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Abstract

Abstract:

Case-based reasoning (CBR) is a reasoning paradigm that starts the reasoning process 

by examining past similar experiences. Human reasoning often parallels the CBR 

methodology when a human remembers past experiences and uses them to establish a 

basis for problem solving. It could be stated that the process of CBR is the 

computerization, automation and formalization o f certain features o f the human thought 

process. The parallelism of human reasoning and CBR suggests that in real-life 

environments, CBR can be a viable reasoning scheme. CBR is often called a 

methodology, thereby giving an open interpretation o f how a CBR system is implemented 

and the technologies used in such implementation. This openness o f the CBR 

methodology permits a wide range o f mathematical, statistical, and artificial intelligence 

treatments that can be utilized in the realization o f CBR systems. The motivation behind 

this thesis lies in the observation that causal knowledge can guide case-based reasoning in 

dealing with large and complex systems as it guides humans.

In this thesis, case-bases used for reasoning about processes where each case consists 

o f a temporal sequence are considered. In general, these temporal sequences include 

persistent and transitory (non-persistent) attributes. As these sequences tend to be long, it 

is unlikely to find a single case in the case-base that closely matches the problem case. 

By utilizing causal knowledge in the form o f a dynamic Bayesian network (DBN) and 

exploiting the independence implied by the structure o f the network and known attributes, 

this system matches independent portions o f the problem case to corresponding sub-cases 

from the case-base. However, the matching o f sub-cases has to take into account the
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Abstract

persistence properties o f attributes. The approach is then applied to a real life temporal 

process situation involving an automotive curing oven, in which a vehicle moves through 

stages within the oven to satisfy some thermodynamic relationships and requirements that 

change from stage to stage. In addition, testing has been conducted using data randomly 

generated from known causal networks.

University o f Windsor, 2005 iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgements

Acknowledgements:

First o f all, I would like to thank the members o f the thesis committee for giving 

me a chance to present my work and for their efforts in evaluating, commenting, and 

improving my thesis.

I would like to thank the Faculty at the School o f Computer Science (namely, Dr. 

Tawfik, Dr. Goodwin, Dr. Ezeife, Dr. Rueda, Ms. Chaturvedi, Dr. Ahmad, and Dr. Yuan) 

who through the coursework made my graduate studies at the University of Windsor an 

enriching experience. I ’m proud to say that I graduated from the School o f Computer 

Science at the University o f Windsor. I’d also like to thank Dr. Kent for his assistance in 

finding a new supervisor when my original supervisor left the University.

Dr. Tawfik took me on as a grad student with very little knowledge o f my abilities 

and interests. Initially my research directions were scattered and weak, but with great 

effort and assistance from Dr. Tawfik, progress toward this thesis was slow and steady. 

His patience with my somewhat slow pace is admirable. He presented challenges and 

assisted in such hurdles. Our weekly conversations kept my interest elevated, even when 

my attention was wandering. His assistance and candor has made my second stint at the 

University o f Windsor an enjoyable experience. Thank you Dr. Tawfik.

I would also like to thank my co-workers at DaimlerChrysler Canada’s 

Automotive Coatings Research Facility who assisted in the collection o f data, proof 

reading of some materials, and general assistance to my studies.

Finally, I would like to thank my wife Vickie, for her insistence that I complete 

my graduate studies. Also, my son Joel, whose academic excellence and inquisitive

University o f Windsor, 2005 v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgements

nature has shown me there is still some intelligence in our genes. My wife and I are very 

proud o f our son Joel. The continued support o f my parents, Len and Gail in all aspects 

of my life, whether academic or otherwise, is always appreciated.

Christopher A. Tighe 

December, 2005

University o f  Windsor, 2005 vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table o f  Contents

Table of Contents

Abstract iii

Acknowledgements v

List o f Tables x

List o f Figures xi

List o f Appendices xiv

List of Abbreviations xv

CHAPTER

1.0 Introduction 1

2.0 Introductory and Background Topics 3

2.1 Case-based Reasoning Systems and Dynamic Environments 3

2.1.1 The CBR Cycle 4

2.1.2 Knowledge Representation (The Case-base) 5

2.1.3 Case Retrieval 7

2.1.4 Case Reuse 9

2.1.5 Case Revision 12

2.1.6 Case Retainment 12

2.1.7 Extensions to the Four Step CBR Process 13

2.1.8 CBR, DBN and a Dynamic Industrial Domain: 14

2.2 Bayesian Networks 15

University o f  Windsor, 2005 vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table o f Contents

2.2.1 Dynamic Bayesian Networks 21

2.2.2 Independence Concepts 22

2.2.3 Markov Assumption 24

2.2.4 Barren Nodes 25

2.2.5 Multiply Sectioned Bayesian Networks 25

2.3 Literature Review/Related Work 27

2.3.1 General CBR and BN Literature 27

2.3.2 Literature Related to Ideas Presented in this Thesis 28

2.4 Hugin Expert System 31

2.5 Probabilistic Network Language 32

2.6 Tetrad 33

3.0 The Domain for the CBR Application 35

4.0 CBR in an Industrial Process 44

4.1. CBR/DBN Retrieval/Adaptation Algorithm 44

4.2. Detailed CBR/DBN Retrieval/Adaptation Example 50

4.3. Complexity o f the CBR/DBN Retrieval/Adaptation Algorithm 56

4.3.1. Step 1: Causal Knowledge Acquisition 57

4.3.2. Step 2: Situation Assessment 58

4.3.3. Step 3: Applying Bayesian Network Concepts 59

4.3.4. Step 4: Case Retrieval -  Dynamic Variables 59

4.3.5. Step 5: Case Retrieval -  Persistent Variables 60

4.3.6. Step 6: Case Adaptation 61

University o f  Windsor, 2005 viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table o f  Contents

