6 research outputs found

    Using causal knowledge to improve retrieval and adaptation in case-based reasoning systems for a dynamic industrial process

    Get PDF
    Case-based reasoning (CBR) is a reasoning paradigm that starts the reasoning process by examining past similar experiences. The motivation behind this thesis lies in the observation that causal knowledge can guide case-based reasoning in dealing with large and complex systems as it guides humans. In this thesis, case-bases used for reasoning about processes where each case consists of a temporal sequence are considered. In general, these temporal sequences include persistent and transitory (non-persistent) attributes. As these sequences tend to be long, it is unlikely to find a single case in the case-base that closely matches the problem case. By utilizing causal knowledge in the form of a dynamic Bayesian network (DBN) and exploiting the independence implied by the structure of the network and known attributes, this system matches independent portions of the problem case to corresponding sub-cases from the case-base. However, the matching of sub-cases has to take into account the persistence properties of attributes. The approach is then applied to a real life temporal process situation involving an automotive curing oven, in which a vehicle moves through stages within the oven to satisfy some thermodynamic relationships and requirements that change from stage to stage. In addition, testing has been conducted using data randomly generated from known causal networks. (Abstract shortened by UMI.) Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .T54. Source: Masters Abstracts International, Volume: 45-01, page: 0366. Thesis (M.Sc.)--University of Windsor (Canada), 2006

