basis Z0, integration time horizon t0, the input/output inte-
grator over a time interval tt and tolerance σ, N ′ the number of initial
samples, N ′′ the limited number of iterations (expensive evaluations),
N ′′′ the maximum number of continuous iterations without the objective
improvements and the convergent parameter σ, the maximum computa-
tional time Ht

Output: the best solution pair (dop,G
′(dop)), the iteration sample pairs

(dk1, G
′
k1)|k1=1,...,i−1 and the best history sample pairs (dk1, G′k1)|k1=0,...,i−1,
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the number of optimisation iterations (i− 1), the computational time ti,
the current value of ii

1: Generate N ′ LHC initial inputs d0 to cover the design space d
2: Compute the corresponding results G0(d0) of the given d0 through the

EF-MCAlgorithm 1 and the transformed function formulationG′(EY , VY ,d)
3: i← 0, ii← 0, t0 ← 0
4: Calculate the hyperparameters σ0, l0 of the initial Kriging model through

maximising Eq.(17) with the collected dataset (d0,G0)
5: Record the current computational time t1 after the initial computations
6: Record the current best sample pair (d0, G′0 ) after the initial computa-

tions
7: i← 1
8: while i ≤ N ′′ & ii ≤ N ′′′ & ti ≤ Ht do
9: Compute the location di of the next sample by maximising Eq.(23)

with the collected dataset (di−1,Gi−1)
10: Compute the correspondingG′

i(di) of di through the EF-MCAlgorithm
1 and the function formulation G′(EY , VY ,d)

11: Put the current sample pair (di, G
′
i ) into the collected dataset (di,Gi)

12: if |G′
i −G′i−1| ≤ σ then

13: ii← ii+ 1
14: else
15: ii← 0
16: end if
17: Record the current best sample pair (di, G′i ) among the sample set

(di,Gi)
18: Calculate the updated hyperparameters σi, li of the initial Kriging

model through maximising Eq.(17) with the collected dataset (di,Gi)
19: i=i+1
20: Record the current computational time ti after the this iteration
21: end while
22: Record the current best sample pair (di, G′i ) as the best solution pair

(dop,G
′(dop))

23: return the best solution pair (dop,G
′(dop)), the iteration sample pairs

(dk′ , G
′
k)|k′=1,...,i−1 and the best history sample pairs (dk′ , G′k′|k′=0,...,i−1,

the number of optimisation iterations (i− 1), the computational time ti,
the current value of ii

In this work, the above Bayesian optimisation Algorithm 2 deals with the
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simple bound constraints g′cons and can compute a good solution (dop, G
′(dop))

with the limited computational resources (computational time H, iteration
steps N ′). For the cases with complex g′cons, the corresponding expected
improved functions should be introduced [56] and combined into the objective
to satisfying the complex nonlinear constraints, which can also employed the
above robust optimisation procedure.

3. Case studies

In order to prove the high efficiency of the proposed robust steady-state
optimisation framework, a typical tubular reactor, displayed in Fig.2, was
tested. For comparison purposes, the traditional gradient based optimisation
method in MATLAB was utilised to solve the same problem Eq.(13) with
the same EF-MC uncertainty propagation method as the above Algorithm 2.
For all computational cases below, the gradient based optimisation method
and the EF-MC uncertainty propagation method were running in MATLAB
R2019a while the Algorithm 2 was implemented in Python 3.7.3/PyCharm
2018.3.5 on a Desktop (Intel Core(TM) i7-8700 CPU 3.2 GHz, 16 GB mem-
ory, 64-bit operating system, Windows 10).

Figure 2: Tubular reactor with cooling zones

An exothermic first-order irreversible reaction happens A→ B in a tubu-
lar reactor [57, 29]. We consider three cooling zones on the jacket of the reac-
tor, temperatures of which could be controlled independently. The governed
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mathematical equations are below.