4.4. Euclidean Distance Metric 62

5.0 Further Evaluation and Experimental Results 63

5.1. Example 2 - ACRE Oven Domain, Powder Cure 63

5.2. Example 3 - ACRF Oven Domain w/Tetrad Generated Data 67

5.3. Example 4 - Mildew DBN w/Tetrad Generated Data 69

5.4. Example 5 - BAT Mobile Sensor DBN w/Tetrad Generated Data 71

5.5. Evaluation o f the Combination Level - m 75

6.0 Conclusions and Future Directions 80

Appendix A -  CBR/DBN Retrieval/Adaptation Application Overview 83

Appendix B - CBR/DBN Retrieval/Adaptation Application Files 89

Appendix C -  Tetrad III Files 103

Bibliography 109

Vita Auctoris 120

University o f Windsor, 2005 ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List o f  Tables

List of Tables

3.1 ACRF Oven & Conveyor Parameters 38

4.1 Evidence for the ACRF Oven Domain 51

4.2 ACRF Topcoat Oven Example 1 -  Complete Results 53

4.3 Thermocouple Results 55

5.1 Example 2 - Evidence (Step 2) 64

5.2 Example 2 - Results 66

5.3 ACRF Oven w/ Tetrad Data Example 3 - Evidence (Step 2) 67

5.4 ACRF Oven w/ Tetrad Data Example 3 - Results 68

5.5 Mildew Example 4 - Results 71

5.6 BATmobile Example 5 - Results 73

5.6 Example Summary 74

5.7 Determining the Best Persistent Case from Example 1 76

5.8 Determining the Best Persistent Case from Example 3 78

B.l Inference Results -  Problem Case 93

B.2 Inference Results -  Solution Case 94

B.3 Inference Results -  Subnet Distance Summary 98

B.4 Inference Results -  Case Rank by. subnet 102

University o f  W indsor, 2005 x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List o f Figures

List of Figures

2.1 The CBR Cycle (adapted from [AP94]) 4

2.2 A Bayesian Network: Modeling a Paint Application Process 18

2.3 A Dynamic Bayesian Network 22

2.4 d-Separation 24

2.5 Markov Structure 24

2.6 Multiply Sectioned Bayesian Network 26

2.7 Hugin d-separation 32

3.1 ACRF Oven Schematic 36

3.2 ACRF Oven Photos 37

3.3 A Typical Paint Cure Window 39

3.4 Thermocouple Probes 40

3.5 ACRF Oven Domain DBN 42

4.1 CBR/DBN Retrieval/Adaptation Algorithm 46

4.2 Determination o f Persistent Variables 49

4.3 DBN Reduced and Partitioned into Subnets 52

4.4 Temperature Chart 56

4.5 The PC Algorithm repeated from [SSGM94] 58

4.6 Analysis o f Step 4 (Dynamic Attribute Determination) 60

4.7 Analysis o f Step 5 (Persistent Attribute Determination) 61

5.1 Example 2 -  DBN reduced and partitioned into Subnets (Step 3) 65

University o f  Windsor, 2005 xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List o f  Figures

5.2 Mildew Example 4 -  DBN after Step 3 (Adapted from [Kja95]) 70

5.3 Batmobile Example 5 -  DBN after Step 3 (Adapted from [FHKR95]) 72

5.4 Evaluation o f the Combination Level (m) from Example 1 77

5.5 Evaluation o f the Combination Level (m) from Example 3 79

A.l Case Representation 85

A.2 Process Setup 86

A.3 DBN Setup 87

B.l Process file -  General Section Configuration 89

B.2 Process file -  Persistent Attribute Configuration 90

B.3 Process file -  Dynamic Attribute Configuration 90

B.4 DBN file -  General Section Configuration 91

B.5 DBN file -  Persistent Node Configuration 91

B.6 DBN file -  Dynamic Node Configuration 92

B.7 Inference Results -  Summary 92

C.l Tetrad III -  Graph File from Example 3 103

C.2 Tetrad III -  Linear Equation File - Graph Section from Example 3 104

C.3 Tetrad III -  Linear Equation File -  Linear Model Section Example 3 105

C.4 Tetrad III -  Data File -  Header Section from Example 3 106

C.5 Tetrad III -  Data File -  Structural Equations from Example 3 107

C.6 Tetrad III -  Data File -  Raw Data Section (partial) from Example 3 108

University o f W indsor, 2005 xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List o f  Appendices

List of Appendices

83

89

115

Appendix A - CBR/DBN Retrieval/Adaptation Application 

Appendix B - CBR/DBN Retrieval/Adaptation Application Files 

Appendix C - Tetrad III Files

University o f  Windsor, 2005 xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List o f Abbreviations

List of Abbreviations

Bayesian network, belief network

Dynamic Bayesian network, dynamic belief network

Case based reasoning

Multiply Sectioned Belief Network

Probability o f X given Y

Parents o f X

Conditional Probability Table 

Case-base

Number o f cases in a case base 

Case

Number o f attributes in a case

Problem case

Number o f attributes in a problem case

Solution Case

BN

DBN

CBR

MSBN

P(X\Y)

pa[X]

CPT

C = |c,, c2,.. .  cN' ]

K

c, = {aiVai2, . . . ,aiN}

N a

P = \ p ^ p 2, — , p Np\

N P

S {^1 5 ̂ 2  ’ * ' ' ’ * ^ V L, }

Case w/ persistent and dynamic attributes

c i =  ( / Y / V ” ’P n •d11<di2>- • - ,d i , ,d2i , d 22 . - • • • , < % d t2, - - - , d Nd| )

Persistent attribute

Number o f persistent attributes

Dynamic Attribute d

University o f  Windsor, 2005 xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List o f  Abbreviations

Number o f dynamic attributes N d

Number o f time intervals in a case I

Number o f Subnets

Combination level m

Error from evidence error metric e

Variance from average error metric e

Total Error metric £

University o f  Windsor, 2005 xv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1

Chapter 1: Introduction

The design, tuning, and operation of industrial processes has been the focus o f several 

case-based reasoning (CBR) systems [BCSV04][BSS02][HT95]. Frequently, a case- 

based approach ignores or mutates into a static structure the temporal aspects o f industrial 

processes. However processes in general are often dynamic in nature and contain spatio- 

temporal and temporal relations that should be captured and exploited by the case-based 

representation and reasoning process to improve results.

