We present a general approach to designing capacity-approaching high-girth
low-density parity-check (LDPC) codes that are friendly to hardware
implementation. Our methodology starts by defining a new class of
"hierarchical" quasi-cyclic (HQC) LDPC codes that generalizes the structure of
quasi-cyclic (QC) LDPC codes. Whereas the parity check matrices of QC LDPC
codes are composed of circulant sub-matrices, those of HQC LDPC codes are
composed of a hierarchy of circulant sub-matrices that are in turn constructed
from circulant sub-matrices, and so on, through some number of levels. We show
how to map any class of codes defined using a protograph into a family of HQC
LDPC codes. Next, we present a girth-maximizing algorithm that optimizes the
degrees of freedom within the family of codes to yield a high-girth HQC LDPC
code. Finally, we discuss how certain characteristics of a code protograph will
lead to inevitable short cycles, and show that these short cycles can be
eliminated using a "squashing" procedure that results in a high-girth QC LDPC
code, although not a hierarchical one. We illustrate our approach with designed
examples of girth-10 QC LDPC codes obtained from protographs of one-sided
spatially-coupled codes.Comment: Submitted to IEEE Transactions on Information THeor