∂x1

∂t
=

1

Pe1

∂2x1

∂y2
− ∂x1

∂y
+Da(1− x1)exp(

x2

1 + x2

γ

)

∂x2

∂t
=

1

LePe2

∂2x2

∂y2
− 1

Le

∂x2

∂y
− x2

Leβ
+

B

Le

Da(1− x1)exp(
x2

1 + x2

γ

) +
βx3

Le

x3(y) =
3∑

i=1

(H(y − yi−1)−H(y)− yi)x3i

(24)
Here x1 and x2 are two state variables, the dimensionless concentration and
dimensionless temperature respectively, and y is the dimensionless longitu-
dinal coordinate. Systems parameters are the Damkohler number Da, the
Lewis number Le, the Peclet number for mass transport Pe1, the Peclet
number for heat transport Pe2, a dimensionless heat transfer coefficient β,
the dimensionless adiabatic temperature rise B, the dimensionless adiabatic
wall temperatures x3 of cooling zones and the dimensionless activation energy
γ. The above two PDEs are accompanied with the boundary conditions:

∂x1

∂y
− Pe1x1 = 0

∂x2

∂y
− Pe2x2 = 0, at y = 0

∂x1

∂y
= 0

∂x2

∂y
= 0, at y = 1

(25)

The above two PDEs were spatially discretised on 250 (N) computational
nodes by central finite difference method, and then integrated in time by
explicit fourth-order Runge-Kutta method. Then the whole computational
codes were made into a input-output black-box simulator, where only the
input-output data from the simulator could be used. The reporting time
horizon was set to be 1e − 06 second (tt) for the black-box simulator. In-
puts include fixed system parameters and uncertain parameters while outputs
would be the dimensionless temperatures and concentrations. x1exit is the
dimensionless output concentration at the end, µ(x1exit) (EY ) is the mean
value of the uncertain output concentration and σ(x1exit) (VY ) is the standard
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variance value of the uncertain output concentration. In this work, the above
optimisation framework was studied to robustly find the good operation tem-
peratures for the cooling zones to maximize the dimensionless concentration
x1 under parametric uncertainty.

3.1. Single parametric uncertainty

As an illustrative example, a simple case with single parametric uncer-
tainty was firstly studied. Here, system parameters Le = 1.0, P e1 = Pe2 =
5.0, γ = 20.0, β = 1.50, B = 12.0 are fixed while the distributional uncertain
parameter p is Damkohler number Da, which could exploit the rich paramet-
ric behaviours of the dynamic systems. The parametric uncertainty follows
a normal distribution here.

Da ∼ N(0.1, 0.012) (26)

The mathematical formulation could be seen as Eq.(27). In this optimisation
problem, the objective is a weighted function, which aims to obtain the larger
output product concentration with smaller fluctuations at the end of exit
under single parametric uncertainty. Here the fixed weight factor r between
the two terms was set to be 0.6. The design variables are three temperatures
of the three cooling zones. The constraints include the black-box simulator
equations with steady-state uncertainty quantification, box-constraints for
the design variables and a normal distribution for the parametric uncertainty.

max
x3

rµ(x1exit)− (1− r)σ(x1exit)

s.t. black − box simulatorEq.(24, 25) with steady − state UQ

Da ∼ N(0.1, 0.012)

0 ≤x3i ≤ 4, i = 1, 2, 3

(27)

Through eliminating the equality constraints and the uncertainty propaga-
tion steps, then the above problem Eq.(27) could be transformed into the
following unconstrained nonlinear programming as the general formulation
Eq.(13):

max
x3

rµ(x3)− (1− r)σ(x3)

s.t.

