7 research outputs found

    Online Epileptic Seizure Prediction Using Phase Synchronization and Two Time Characteristics: SOP and SPH

    Get PDF
    Background: The successful prediction of epileptic seizures will significantly improve the living conditions of patients with refractory epilepsy. A proper warning impending seizure system should be resulted not only in high accuracy and low false-positive alarms but also in suitable prediction time.Methods: In this research, the mean phase coherence index used as a reliable indicator for identifying the preictal period of the 14-patient Freiburg EEG dataset. In order to predict the seizures on-line, an adaptive Neuro-fuzzy model named ENFM (evolving neuro-fuzzy model) was used to classify the extracted features. The ENFM trained by a new class labeling method based on the temporal properties of a prediction characterized by two time intervals, seizure prediction horizon (SPH), and seizure occurrence period (SOP), which subsequently applied in the evaluation method. It is evident that an increase in the duration of the SPH can be more useful for the subject in preventing the irreparable consequences of the seizure, and provides adequate time to deal with the seizure. Also, a reduction in duration of the SOP can reduce the patient’s stress in the SOP interval. In this study, the optimal SOP and SPH obtained for each patient using Mamdani fuzzy inference system considering sensitivity, false-positive rate (FPR), and the two mentioned points, which generally ignored in most studies.Results: The results showed that last seizure, as well as 14-hour interictal period of each patient, were predicted on-line without false negative alarms: the average yielding of sensitivity by 100%, the average FPR by 0.13 per hour and the average prediction time by 30 minutes.Conclusion: Based on the obtained results, such a data-labeling method for ENFM showed promising seizure prediction for online machine learning using epileptic seizure data. Apart from that, the proposed fuzzy system can consider as an evaluation method for comparing the results of studies

    A New Approach to Adaptive Neuro-fuzzy Modeling using Kernel based Clustering

    Get PDF
    Data clustering is a well known technique for fuzzy model identification or fuzzy modelling for apprehending the system behavior in the form of fuzzy if-then rules based on experimental data Fuzzy c- Means FCM clustering and subtractive clustering SC are efficient techniques for fuzzy rule extraction in fuzzy modeling of Adaptive Neuro-fuzzy Inference System ANFIS In this paper we have employed a novel technique to build the rule base of ANFIS based on the kernel based variants of these two clustering techniques which have shown better clustering accuracy In kernel based clustering approach the kernel functions are used to calculate the distance measure between the data points during clustering which enables to map the data to a higher dimensional space This generalization makes data set more distinctly separable which results in more accurate cluster centers and therefore a more precise rule base for the ANFIS can be constructed which increases the prediction performance of the system The performance analysis of ANFIS models built using kernel based FCM and kernel based SC has been done on three business prediction problems viz sales forecasting stock price prediction and qualitative bankruptcy prediction A performance comparison with the ANFIS models based on conventional SC and FCM clustering for each of these forecasting problems has been provided and discusse

    Conception et fabrication d'un prototype de nez électronique basé sur un système d'apprentissage et de reconnaissance évolutif des composants organiques volatiles

    Get PDF
    Plusieurs actions sont faites par l’être humain sur la base de la perception d’odeur comme sortir les ordures, changer les couches de bébé, prendre de mesures de la sécurité en cas de fuite de gaz, etc. Mais, le sens d’odorat de l’homme est limité, car il y a des gaz qui sont très toxiques et l’être humain ne peut pas les détecter par le nez comme le monoxyde de carbone. Ainsi, le sens d’odeur est utilisé dans plusieurs applications industrielles dans la production (industries des parfums) ou bien dans la sécurité (industrie de pétrole et du gaz), des applications médicales (détection de bactéries) et des applications de sécurité nationale (détection de cannabis). Depuis plusieurs décennies, la communauté des capteurs essaie de reproduire artificiellement la capacité de l’odorat. La première apparition de nez électroniques ou nez artificiel a été dans les années 1980. Cet appareil est un ensemble de capteurs de gaz et de techniques d’apprentissage et de reconnaissance utilisés pour distinguer de nombreuses odeurs. Plusieurs travaux ont été publiés sur l’utilisation du nez électronique dans des applications spécifiques. Cependant, il n’y a pas un grand nombre des travaux sur les nez artificiels qui peuvent être utilisés dans plusieurs applications. Ce projet a comme objectif la conception et la fabrication d’un nez électronique qui peut être utilisé dans plusieurs applications selon les besoins d’utilisateur. Une conception et une fabrication de la partie matérielle ont été faites à partir de zéro. Elle contient le système d’échantillonnage qui facilite la réaction des gaz avec les capteurs et la carte électronique qui traduit ces réactions en valeurs compréhensibles par la partie logicielle. Une conception, dans l’ensemble, optimale pour toutes les applications a été fabriquée à la fin de cette partie. Pour la partie logicielle, un processus d’apprentissage et de reconnaissance a été proposé en utilisant un système d’apprentissage évolutif basé sur des règles floues (FRB). L’évolution de la partie logicielle assure une flexibilité de l’ensemble (partie matérielle et partie logicielle) aux besoins d’utilisateurs. Afin de diminuer la dépendance du système à l’égard d’utilisateurs, une méthode de supervision active a été utilisée avec le système d’apprentissage et de reconnaissance