Temporal case-based reasoning has been applied to weather prediction [RH02], 

prediction o f air pollution levels [LAV94], waste water treatment [MCMC05] and 

prognosis o f medical conditions [SG02]. These application domains are characterized by 

the availability o f a large amount o f historical data and the lack o f a clear detailed 

understanding o f the underlying causal mechanisms. For the industrial processes under 

consideration here, data availability is limited while a qualitative causal understanding of 

the process is easily obtainable.

Due to the complexity o f a complete numerical analysis of the host of factors 

affecting an industrial process and the need to interactively tune the process online, CBR 

offers an attractive option. The main advantage o f utilizing case-based reasoning in this 

work is that once a problem has been solved, it would be more efficient to solve a similar 

problem starting from the old solution rather than repeating a reasoning exercise from the 

first principles within the causal theory [Kol93], Due to the scarcity o f the data, it is 

useful to use our causal understanding to divide the problem case into a collection of 

sections with minimal inter-dependence between sections. Matching cases are retrieved

University o f  Windsor, 2005 1
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Chapter 1

for each section separately. A technique for combining compatible sub-cases is then 

applied as an adaptation step. Thus, both case retrieval and case adaptation are guided by 

the causal understanding o f the industrial process.

The causal model is captured by a dynamic belief network (DBN). Techniques for 

dividing a DBN into a group o f independent sections [Pea88] or minimally inter­

dependent sections [Xia96] are instrumental in guiding the division o f the problem case 

into a collection of sub-cases [TT05]. Each sub-case could span one or more time-slices 

o f the dynamic belief network structure.

Attributes of a dynamic process include some persisting attributes in addition to 

the dynamically changing attributes [TT05], The values of persisting attributes have to be 

compatible throughout the set o f sub-cases chosen for a particular problem case. In 

adapting multiple sub-cases to the problem case, a measure o f compatibility o f sub-cases 

is necessary to meet the persistence constraints. By utilizing the above mentioned 

procedures for dynamic and persistent attributes, a complete solution case is constructed 

[TT05],

In Chapter 2 some necessary background topics are covered, including case-based 

reasoning, as well as causal modeling using Bayesian networks and dynamic Bayesian 

networks. Related literature is also overviewed in Chapter 2. Chapter 3 presents a unique 

industrial process application domain used as the test bed for this thesis. The CBR/DBN 

Retrieval/Adaptation algorithm is developed in Chapter 4 along with a detailed example 

and complexity analysis. Chapter 5 provides an in-depth evaluation of the CBR/DBN 

Retrieval/Adaptation algorithm including additional complexity analysis. Finally, the last 

Chapter presents some conclusions and possible future directions.

University o f  Windsor, 2005 2
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Chapter 2

Chapter 2: Introductory and Background Topics

The CBR/DBN Retrieval/Adaptation algorithm is based on several Artificial Intelligence 

concepts, namely case-based reasoning, Bayesian networks (BN) and several ideas 

relating to or providing mechanisms for the manipulation o f Bayesian networks. An 

understanding o f these concepts is crucial to the development o f the ideas behind the 

CBR/DBN Retrieval/Adaptation algorithm. A case-based reasoning system is the 

reasoning methodology used and the Bayesian network ideas and mechanisms are used to 

implement and improve the methodology. The first two sections of this chapter present 

the key concepts (CBR and Bayesian networks) fundamental to the development of the 

ideas presented in this thesis. Section 2.3 presents a short literature review and sections

2.4, 2.5 and 2.6 illustrate several tools that can be used in the handling and manipulation 

o f Bayesian networks and dynamic Bayesian networks that are crucial for the 

implementation of this work.

2.1 Case-based Reasoning Systems and Dynamic Environments:

A case-based Reasoning (CBR) system remembers previous experiences or 

episodes called cases and uses them to assist in obtaining a solution to a current problem. 

The premise o f case-based reasoning is that once a problem has been solved, it is often 

more efficient to solve the next similar problem by starting from the known solution 

rather than by repeating all the reasoning that was necessary the first time [Kol93], 

Unlike many reasoning systems that try to generalize knowledge into rules or models, 

CBR uses specific knowledge about previous episodes to reason. By using specific

University o f  Windsor, 2005 3
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Chapter 2

episodes for reasoning, it is often not necessary to start the reasoning process from first 

concepts, like various other reasoning methods.

2.1.1 The CBR Cycle:

In 1994, Aamodt and Plaza [AP94] developed and presented one o f the first 

structured views of the CBR process commonly referred to as “The CBR Cycle”. This 

CBR cycle is still viewed as the basic methodology today, although there is research into 

the modification and expansion o f this four step CBR cycle [PR01][RI01], Figure 2.1 

illustrates the basic CBR cycle as presented in [AP94],

New C ase

Retrieve

Learned C a se  Retrieval

Retain Reuse

Tested

Repaired
Soution

Solved C ase

Revise

Knowledge Representaion 
(Case Base)

Knowledge R epresentaion  

G eneral Domain Knowledge

Figure 2.1: The CBR Cycle (adapted from [AP94])

As can be seen from the illustration, there are four main processes and a single 

central knowledge repository involved in the CBR process: Retrieve, Reuse, Revise and

University o f Windsor, 2005 4
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Chapter 2

Retain. The main knowledge is represented in the case-base. The four processes are 

often referred to as the four RE’s.

