291 research outputs found

    Efficient Search of Compact QC-LDPC and SC-LDPC Convolutional Codes with Large Girth

    Full text link
    We propose a low-complexity method to find quasi-cyclic low-density parity-check block codes with girth 10 or 12 and shorter length than those designed through classical approaches. The method is extended to time-invariant spatially coupled low-density parity-check convolutional codes, permitting to achieve small syndrome former constraint lengths. Several numerical examples are given to show its effectiveness.Comment: 4 pages, 3 figures, 1 table, accepted for publication in IEEE Communications Letter

    Low-Density Arrays of Circulant Matrices: Rank and Row-Redundancy Analysis, and Quasi-Cyclic LDPC Codes

    Full text link
    This paper is concerned with general analysis on the rank and row-redundancy of an array of circulants whose null space defines a QC-LDPC code. Based on the Fourier transform and the properties of conjugacy classes and Hadamard products of matrices, we derive tight upper bounds on rank and row-redundancy for general array of circulants, which make it possible to consider row-redundancy in constructions of QC-LDPC codes to achieve better performance. We further investigate the rank of two types of construction of QC-LDPC codes: constructions based on Vandermonde Matrices and Latin Squares and give combinatorial expression of the exact rank in some specific cases, which demonstrates the tightness of the bound we derive. Moreover, several types of new construction of QC-LDPC codes with large row-redundancy are presented and analyzed.Comment: arXiv admin note: text overlap with arXiv:1004.118

    Hierarchical and High-Girth QC LDPC Codes

    Full text link
    We present a general approach to designing capacity-approaching high-girth low-density parity-check (LDPC) codes that are friendly to hardware implementation. Our methodology starts by defining a new class of "hierarchical" quasi-cyclic (HQC) LDPC codes that generalizes the structure of quasi-cyclic (QC) LDPC codes. Whereas the parity check matrices of QC LDPC codes are composed of circulant sub-matrices, those of HQC LDPC codes are composed of a hierarchy of circulant sub-matrices that are in turn constructed from circulant sub-matrices, and so on, through some number of levels. We show how to map any class of codes defined using a protograph into a family of HQC LDPC codes. Next, we present a girth-maximizing algorithm that optimizes the degrees of freedom within the family of codes to yield a high-girth HQC LDPC code. Finally, we discuss how certain characteristics of a code protograph will lead to inevitable short cycles, and show that these short cycles can be eliminated using a "squashing" procedure that results in a high-girth QC LDPC code, although not a hierarchical one. We illustrate our approach with designed examples of girth-10 QC LDPC codes obtained from protographs of one-sided spatially-coupled codes.Comment: Submitted to IEEE Transactions on Information THeor

    New Combinatorial Construction Techniques for Low-Density Parity-Check Codes and Systematic Repeat-Accumulate Codes

    Full text link
    This paper presents several new construction techniques for low-density parity-check (LDPC) and systematic repeat-accumulate (RA) codes. Based on specific classes of combinatorial designs, the improved code design focuses on high-rate structured codes with constant column weights 3 and higher. The proposed codes are efficiently encodable and exhibit good structural properties. Experimental results on decoding performance with the sum-product algorithm show that the novel codes offer substantial practical application potential, for instance, in high-speed applications in magnetic recording and optical communications channels.Comment: 10 pages; to appear in "IEEE Transactions on Communications

    Design and Analysis of Time-Invariant SC-LDPC Convolutional Codes With Small Constraint Length

    Full text link
    In this paper, we deal with time-invariant spatially coupled low-density parity-check convolutional codes (SC-LDPC-CCs). Classic design approaches usually start from quasi-cyclic low-density parity-check (QC-LDPC) block codes and exploit suitable unwrapping procedures to obtain SC-LDPC-CCs. We show that the direct design of the SC-LDPC-CCs syndrome former matrix or, equivalently, the symbolic parity-check matrix, leads to codes with smaller syndrome former constraint lengths with respect to the best solutions available in the literature. We provide theoretical lower bounds on the syndrome former constraint length for the most relevant families of SC-LDPC-CCs, under constraints on the minimum length of cycles in their Tanner graphs. We also propose new code design techniques that approach or achieve such theoretical limits.Comment: 30 pages, 5 figures, accepted for publication in IEEE Transactions on Communication
    corecore