    Dynamic non-linear system modelling using wavelet-based soft computing techniques

    Get PDF
    The enormous number of complex systems results in the necessity of high-level and cost-efficient modelling structures for the operators and system designers. Model-based approaches offer a very challenging way to integrate a priori knowledge into the procedure. Soft computing based models in particular, can successfully be applied in cases of highly nonlinear problems. A further reason for dealing with so called soft computational model based techniques is that in real-world cases, many times only partial, uncertain and/or inaccurate data is available. Wavelet-Based soft computing techniques are considered, as one of the latest trends in system identification/modelling. This thesis provides a comprehensive synopsis of the main wavelet-based approaches to model the non-linear dynamical systems in real world problems in conjunction with possible twists and novelties aiming for more accurate and less complex modelling structure. Initially, an on-line structure and parameter design has been considered in an adaptive Neuro- Fuzzy (NF) scheme. The problem of redundant membership functions and consequently fuzzy rules is circumvented by applying an adaptive structure. The growth of a special type of Fungus (Monascus ruber van Tieghem) is examined against several other approaches for further justification of the proposed methodology. By extending the line of research, two Morlet Wavelet Neural Network (WNN) structures have been introduced. Increasing the accuracy and decreasing the computational cost are both the primary targets of proposed novelties. Modifying the synoptic weights by replacing them with Linear Combination Weights (LCW) and also imposing a Hybrid Learning Algorithm (HLA) comprising of Gradient Descent (GD) and Recursive Least Square (RLS), are the tools utilised for the above challenges. These two models differ from the point of view of structure while they share the same HLA scheme. The second approach contains an additional Multiplication layer, plus its hidden layer contains several sub-WNNs for each input dimension. The practical superiority of these extensions is demonstrated by simulation and experimental results on real non-linear dynamic system; Listeria Monocytogenes survival curves in Ultra-High Temperature (UHT) whole milk, and consolidated with comprehensive comparison with other suggested schemes. At the next stage, the extended clustering-based fuzzy version of the proposed WNN schemes, is presented as the ultimate structure in this thesis. The proposed Fuzzy Wavelet Neural network (FWNN) benefitted from Gaussian Mixture Models (GMMs) clustering feature, updated by a modified Expectation-Maximization (EM) algorithm. One of the main aims of this thesis is to illustrate how the GMM-EM scheme could be used not only for detecting useful knowledge from the data by building accurate regression, but also for the identification of complex systems. The structure of FWNN is based on the basis of fuzzy rules including wavelet functions in the consequent parts of rules. In order to improve the function approximation accuracy and general capability of the FWNN system, an efficient hybrid learning approach is used to adjust the parameters of dilation, translation, weights, and membership. Extended Kalman Filter (EKF) is employed for wavelet parameters adjustment together with Weighted Least Square (WLS) which is dedicated for the Linear Combination Weights fine-tuning. The results of a real-world application of Short Time Load Forecasting (STLF) further re-enforced the plausibility of the above technique