2.1.2 Knowledge Representation (The Case-base):

The case-base is the back bone o f the entire CBR process as it contains all the past 

experiences or episodes that can be used in the reasoning process. A case is a contextual 

piece o f knowledge representing an experience that teaches a lesson fundamental to 

achieving the goals of the reasoning process [Kol93], A case records experiences that 

have the potential to help a reasoner achieve a goal or set o f goals more easily in the 

future, that warn about the possibility o f a failure or point out an unforeseen problem. 

There are three major parts o f a case: the problem situation and its assessment, the 

solution to the problem, and the outcome. There can often be other parts to a case 

represented in the knowledge base such as reasoning statistics, derivational replays and 

other information that is specific to each CBR system.

There are many issues involved in the representation o f cases, primarily what 

exactly to store in a case and determining and maintaining an indexing structure that 

facilitates the CBR process. A common problem in the CBR community is called the 

“indexing problem” or the problem of ensuring that a case is accessible whenever 

appropriate [LEA03]. Establishing a good indexing vocabulary is a highly active area of 

research.

In this work, a simple structural case representation is adequate, as a case is 

simply a vector with all attributes declared and indexed by the case number. An 

important aspect o f the case representation is the inclusion of both persistent and temporal 

knowledge in the case base. This in itself is not unusual, but the treatment o f the different

University o f Windsor, 2005 5
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Chapter 2

data types for case retrieval and adaptation has innovative merit. Although not 

conventionally part o f a CBR system, another representation used in this project is that of 

a dynamic Bayesian network which is presented in Section 2.2.1.

Formally a case-base can be represented by:

where ct is an individual case and

N c is the number o f cases in the case-base

Each individual case can be represented by:

where a:j is the j ‘h attribute in case c( and

N a is the number of attributes in a case.

Often the problem case or initial starting case is represented by:

where N  < N a , i.e. the problem case does not

necessarily contain all attributes o f a case ct and

N  is the number o f attributes in the problem case.

The solution case can be represented by:

University o f  Windsor, 2005 6
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Chapter 2

For the purposes o f this thesis, the case c, is represented in a slightly different manner to 

highlight the persistent and dynamic portions of a case c,.. Therefore

^ 7  | / ^ 1  ’  P i  5 * * * 5  Pftp 5 |  ,  r / | 2  5 * * * 5 ^ 1 /  5 ^ 2  I ? ^ 2 2  5 * * * 5  ^ 2 /  5 * * ’ 5 [  5 2  5 * * * 5 ^N J  }

where p  are persistent attributes, iV is the total number of persistent 

attributes; d N/l are dynamic attributes, / is the number o f time intervals in 

the case and N d is the number dynamic attributes in each time interval.

2.1.3 Case Retrieval:

Case retrieval is the process o f identifying or retrieving previous cases that are 

similar to the problem case and can be adapted to provide a solution to the problem case, 

or in general assist the CBR system in achieving its goals. This process starts with the 

problem case or problem description. Before past cases can be retrieved, situation 

assessment must be completed on the current problem to determine the entire context of 

the problem in a vocabulary that the CBR system can understand. In this process the 

current problem case must be “flushed out”, or in other words all available information 

must be extracted in order to totally quantify the problem. The problem case is the 

starting point for situation assessment, but other knowledge acquisition techniques such 

as the use o f assumptions, interpolation and guided discovery can assist in complete 

situation assessment. For example, assuming that the ambient temperature for a process is 

similar to the ambient temperature recorded at a local weather station could be a good 

assumption. Depending on the nature o f the case-base, situation assessment could 

introduce additional complexity to the CBR process. For example, a conversational CBR

University o f  Windsor, 2005 7
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Chapter 2

system could require additional initial development in the form o f a natural language 

interpreter to convert dialogue to text and then to a format meaningful to the CBR system. 

In a structural CBR approach the attributes are represented in a simple feature value 

matrix that is generally easy to use, manipulate and maintain. [SG02][Ber01],

Once the situation assessment process has been accomplished the CBR system is 

ready to retrieve the most similar case or cases using some predefined similarity metric. 

By using similarity assessment procedures, cases that can be useful in the reasoning 

process are retrieved from the case-base. These similarity assessment procedures can 

range from a simple nearest neighbor similarity algorithm to various introspective 

algorithms that use the data from the case-base to assist in the retrieval problem [LEA03], 

Matching and ranking procedures are used to further identify cases that could be the most 

useful in the reasoning process. As in most computational systems, the speed and 

efficiency of the retrieval processes are important metrics and consequently research in 

case retrieval is an active area and is a main topic o f this research.

This thesis addresses retrieval from two distinct directions, the first being the 

retrieval of best case(s) for the dynamic element of the environment and the second being 

the determination o f the best case for the persistent attributes of the domain. The causal 

structure o f the process in the case-base is utilized in the case retrieval phase to reduce the 

size o f the retrieval process in terms o f the number of attributes that need to be considered 

at one time.

Formally case retrieval can be represented by obtaining the best case(s) cbest 

defined as:

^ V distance(c;, P; )jc. s.t. min

University o f Windsor, 2005 8
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Chapter 2

where distance is some similarity measure such as the Euclidean or 

Manhattan distance. The Euclidean distance is computed as the square 

root o f the sum of the squared differences between the two cases over each 

attribute. The Manhattan distance between two cases is the function o f the 

sum of the distances on all attributes involved.