0 ≤x3i ≤ 4, i = 1, 2, 3

(28)
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Using EF-MC uncertainty propagation method (algorithm 1) with the black-
box dynamic solver, the Bayesian robust steady-state optimisation algorithm
2 was constructed for the problem (Eq. (28)). As a part of uncertainty prop-
agation process, 3000 (M) MC samples were used, the dimensionality of
subspace was fixed to be 10 (m) and the limited number of Newton-Picard
iteration was set to be 60 (Nm2). Previous research [1] shows that EF-MC
uncertainty propagation algorithm could accelerate the UQ computations by
around one magnitude compared with the standard MC method. The con-
vergent condition was set to be the maximum iteration size being 100 (N ′′) or
the maximum computational time being 160 (Ht) hours, or no improvement
for continuous 10 (N ′′′) iterations. Specifically for this case, Latin hypercube
sampling method was first utilised to collect 8 (N’) initial samples, taking
9.75 (t0) hours. Then the initial samples were used to construct the surrogate
Kriging model 17, compute the location d∗ of the new sample point 23, cal-
culate the function value G′(d∗) and check the convergence|G′

i−G′i−1| ≤ σ as
the optimisation algorithm 2. The optimisation process, as showed in Fig.3,
converged to the optimal objective being 0.5999 within 33 (i− 1) iterations
and 30.91 (ti) hours. For comparative purposes, the 8 ( initial samples are
took as the initial points for the derivative-based optimisation algorithms.
Here, we used the efficient interior-point algorithms in fmincon function of
MATLAB, with the maximum computational time set to be 160 (Ht) hours.
The results could be seen in Fig.4 and Tab.1.

Figure 3: Bayesian optimisation of cooling process with single parametric uncertainty
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As showed in Tab.1, the Bayesian global optimisation method took more
iterations but less function evaluations to reach the convergent condition,
finding a quite good solution, while the other eight gradient-based optimi-
sation processes took less iterations, exceeding the maximum computational
time due to more function evaluations for computing first-order or/and higher
order derivatives. The around 75% computational saving implies the high
computational efficiency of the Bayesian optimization method. Meanwhile,
the Bayesian optimisation method requires more initial samples to obtain
the global information of the feasible search space while the gradient-based
optimisation method need only one initial point. Here, the gradient-based op-
timisations employed the different initial guesses from the same initial sample
sets for the Bayesian optimisation procedure. However, all the solutions from
the gradient-based method is worse than the one found from the Bayesian
optimisation approach. There are two possible reasons. The first one is that
the computed derivatives are inaccurate, leading to wrong search directions
or zigzag optimized processes. For example, the gradient-based optimisation
process with first initial point took many iteration steps to search worse so-
lutions, resulting in a waste of computational costs. The other one is that
the Bayesian optimization method can skip the basin of local convergence
because of the exploration ability of acquisition function while the gradient-
based method can only search around the local optima. That may be a
reasonable explanation for the appearance of multiple stable stages during
the Bayesian optimisation process while less stable stages within gradient-
based search. In terms of the computational accuracy and cost, the Bayesian
robust optimisation algorithm 2 is superior over the gradient-based method
for the large-scale distributed systems with uncertainty. It should be noted
the EF-MC uncertainty quantification method, achieving near 90% compu-
tational saving [1] compared with the traditional MC method, could scalably
reduce the computations for all the optimisation processes.
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Table 1: Comparative results from different optimisation process

Optimization Initial Number Number Optimal Computational
method samples iteration function evaluation value time (h)
Bayesian 8 samples 33 41 0.5999 40.66
Gradient 1st sample 14 78 0.5991 160
Gradient 2nd sample 20 104 0.5995 160
Gradient 3rd sample 13 69 0.5994 160
Gradient 4th sample 14 82 0.5991 160
Gradient 5th sample 9 54 0.5993 160
Gradient 6th sample 18 96 0.5997 160
Gradient 7th sample 15 93 0.5995 160
Gradient 8th sample 17 112 0.5996 160
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(a) Optimisation with first point (b) Optimisation with second point

(c) Optimisation with third point (d) Optimisation with fourth point

(e) Optimisation with fifth point (f) Optimisation with sixth point

(g) Optimisation with seventh point (h) Optimisation with eighth point

Figure 4: Gradient-based optimisation for cooling a tubular reactor with single parametric
uncertainty
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3.2. Multivariate uncertainty

Due to the high computational efficiency in single parametric uncertainty
case, the above robust steady-state optimisation framework would be ex-
tended to solve a multivariate uncertainty case.