    Evolving Fuzzy-model-based On C-regression Clustering

    No full text
    In this paper a new approach to data stream evolving fuzzy model identification is given. The structure of the model is given in the form of Takagi-Sugeno and the partitioning of the input-output space is obtained using a fuzzy c-regression clustering method and the approach also involves the evolving properties. The method is given in a recursive form. The proposed approach is shown with two simple examples of nonlinear system approximation and nonlinear dynamical system modelling.IEEE Systems, Man, and Cybernetics Society,Technical Committee on Evolving and Intelligent SystemsAngelov, P.P., Filev, D.P., An approach to online identification of Takagi-Sugeno fuzzy models (2004) IEEE Trans. Syst. Man Cyber. Part B, 34 (1), pp. 484-497. , FebAngelov, P.P., (2002) Evolving Rule-Based Models: A Tool for Design of Flexible Adaptive Systems, , Springer-Verlag, HeidelbergAngelov, P., An approach for fuzzy rule-base adaptation using on-line clustering (2004) Integration of Methods and Hybrid Systems, 35 (3), pp. 275-289. , MarAngelov, P., Evolving Takagi-Sugeno fuzzy systems from streaming data (eTs+) (2010) Evolving Intelligent Systems: Methodology and Applications, pp. 273-300. , Eds.: P. Angelov, D. Filev, A. Kasabov, John Willey and Sons, IEE Press Series on Computational Intellegence, AprilAngelov, P., Zhou, X., Evolving fuzzy systems from data streams in real-time 2006 International Symposium on Evolving Fuzzy Systems, pp. 29-35. , 7-9 September, 2006, Ambelside, Lake District, UK, IEEE PressAzeem, M.F., Hanmandlu, M., Ahmad, N., Structure identification of generalized adaptive neuro-fuzzy inference systems (2003) IEEE Trans. on Fuzzy Syst, 11 (5), pp. 666-681. , OctAzeem, M.F., Manmandlu, M., Ahmad, N., Modified mountain clustering in dynamic fuzzy modeling (1999) 2nd Int. Conf. Inform. Technol, pp. 63-68. , BhubaneswarBezdek, J.C., (1981) Pattern Recognition with Fuzzy Objective Function Algorithms, , New York: Plenum PressBreiman, L., Hinging hyperplanes for regression, classification and function approximation (1993) IEEE Transactions on Information Theory, 39 (3), pp. 311-325Chiu, S.L., Fuzzy model identification based on cluster estimation (1994) Journal of Intellegent and Fuzzy Systems, 2, pp. 267-278DovĹľan, D., Ĺ krjanc, I., Recursive clustering based on a gustafson-kessel algorithm (2011) Evolving Systems, 15-24, p. 2Ernst, S., Hinging hyperplane trees for approximation and identification decision and control 1998 Proceedings of the 37th IEEE Conference, 2, pp. 1266-1271Filev, D., Georgieva, O., An extended version of the Gustafson-Kessel algorithm for evolving data stream clustering (2010) Evolving Intelligent Systems: Methodology and Applications, pp. 273-300. , Eds.: P. Angelov, D. Filev, A. Kasabov, John Willey and Sons, IEE Press Series on Computational Intellegence, AprilHathaway, R., Bezdek, J., Switching regression models and fuzzy clustering (1993) IEEE Transactions on Fuzzy Systems, 1 (3), pp. 195-204Hwang, C.L., Chang, L.J., Fuzzy neural-based control for nonlinear time-varying delay systems (2007) IEEE Trans. Syst. Man Cyber. Part B, 37 (6), pp. 1471-1485. , DecJohanson, T.A., Murray-Smith, R., Operating regime approach to nonlinear modeling and control Multiple Model Approaches to Modeling and Control, pp. 3-72. , R. Murray-Smith and T. A. Johanson, Eds. Hants, U.K.: Taylor FrancisKim, K., Baek, J., Kim, E., Park, M., TSK Fuzzy model based on-line identification (2005) Proc. 11th IFSA World Congress, pp. 1435-1439. , Beijing, ChinaKasabov, N.K., Song, Q., DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction (2002) IEEE Trans. on Fuzzy Syst, 10 (2), pp. 144-154. , AprKasabov, N., Evolving fuzzy neural networks for supervised/ unsupervised online knowledge-based learning (2001) IEEE Trans. Syst. Man Cyber. Part B, 31 (6), pp. 902-918. , DecKasabov, N., Evolving fuzzy neural networks-Algorithms, applications and biological motivation (1998) Methodologies for the Conceptation, Design and Application of Soft Computing, pp. 271-274. , SingaporeKenesei, T., Abonyi, J., Hinging hyperplane based regression tree identified by fuzzy clustering and its application (2013) Applied Soft Computing, 13, pp. 782-792Lin, F.J., Lin, C.H., Shen, P.H., Self-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor drive (2001) IEEE Trans. on Fuzzy Syst, 9 (5), pp. 751-759. , OctLin, C.T., A neural fuzzy control system with structure and parameter learning (1995) Fuzzy Sets and Systems, 70, pp. 183-212Lughofer, E., (2011) Evolving Fuzzy Systems: Methodologies, Advances Concepts and Applications, , Berlin Heidelberg: SpringerPucar, P., Sjoberg, J., Parameterization and conditioning of hinging hyperplane models (1995) Technical Report LiTH-ISY-R-1809, , Department of Electrical Engineering, Linkoping University Linkoping, SwedenRoll, J., Bemporad, A., Ljung, L., Identification of piecewise affine systems via mixed-integer programming (2004) Automatica, 40, p. 3750Rong, H., Sundararajan, N., Huang, G., Saratchandran, P., Sequential Adaptive Fuzzy Inference System (SAFIS) for nonlinear system identification and prediction (2006) Fuzzy Sets and Systems, 157 (9), pp. 1260-1275. , MaySoleimani-B, H., Lucas, C., Araabi, B.N., Recursive Gath-Geva clustering as a basis for evolving neuro-fuzzy modeling Evolving Systems, 1 (1), pp. 59-71. , Springer, August 2010Takagi, T., Sugeno, M., Fuzzy identification of systems and its applications (1985) IEEE Trans. Syst. Man. Cyber, SMC-15, pp. 116-132. , Jan/FebTzafestas, S.G., Zikidis, K.C., NeuroFAST: On-line neuro-fuzzy art-based structure and parameter learning tsk model (2001) IEEE Trans. Syst. Man Cyber. Part B, 31 (5), pp. 797-802. , OctWen, C., Wang, S., Jin, X., Ma, X., Identification of dynamic systems using Piecewise-Affine basis function models (2007) Automatica, 43 (10), pp. 1824-1831Wu, S., Er, M.J., Dynamic fuzzy neural networksa novel approach to function approximation (2000) IEEE Trans. Syst. Man Cyber. Part B, 30 (2), pp. 358-364. , AprWu, S., Er, M.J., Gao, Y., A fast approach for automatic generation of fuzzy rules by generalized dynamicc fuzzy neural networks (2001) IEEE Trans. on Fuzzy Syst, 9 (4), pp. 578-594. , Au
    corecore