At an attribute level, case retrieval can be represented by obtaining the best case(s) chest 

defined as:

Cbesl = c, s.t. mm
f  (  W

V Yu distance^ . . , p )  
\ J~ 11 \ i=l-N'  J )

It should be noted that the problem case P = \ p l , p 2,- - - ,pN \ does not necessarily 

contain all attributes o f the case c; = \an ,a i2, . . . , a iN ) and hence retrieval and adaptation 

steps must consider and handle this predicament.

2.1.4 Case Reuse:

This phase is more commonly referred to as case adaptation, where the retrieved 

case is adapted by evaluating the differences between the retrieved case or cases and the 

problem case and modifying the retrieved case so the solution to this modified case can 

be used as a solution to the problem case. Case adaptation is perhaps the least developed 

phase of the CBR process, and it is an active and dynamic research focus. Adaptation is a 

complex and crucial step o f case-based reasoning which is generally studied in the 

restricted framework o f a particular application domain [FLMN99], In fact, research is 

often hindered by this domain specific nature and hence some researchers do not consider
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case adaptation phase as necessary for an operational CBR system [HB02], Domain 

independent case adaptation or automated case adaptation is perhaps the ultimate goal of 

research on adaptation in CBR. The effort and computational power required to perform 

case adaptation is often complex and could possibly outweigh the benefits. For this 

reason, retrieval only fielded CBR systems are popular and abundant [Whi05].

There are several basic adaptation techniques, such as substitution, where a 

component from the problem case is replaced with a similar component from the 

retrieved case [Kol93]. Interpolation could be used to determine a substitute value for the 

problem case. A concrete example of this type o f adaptation could be that a retrieved 

solution’s speed attribute has a maximum speed o f 50 km/h and hence a 75 km journey 

would take about 1.5 hours. However the problem case’s speed attribute indicates a 

maximum speed o f 75 km/h, by interpolation a 75 km journey would take one hour for 

the retrieved case, so perhaps one hour could be substituted for 1.5 hours in the solution 

case. Transformational adaptation is the process o f transforming a retrieved solution to fit 

a problem situation’s constraints by making deletions, insertions or transforming some 

element o f the retrieved solution [Kol93][HB02]. For example, the problem case may 

indicate that one needs to travel from Windsor to Toronto (a distance o f approximately 

400km) in two hours, however the retrieved solution has attributes that indicate that the 

automobile in possession can travel at a maximum of 100 km/hr. A transformation type 

adaptation would be to take an airline from Windsor to Toronto, thereby meeting the two 

hour constraint. Another common adaptation method is that o f derivational replay, where 

the methods or means used to solve the retrieved case are also used to solve the target 

case. For example, the problem case may indicate that one needs to travel from Windsor 

to a southern destination such as Fort Myers FL. The retrieved case indicates that we
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traveled from Detroit to Miami previously using a particular airline. Perhaps by using the 

same reasoning (affordability, convenience, experience etc.) conduit for choosing the 

airline to Fort Myers FL, one can choose the same or perhaps a different airline that took 

the person to Miami, FL. In order to use this method, the retrieved case must record the 

inferences or computations that were used to solve the retrieved case.

An interesting idea stemming from a derivational replay type adaptation strategy 

is presented in [CJR01] in which the information used to perform adaptation is stored in a 

separate case-base. In essence there is an adaptation case-base in which previous 

adaptation derivations are stored and reused when appropriate. This work also recognizes 

the difficulties in adaptation and provides several secondary methods for adaptation; 

mainly a rule-based system is used when the adaptation case base method fails. If the 

rule-base adaptation system fails, then the system defaults to a manual adaptation process. 

A system called DIAL uses this case adaptation approach in the domain o f disaster 

planning.

Other than the three adaptation strategies described above, most adaptation is 

usually highly domain dependent (e.g. domain model driven or domain rule based 

driven). The predominant strategy is to use a rule based system where the rules are 

determined by domain experts in an if-then format.

Formally case adaptation could be considered as:

C  —  /
a d a p ted  J  A daptation  M ethod

where similarity(cadapted )> similarity(cretneved)S  retrieved
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Although the adaptation phase is somewhat oblique in this work, it is considered 

as a collective step that uses causal knowledge to assist in the unified retrieval and 

adaptation phase. The combination o f the sub-cases from the dynamic aspects o f the 

problem with the case that best represents the persistent portion o f the given problem is 

what is considered the adaptation problem for this thesis.

2.1.5 Case Revision:

Case revision occurs when a derived solution from the case reuse phase is 

determined to be incorrect [AP94], This phase involves the evaluation o f the solution to 

the problem, often by systems outside the CBR system. The fault with the solution is 

then repaired and evaluated again or the CBR system reverts back to the reuse phase. 

Case revision is not an active aspect of this thesis.

2.1.6 Case Retainment:

This is the learning phase o f the CBR process. The case retainment phase ensures 

that the CBR reasoner becomes more efficient over time. The breadth and depth o f the 

CBR system can be improved over time by properly utilizing case retainment. The case- 

base coverage expands as an increasingly diverse set o f cases are solved and retained. 