Here system parameters Le = 1.0, P e1 = Pe2 = 5.0, γ = 20.0, β =
1.50 are still fixed into the black-box simulator, while the two distributional
uncertain parameters are Damkohler number Da and adiabatic temperature
rise B. The independent parameters was studied, satisfying the following
normal distributions:

Da ∼ N(0.08, 0.0082)

B ∼ N(8, 0.82)
(29)

In this optimisation problem (Eq. (30)), the objective is still a weighted func-
tion, which aims to obtain larger output product concentration but smaller
fluctuations at the end of the reactor under multivariate uncertainty. Here,
the fixed weight r between the two objective terms is set to be 0.35. The
design variables are still the three temperatures of the three different cool-
ing zones. The constraints includes the black-box simulator equations with
steady-state uncertainty quantification, box-constraints for the design vari-
ables and the two normal distributions for the multivariate uncertainty. Sim-
ilar to the previous case, the problem (Eq. (30)) could be transformed into a
black-box unconstrained nonlinear programming manner (Eq. (31)) , which
can be solved by the gradient optimisation method and the above Bayesian
robust steady-state optimisation algorithm 2.

max
x3

rµ(x1exit)− (1− r)σ(x1exit)

s.t. black − box simulatorEq.(24, 25) with steady − state UQ

Da ∼ N(0.08, 0.0082)

B ∼ N(8, 0.82)

0 ≤x3i ≤ 2, i = 1, 2, 3

(30)

max
x3

rµ(x3)− (1− r)σ(x3)

s.t.

0 ≤x3i ≤ 2, i = 1, 2, 3

(31)

Similar to the previous case study, here 4000 (M) MC samples, after the
independent computational experiments, were used as the preconditions for
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performing uncertainty propagation algorithm 1 with the inputs/outputs in-
tegrator. Additionally, the dimensionality size of subspace was fixed to be
10 (m) while the limited number of Newton-Picard iteration was set to be 60
(Nm2). Then both of the Bayesian optimisation procedure (algorithm 2 ) and
the gradient based optimisation method (fmincon function in MATLAB)
were implemented with the uncertainty propagation procedure (algorithm
1). As for the Bayesian optimisation process, the convergent condition was
ensured if any of the three conditions was satisfied, including the exceeding
the maximum iteration size being 100 (N ′′) or the maximum computational
time being 160 (Ht) hours, and no improvement after continuous 10 (N ′′′)
iterations. Latin hypercube sampling method was utilised to collect 8 (N’)
initial samples, taking 17.75 (t0) hours. The information of sample sets was
exploited to compute the hyperparameters for the Kriging model, which was
then adopted to compute the locations of the next samples and the corre-
sponding function values. As displayed in Fig.5, the Bayesian optimisation
computations finally converged to the optimal solution within 16 (i − 1) it-
erations, taking 29.79 (ti) hours. For the comparative purposes, the 8 initial
samples were took as the initial points for the derivative-based optimisation
algorithms. Here the fmincon function in MATLAB was used to perform
the gradient-based optimisation tasks with the maximum computational time
being 160 hours. The results could be seen in Fig.6 and Tab.2.

Figure 5: Bayesian optimisation of cooling process with multivariate uncertainty
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As showed in Tab.2, the Bayesian global optimisation method took the
similar number of iteration steps but less function evaluations while the other
eight gradient-based optimisation processes took more function evaluations
due to the demand of computing derivatives or unreliable derivatives and the
resulting expensive optimisation routines. The around 70% computational
saving implies the high computational efficiency of the Bayesian optimization
algorithm 2. Furthermore, the eight gradient-based optimisation procedures
utilised the different initial guesses from the same initial sample sets of the
Bayesian optimisation routine. However, all the solutions from the gradient-
based method are much worse than the solution from Bayesian optimisation.
The possible reason is that all the gradient-based optimisations can only
touch the local optima possibly missing better optima , while the Bayesian
optimisation procedure could globally explore the uncertain space. Another
possible reason would be the limited computational time. For example, the
gradient-based optimisation algorithm with the second point maybe spend
much computational cost on the computing the derivatives, leading to an
early stop although the current gradients can guide the optimisation routine
toward a better solution. Generally, the Bayesian strategy based robust
optimisation framework showed superior advantages over the gradient-based
one in terms of both the computational cost and the solution quality.