    Bayesian Network Approximation from Local Structures

    Get PDF
    This work is focused on the problem of Bayesian network structure learning. There are two main areas in this field which are here discussed.The first area is a theoretical one. We consider some aspects of the Bayesian network structure learning hardness. In particular we prove that the problem of finding a Bayesian network structure with a minimal number of edges encoding the joint probability distribution of a given dataset is NP-hard. This result can be considered as a significantly different than the standard one view on the NP-hardness of the Bayesian network structure learning. The most notable so far results in this area are focused mainly on the specific characterization of the problem, where the aim is to find a Bayesian network structure maximizing some given probabilistic criterion. These criteria arise from quite advanced considerations in the area of statistics, and in particular their interpretation might be not intuitive---especially for the people not familiar with the Bayesian networks domain. In contrary the proposed here criterion, for which the NP-hardness is proved, does not require any advanced knowledge and it can be easily understandable.The second area is related to concrete algorithms. We focus on one of the most interesting branch in history of Bayesian network structure learning methods, leading to a very significant solutions. Namely we consider the branch of local Bayesian network structure learning methods, where the main aim is to gather first of all some information describing local properties of constructed networks, and then use this information appropriately in order to construct the whole network structure. The algorithm which is the root of this branch is focused on the important local characterization of Bayesian networks---so called Markov blankets. The Markov blanket of a given attribute consists of such other attributes which in the probabilistic sense correspond to the maximal in strength and minimal in size set of its causes. The aforementioned first algorithm in the considered here branch is based on one important observation. Subject to appropriate assumptions it is possible to determine the optimal Bayesian network structure by examining relations between attributes only within the Markov blankets. In the case of datasets derived from appropriately sparse distributions, where Markov blanket of each attribute has a limited by some common constant size, such procedure leads to a well time scalable Bayesian network structure learning approach.The Bayesian network local learning branch has mainly evolved in direction of reducing the gathered local information into even smaller and more reliably learned patterns. This reduction has raised from the parallel progress in the Markov blankets approximation field.The main result of this dissertation is the proposal of Bayesian network structure learning procedure which can be placed into the branch of local learning methods and which leads to the fork in its root in fact. The fundamental idea is to appropriately aggregate learned over the Markov blankets local knowledge not in the form of derived dependencies within these blankets---as it happens in the root method, but in the form of local Bayesian networks. The user can thanks to this have much influence on the character of this local knowledge---by choosing appropriate to his needs Bayesian network structure learning method used in order to learn the local structures. The merging approach of local structures into a global one is justified theoretically and evaluated empirically, showing its ability to enhance even very advanced Bayesian network structure learning algorithms, when applying them locally in the proposed scheme.Praca ta skupia si臋 na problemie uczenia struktury sieci bayesowskiej. S膮 dwa g艂贸wne pola w tym temacie, kt贸re s膮 tutaj om贸wione.Pierwsze pole ma charakter teoretyczny. Rozpatrujemy pewne aspekty trudno艣ci uczenia struktury sieci bayesowskiej. W szczeg贸lno艣ci pokozujemy, 偶e problem wyznaczenia struktury sieci bayesowskiej o minimalnej liczbie kraw臋dzi koduj膮cej w sobie 艂膮czny rozk艂ad prawdopodobie艅stwa atrybut贸w danej tabeli danych jest NP-trudny. Rezultat ten mo偶e by膰 postrzegany jako istotnie inne od standardowego spojrzenie na NP-trudno艣膰 uczenia struktury sieci bayesowskiej. Najbardziej znacz膮ce jak dot膮d rezultaty w tym zakresie skupiaj膮 si臋 g艂贸wnie na specyficznej charakterystyce problemu, gdzie celem jest wyznaczenie struktury sieci bayesowskiej maksymalizuj膮cej pewne zadane probabilistyczne kryterium. Te kryteria wywodz膮 si臋 z do艣膰 zaawansowanych rozwa偶a艅 w zakresie statystyki i w szczeg贸lno艣ci mog膮 nie by膰 intuicyjne---szczeg贸lnie dla ludzi niezaznajomionych z dziedzin膮 sieci bayesowskich. W przeciwie艅stwie do tego zaproponowane tutaj kryterium, dla kt贸rego zosta艂a wykazana NP-trudno艣膰, nie wymaga 偶adnej zaawansowanej wiedzy i mo偶e by膰 艂atwo zrozumiane.Drugie pole wi膮偶e si臋 z konkretnymi algorytmami. Skupiamy si臋 na jednej z najbardziej interesuj膮cych ga艂臋zi w historii metod uczenia struktur sieci bayesowskich, prowadz膮cej do bardzo znacz膮cych rozwi膮za艅. Konkretnie rozpatrujemy ga艂膮藕 metod lokalnego uczenia struktur sieci bayesowskich, gdzie g艂贸wnym celem jest zebranie w pierwszej kolejno艣ci pewnych informacji opisuj膮cych lokalne w艂asno艣ci konstruowanych sieci, a nast臋pnie u偶ycie tych informacji w odpowiedni spos贸b celem konstrukcji pe艂nej struktury sieci. Algorytm b臋d膮cy korzeniem tej ga艂臋zi skupia si臋 na wa偶nej lokalnej charakteryzacji sieci bayesowskich---tak zwanych kocach Markowa. Koc Markowa dla zadanego atrybutu sk艂ada si臋 z tych pozosta艂ych atrybut贸w, kt贸re w sensie probabilistycznym odpowiadaj膮 maksymalnymu w sile i minimalnemu w rozmiarze zbiorowi jego przyczyn. Wspomniany pierwszy algorytm w rozpatrywanej tu ga艂臋zi opiera si臋 na jednej istotnej obserwacji. Przy odpowiednich za艂o偶eniach mo偶liwe jest wyznaczenie optymalnej struktury sieci bayesowskiej poprzez badanie relacji mi臋dzy atrybutami jedynie w obr臋bie koc贸w Markowa. W przypadku zbior贸w danych wywodz膮cych si臋 z odpowiednio rzadkiego rozk艂adu, gdzie koc Markowa ka偶dego atrybutu ma ograniczony przez pewn膮 wsp贸ln膮 sta艂膮 rozmiar, taka procedura prowadzi do dobrze skalowalnego czasowo podej艣cia uczenia struktury sieci bayesowskiej.Ga艂膮藕 lokalnego uczenia sieci bayesowskich rozwin臋艂a si臋 g艂贸wnie w kierunku redukcji zbieranych lokalnych informacji do jeszcze mniejszych i bardziej niezawodnie wyuczanych wzorc贸w. Redukcja ta wyros艂a na bazie r贸wnoleg艂ego rozwoju w dziedzinie aproksymacji koc贸w Markowa.G艂贸wnym rezultatem tej rozprawy jest zaproponowanie procedury uczenia struktury sieci bayesowskiej, kt贸ra mo偶e by膰 umiejscowiona w ga艂臋zi metod lokalnego uczenia i kt贸ra faktycznie wyznacza rozga艂臋zienie w jego korzeniu. Fundamentalny pomys艂 polega tu na tym, 偶eby odpowiednio agregowa膰 wyuczon膮 w obr臋bie koc贸w Markowa lokaln膮 wiedz臋 nie w formie wyprowadzonych zale偶no艣ci w obr臋bie tych koc贸w---tak jak to si臋 dzieje w przypadku metody - korzenia, ale w formie lokalnych sieci bayesowskich. U偶ytkownik mo偶e mie膰 dzi臋ki temu du偶y wp艂yw na charakter tej lokalnej wiedzy---poprzez wyb贸r odpowiedniej dla jego potrzeb metody uczenia struktury sieci bayesowskiej u偶ytej w celu wyznaczenia lokalnych struktur. Procedura scalenia lokalnych modeli celem utworzenia globalnego jest uzasadniona teoretycznie oraz zbadana eksperymentalnie, pokazuj膮c jej zdolno艣膰 do poprawienia nawet bardzo zaawansowanych algorytm贸w uczenia struktury sieci bayesowskiej, gdy zastosuje si臋 je lokalnie w ramach zaproponowanego schematu

    Recursive Autonomy Identification for Bayesian Network Structure Learning

    No full text
    We propose a constraint-based algorithm for Bayesian network structure learning called recursive autonomy identification (RAI). The RAI algorithm learns the structure by recursive application of conditional independence (CI) tests of increasing orders, edge direction and structure decomposition into autonomous substructures. In comparison to other constraintbased algorithms d-separating structures and then directing the resulted undirected graph, the RAI algorithm combines the two processes from the outset and along the procedure. Learning using the RAI algorithm renders smaller condition sets thus requires a smaller number of high order CI tests. This reduces complexity and run-time as well as increases accuracy since diminishing the curse-of-dimensionality. When evaluated on synthetic and "real-world " databases as well as the ALARM network, the RAI algorithm shows better structural correctness, run-time reduction along with accuracy improvement compared to popular constraint-based structure learning algorithms. Accuracy improvement is also demonstrated when compared to a common search-and-score structure learning algorithm.
    corecore