CBR systems can learn not only from correct cases being added to the case base, but from 

other information such as how the reasoning process was completed (derivational replay), 

even faulty case reasoning processes and possibly the use of statistics about the reasoning 

process. Case retainment will not be dealt with in this work.
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2.1.7 Extensions to the Four Step CBR Process:

There have been several extensions to Aamodt and Plaza’s original four step CBR 

process. Most extensions deal with the maintenance to CBR systems [PRO 1] [RIO 1] 

which is often implied in the original four step process. There are several types of 

maintenance that need to be performed to a CBR system. The first type is that o f 

updating the indexing structure for the case-base to ensure that it properly represents the 

case-base and that access to all meaningful cases is still relevant. Another maintenance 

task is to monitor and update the cases in the case-base, perhaps by removing unnecessary 

or misguided cases from the case-base. Another addition to the four step CBR process is 

that of recording statistics about the reasoning process that could be used at a later date to 

assist in the reasoning process. In [Bri05] it was amusingly suggested that perhaps the 

four step process could be expanded to an eleven step process.

Another popular extension to the four step CBR process is the idea o f having 

hybrid CBR reasoning systems in which other reasoning techniques are used in 

conjunction with CBR to create a reasoning system [AD98] [Aha98] [FoxOO] [HS04] 

[LS03] [ManOl]. In [ManOl] fuzzy logic is used to characterize imprecise and uncertain 

information in case representation. Case retrieval uses fuzzy matching techniques and 

degrees o f similarity present in attributes o f retrieved cases. This research also outlines 

several CBR systems that use fuzzy logic concepts including; the ARC System, the 

BOLERO system, the CAREFUL system, the CARS System and the FLORAN System. 

CBR is integrated into Decision support systems in [AD98] and [LS03] presents a CBR 

as a hybrid classifier that combines Bayesian networks with distance based algorithms.
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2.1.8 CBR, DBN and a Dynamic Industrial Domain:

Case-based reasoning is an appropriate reasoning method for the parameterization 

of an industrial process mainly because o f the complexity of the interactions within such 

processes. Although many elements o f the domain are typically available, the 

interactions involved in the entire model can become complicated. To create a detailed 

model or a rule based reasoning system for the entire process would entail a great amount 

o f research, study and measurements to quantify the interactions o f the subsystems 

involved. The computational power required to model just a single element in a process 

step could easily exceed the computational power available, and the results are difficult to 

validate.

To-date there have been several industrial process related CBR systems 

[BSS02][HT95][BCSV04][Wat99] developed and presented as fielded applications. In 

[HT95], perhaps the first published CBR application, a CBR system was developed to 

determine the optimum loading of an autoclave (cure oven) that satisfies the cure 

requirements o f all parts. In [BSS02][BCSV04], a tire production process was optimized 

using a CBR methodology. Most o f these applications present the basic knowledge 

representation unit o f the case-base as a static case, where the attributes in a single case 

remain constant throughout the case. Generally there is no aspect o f time or time slices in 

a case and if  time is required to be represented it is done statically and finitely with 

additional attributes. However, processes in general are often dynamic in nature and 

contain spatial and spatial-temporal relations that require unique representation. By 

utilizing dynamic representations of attributes, the temporal qualities o f processes can be 

developed in a robust approach.
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The use o f dynamic Bayesian networks to support the retrieval and adaptation 

phases o f CBR is a research area that seems to be appropriate for a sequential process 

type environment. The dynamic nature of a sequential process matches the reasoning 

assumptions o f a DBN.

2.2 Bayesian Networks:

A Bayesian network (BN), also called belief network, Bayesian belief network 

and causal probabilistic networks are used to model a domain containing uncertainty due 

to imperfect understanding o f the domain, incomplete knowledge of the state of the 

domain at the time when a given task is to be performed, randomness in the mechanisms 

governing the behavior o f the domain, or a combination of these [Kja95], Bayesian 

networks are compact probabilistic graphical models used to represent probabilistic, 

uncertain or causal relationships between variables [SAOO]. Bayesian networks have 

been a topic o f intense research for many years and seem to be integrated in many 

modeling and reasoning mechanisms. Hence the mechanics o f BN are for the most part 

well understood and documented, but computationally complex [Coo90], Generally, 

inference in BN is intractable [Coo90], However, some practical algorithms exploit the 

properties of a network to provide exact or approximate results in a reasonable time frame 

[Jen02],

A Bayesian Network is a directed acyclic graph in which each node represents 

dependencies between variables and their associated probabilities [Gom04][RN03]. Each 

node in a Bayesian network is associated with either a continuous or discrete random 

variable that has a conditional probability table (CPT) assigned to it. There is a set o f arcs
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or directed links that connect pairs o f nodes representing probabilistic or causal 

dependencies between the variables. More concisely, if  there is a link from X to Y, then 

there is a direct influence on Y from X, or X is a parent o f Y. The conditional probability 

table (CPT) for a given node X defines the probability of that node X given all possible 

combinations o f values o f its parent nodes. To specify the joint probability distribution in 

a Bayesian network, one must give the prior probabilities o f all root nodes, and the 

conditional probabilities o f all non-root nodes given all possible combinations o f their 

direct parents. Figure 2.2 illustrates a BN from the domain of paint applications. In this 

BN model, there are four variables or nodes o f some significance in the paint application 

domain. For example; fluid rate (fr) is the rate at which the paint leaves the applicator, 

filmbuild (fb) is the thickness o f the paint after it is applied, target distance (td) is the 

distance from the applicator to the part, appearance (ap) is whether the coating meets 

appearance standards and durability (dr) is whether the coating meets durability 

standards. These nodes are connected by arcs (causal relationships); like the arc from 

fluid rate to filmbuild indicates that fluid rate may be a cause o f filmbuild, or stated 

another way, filmbuild could possibly be dependent on fluid rate. As another example o f 

the causality present in the BN model, consider the node appearance with an arc from 

filmbuild indicating that paint appearance is dependent on filmbuild. The conditional 

probability tables associated with each node are read as such; P(fb|~fr,td) from the 

filmbuild CPT indicates that the probability of filmbuild being acceptable given an 

inadequate flow rate and an appropriate target distance is equal to 0.79. In summary, the 

probabilistic meanings are determined using the directional arcs and the conditional 

probability tables. The causal relationships are determined by the directional arcs.
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The attributes in a Bayesian network are often considered to be binary (that is 

either true or false) as in Figure 2.2. This affords simplicity in the handling of the 

network. Multi-valued variables can be handled in a similar manner as binary without 

much additional effort. The representation o f continuous variables in a Bayesian network 

is handled by specifying a distribution over the variable. Often a linear Gaussian 

distribution is used, in which the child has this distribution whose mean p  varies linearly 

with the value of the parent and whose standard deviation a  is fixed [RN03], 

Discretization, by dividing a continuous variable into fixed intervals can also be used to 

handle continuous variables. For example, a continuous variable such as appearance, 