Table 2: Comparative results from different optimisation process under multivariate un-
certainty

Optimisation Initial Number Number Optimal Computational
method samples iteration function evaluation value time (h)
Bayesian 8 samples 16 24 0.0553 47.54
Gradient 1st sample 18 84 0.0364 160
Gradient 2nd sample 4 50 0.0341 160
Gradient 3rd sample 18 80 0.0366 160
Gradient 4th sample 16 77 0.0365 160
Gradient 5th sample 10 47 0.0354 160
Gradient 6th sample 12 52 0.0284 160
Gradient 7th sample 13 57 0.0278 160
Gradient 8th sample 10 44 0.0547 160
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(a) Optimisation with 1th point (b) Optimisation with 2nd point

(c) Optimisation with 3rd point (d) Optimisation with 4th point

(e) Optimisation with 5th point (f) Optimisation with 6th point

(g) Optimisation with 7th point (h) Optimisation with 8th point

Figure 6: Gradient-based optimisation processes for a cooling tubular reactor under mul-
tivariate uncertainty
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4. Conclusion

This paper proposes a robust steady-state optimisation framework for
large-scale distributed systems with uncertainty. The proved EF-MC un-
certainty analysis method was first employed to deal with parametric uncer-
tainty. The accelerated system including uncertainty was then utilised by the
proposed Bayesian global optimisation strategy (algorithm 2), combining the
surrogate Kriging model and the expected improvement function. Finally,
a practical cooling tubular reactor with single and multivariate uncertainty
cases were adopted to show that the proposed robust optimisation framework
could reduce the computational cost up to 70% and achieve better solutions
compared with the traditional gradient-based methods. In the future, the
robust optimisation framework will be applied to more practical large-scale
computational fluid dynamic and multi-scale cases.
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Chapter 7

Conclusions and future work

7.1 Conclusions

Complex distributed parameter systems could cover a wide range of practical physical ap-

plications, including chemical and biochemical reactors. However, intelligent operations on

these practical applications, such as optimisation, control and uncertainty quantification, are

still facing many computational challenges. This thesis is devoted to developing several com-

putational methodologies to overcome some important challenges for large-scale distributed

parameter systems.

Previous work in the literature has developed a model reduction based local optimisation

methodology (Bonis & Theodoropoulos, 2012). Chapter 3 aims to present a model reduction

based global optimisation computational framework for large-scale distributed parameter sys-

tems. Firstly, a large number of inputs/outputs samples would be generated using systematical

data collection strategies. Then the off-line double model reductions, principal component

analysis and artificial neural networks, would be implemented to generate the simple but ac-

curate reduced surrogate models, which would be employed by the advanced general-purpose

global optimisation solvers. To further improve the performance of the initial optimisation

framework, two different reformulation techniques (piecewise linear affine techniques and

deep neural networks with ReLU activation function) were adopted to transform the origi-

nal nonlinear programming into the less complex mixed integer linear programming (MILP),

speeding up the global optimisation procedure. The proposed computational framework, es-

pecially the second improvement (deep neural network with ReLU activation function) can

find the approximate global optima with desirable accuracy and computational speed for sev-
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eral validated practical examples.

To intelligently control the performance of large-scale distributed systems, a robust non-

linear model predictive control strategy is presented in Chapter 4 to address the computational

challenges including process uncertainty and intensive computations. Model predictive con-

trol was introduced to deal with the plant-model mismatch, recursively updating the output

responses to eliminate some of process uncertainty such as the slight measurement noise.