(generally, measured on a continuous scale from 0 to 100) can be discretized into 

intervals such as the following: Poor (0 -  25), Fair (25 50), Good (50 -  75) and

excellent (75 -  100) creating a multi-valued discrete variable.

Formally, a BN is defined as: a directed acyclic graph G whose nodes V are 

random variables and edges E represent probabilistic or causal relationships among the 

nodes V. In this graph, G = {v,E},  the direct influence on a node v e V  are known as 

the parents pa\v \ . The model comprises the probability distribution of each node using 

the configuration o f its parent nodes i.e. p { X v \ X  pa[v]). The conditional independence 

assumptions represented by the graph correspond to a joint probability function i.e 

p(x,)=Y\p(x « \ X pa[v]). Each node in a network is associated with a conditional
v e V

probability table that specifies the probability of that node given its parents i.e. 

p(vi | pa(v!)). For nodes with no parents, the prior probabilities are used.
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Fluid Rate T arget D istance

P(fr) = 0.72 P(td) = 0.93

Filmbuild P(fb|fr,td) = 0.97
P(fb|fr,~td) = 0.69
P(fb|~fr,td = 0.79
P(fb|~fr,~td) =0.51

Appearance Durability

P(ap|fb) = 0.60 P(dr|fb) = 0.64
P(ap|~fb) = 0.05 P(dr|~fb) = 0.07

Figure: 2.2: A Bayesian Network Modeling a Paint Application Process.

Inference tasks in BN include assessing the posterior probability o f a node given 

some evidence, finding the most probable values for all nodes in the network (or most 

probable explanation, MPE) and finding the most likely value for a node or a set o f nodes 

given some evidence (also known as maximum a posteriori probability, MAP). Although 

inference in a Bayesian Network is known to be intractable [Coo90], by utilizing certain 

independence assumptions inherent in Bayesian networks and evidence acquired to date, 

efficient reasoning can be accomplished [ChaOO], Inference in a BN is the computation 

o f the posterior probability distribution for the set o f query variables, given a set of 

evidence variables for which the exact value is known. An inference algorithm is used to 

propagate these values through the BN, according to Bayes rule. There are several 

inference algorithms, but they basically fall into two categories: exact inference and 

approximate inference.
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First, consider the case when we know the values of all variables associated with a 

BN, for example consider Figure 2.2. Suppose we want to find the probability that 

appearance is acceptable, durability is inadequate, filmbuild is ok, fluid rate and target 

distance is not acceptable.

P(ap, ~ dr, fb,  f r , ~ t d )

n

from P(xl,x2,---,xn) = | Parents(Xi))
1=1

P{apA ~ dr a  f b  a  J t a  ~ td)

= P(ap | fb )*  P(~ dr \ fb )*  P(fb \ f r , ~  td)* P(~ td)
-  0.60 * 0.07 * 0.69 * 0.07

= 0.0020286

It can be stated that the probability o f appearance, filmbuild and fluid rate being true and 

the probability of durability and target distance being false is equal to 0.0020286.

In general, one does not always know the values of all variables in a BN network. 

There are several methods o f exact inference that can be used to determine the probability 

given some evidence such as the variable elimination algorithm, the variable elimination 

algorithm with eliminating repeated calculation and clustering algorithms [RN03], To 

provide some understanding o f this category o f algorithms an example is provided to 

detail the operation of the variable elimination algorithm.

Example (Variable elimination algorithm): Using Figure 2.2, and the known values of 

appearance = true and durability = true, the probability of filmbuild will be determined.

In general one wants to find P (X  \ e, Y)
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= a *  P(fr)*

X  = the query variable (fb) 

where e = the evidence variable (ap & dr = true)

Y = hidden variables (fr & td)

P { X \e ,Y )  = a ^ P(x,  e,Y)  where a  = a normalizing (to 1) constant
Y

P(fb  | ap = true, dr = true) = a  Z  Z P{jb , f r , td ,ap ,dr )
f r  td

= «/>( / ' E />(/fl0 Z  p (fh i f r i td)p {ap  i fl>)p {dr i fl>)
f r  td

f p { j b  | f r , t d ) * P{ap \ fb )*  P{dr \ f b ) * P(td))

+ (P(~ f b  | fr , td )*  P(ap |~ fb)*P{td))

+ {P{fb I f r , ~  td)*P{ap  | /&)* P(dr | /&)* P(~ td)) 
v+ (/J(~ f b \  f r , ~  td)* P(ap \~ fb)*  P{dr \~ fb)*  P(~ td ))

(0.970 * 0.600 * 0.640 * 0.930)

+ (0.490 * 0.050 * 0.070 * 0.930)

+ (0.690 * 0.600 * 0.640 * 0.070)
(0.310 * 0.050 * 0.070 * 0.070)

= «  * (0.720)* (0.34664064 + 0.00159595 + 0.0185472 + 0.00007596)

= a  * (0.720)* (0.366245)

= cr *(0.26396964)

Repeat the same calculation for ~fb.
= a  *(0.083058416)

Therefore one has P(fb \ ap = true,dr = true) = a *  (0.26396964,0.083058416)

Now use a  to normalize to one. a  = 2.8816113934 
Consequently, p( fb  \ ap = true,dr = true) = (0.7606,0.2394)

= «  *0.720

This approach to Bayesian network inference has a complexity o f 0{n2"), where n is the 

number o f vertices which quickly becomes intractable for any significant value of 

n [ChaOO], There are some improved algorithms for exact inference but these generally 

lead to exponential time.
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There are also several methods of approximate inference that can be used to 

determine the probabilities o f nodes within a Bayesian network. Direct sampling, 

rejection sampling, likelihood weighting and Markov chain Monte Carlo are some 

common algorithms for approximate inference in a BN [RN03].