However, substantial uncertainties such as the important parametric uncertainty, would sig-

nificantly affect the output responses. Here, the popular polynomial chaos expansion method

was adopted to deal with parametric uncertainty, which could efficiently compute the sta-

tistical moments and probabilistic bounds of quantities of interest for large-scale systems.

Moreover, the double model construction techniques, proper orthogonal decomposition and

recurrent neural networks, were employed to represent the high-dimensional dynamics of

the computed statistical moments and probabilistic bounds. The reduced surrogate models

could be reformulated into a set of sequential MILP sub-problems (similar to Chapter 3),

which could be globally solved to find the approximate global optima within the control pro-

cedure. Computational results of the practical chemical and biochemical examples show that

the proposed robust control framework can improve process productions satisfying the rigor-

ous time-space process constraints (quality requirements and safety requirements).

The popular polynomial chaos expansion method (In Chapter 4) requires the prior knowl-

edge about the type of uncertainty distribution to choose the suitable polynomials, and may be

not so accurate for high complex systems due to the inherent low order characteristics. Chap-

ter 5 focuses on developing efficient uncertainty propagation methods for both deterministic

and stochastic distributed parameter systems. The key idea is to employ the ”Equation-free”

approaches to accelerate the computations of large-scale dynamic systems to steady states

within the traditional Monte Carlo-related uncertainty quantification algorithm. Specifically,

the recursive projection method would efficiently compute the distributional steady states or

coarse-scale steady states for large-scale systems while the lifting and restriction operations

perform the bridge between the stochastic simulator and coarse-scale computations. Deter-

ministic practical examples including a chemical tubular reactor and the FitzHugh-Nagumo

model were employed, demonstrating that the proposed uncertainty quantification algorithm

can reduce the computational costs up to 90% with highly accurate results. While the stochas-
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tic case study of the oxidation reactions of CO on a lattice catalytic surface shows that the pro-

posed algorithm could accurately compute the coarse-scale output distributions with slightly

less computations.

Finally, Chapter 6 aim to develop a robust steady-state optimisation framework for large-

scale distributed systems under parametric uncertainty. The equation-free Monte Carlo un-

certainty propagation algorithms in Chapter 5 would be employed to address the parametric

uncertainty. The accelerated system including uncertainty was then utilised by the proposed

Bayesian global optimisation strategy, combining the surrogate Kriging model and the ex-

pected improvement function. Finally, a practical cooling tubular reactor with single and

multivariate uncertainty cases were adopted to show that the proposed robust optimisation

framework could reduce the computational cost up to 70% and achieve better solutions com-

pared with the traditional gradient-based methods.

7.2 Future work

Regarding future work, several extensions could be explored as follows:

Firstly, the model reduction based global optimisation framework (Chapter 3) assumes

enough representative samples as a basis to construct the reduced order models. Smart sam-

pling methods to achieve optimal trade-off between quality and quantity are important for

improving both efficiency and accuracy, as well as verification methods to guarantee the

accuracy of the computed solutions(Botoeva et al., 2020). Moreover, global optimisation

even using reduced surrogate models is still computationally expensive. Advanced data tech-

niques and MILP algorithms (R. Anderson et al., 2018) may further improve computational

efficiency of this optimisation framework.

Secondly, a less conservative strategy will be exploited in the robust model predictive

control strategy (Chapter 4), to further enhance the process performances. Moreover, the

proposed control policy assumes that the offline samples are enough to build accurate predic-

tive models. Online control with adaptive models will be considered when the offline samples

are not enough to support the high-fidelity surrogate models.

Thirdly, the proposed novel equation-free Monte Carlo (EF-MC) uncertainty quantifica-
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tion algorithms (Chapter 5) only test the stochastic case with single distributional uncertainty.

Multivariate cases for the stochastic problems will be employed to investigate the efficiency

of our EF-MC algorithms.

Fourthly, the robust steady-state optimisation framework (Chapter 6) are employed for two

PDEs based reaction process. In this future, this computational framework will be applied to

more complex large-scale computational fluid dynamic and multi-scale cases.
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