In this work we use an extension o f the BN called a dynamic Bayesian network 

that allows for the representation o f temporal aspects of a given process while still 

permitting the exploitation o f the mechanisms for the manipulation of a BN

2.2.1 Dynamic Bayesian Networks:

Dynamic Bayesian networks (DBN) represent a probability distribution over time. 

They consist o f a BN for each time slice where temporal variables link each individual 

time slice. These edges represent persistence and causation [DK98], The process of 

expanding from a single time slice to a semi-infinite DBN is called the unwrapping of the 

network structure. Basically, the BN is copied once for each time slice and temporal 

variables are used to link each o f the time slices.

Formally, in a DBN the state at time t  is represented by a set of random variables 

Z, = {z,,, Z 2, , . . . ,  Z d , }. Typically it is assumed that a state at time t depends only on the

previous state (a first-order Markovian assumption, see section 2.2.3) 

i.e. P{Zt ) = P(ZI | Z I , ) . Another typical assumption is that the process is stationary, that

is the transition process is the same for all time slices. The set Z, is typically divided into

two sets o f variables: the unobservable, transient or state variables X t and the observed

or evidence variables Et . The state variables depend on previous states i.e.

P{Xt ) = P (X t X I {) and the evidence variables at time t depend only on the current state
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i.e. P(Ei) = p {Ei | X 0.t E0.l_]) = P{Et X t ) sometimes referred to as the sensor model or 

observation model [RN03], The joint distribution for the DBN can then be formulated as:

P (X . ,X „ - ,X „ E „ E !...... E , ) - * X . ) r i p ( X , |X M)P(E,|X1).
;=1

F igure 2.3: A Dynamic Bayesian Network

A dynamic model can be constructed from a set o f building blocks that capture the 

instantaneous relationship between domain variables, together with a set o f temporal 

dependencies that capture the dynamic behavior o f the domain variables [BV98]. 

Accordingly, the building blocks for a dynamic Bayesian network are a set of static 

Bayesian networks. From a static Bayesian network, a time-varying dimension can be 

added by defining (a) significant events associated with each variable; and (b) the 

dynamic construction algorithm.

2.2.2 Independence Concepts:

An important aspect o f Bayesian networks and dynamic Bayesian networks for 

the purposes of this research is the probabilistic independence properties that can be
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employed in BN and DBN to divide a large network into a set of smaller sub-networks. 

D-separation is used to determine whether two nodes in a network are independent given 

some evidence [PeaOO], Independence can be conditional independence or marginal 

(unconditional independence). Conditional independence o f the two nodes x  and y  

given z implies that known or specified attribute z causally separates x  and y  from 

influencing one another. Marginal or unconditional independence o f two nodes x  and y  

implies that P(x \ y )  = P(x )and P(y | x) = P(y ) . Independence provides a powerful means 

for dividing a problem case into independent sub-cases. Thus, independence is 

instrumental in case retrieval as it helps in finding the closest and causally most relevant 

matching sub-case. Independence also plays a role in guiding the adaptation as these sub­

cases are combined.

The concept o f d-separation [ChaOO] sometimes conversely referred to as d- 

connection [PeaOO] is illustrated in Figure 2.4. Basically, if there is a linear configuration 

o f nodes, such as in Figure 2.4a, and the value of random variable b is known (also 

referred to as has evidence) then nodes a and c are d-separated. When a and c are d- 

separated, it can be said that a is conditionally independent o f c given b . A similar 

situation arises when there is a diverging configuration of nodes such as in Figure 2.4b. 

An inverse situation occurs if  we have a converging configuration such as in Figure 2.4c. 

In this situation, if  b or a descendent of b is known then a and c are not d-separated 

and hence are dependent on one another. These key ideas from the Bayesian network 

research play a key role in the CBR system developed in this thesis.
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Linear Diverging C onverg ing

^  If b known then
a & c are d-separated

If b known then 
a & c are d-separated

If b or d escenden t known then 
a & c are not d-separated

a) Linear b) Diverging 

Figure 2.4: d-Separation

c) Converging

2.2.3 Markov Assumption:

A Markov assumption, named after the Russian statistician, is that the current 

state depends on a finite history of previous states [RN03], For example, in Figure 2.5a a 

first order Markov assumption dictates that the current state depends only on the previous 

stateP (X t)= P{Xt | X(_,). Whereas in Figure 2.5b the second order Markov assumption 

specifies that the current state depends on the previous two states 

P (X l ) = P ( X l X l_lX l_2). A Markov assumption is often a valid assumption. For

example, in predicting the location o f a robot, it is often dependent on where it was in the 

previous state only. However, is seems that the main undertaking of a Markov 

assumption is to reduce complexity o f the problem state, perhaps at the risk of accuracy.

a) © -

Figure 2.5: Markov Structure 

a) First Order Markov DBN Structure b) Second Order Markov DBN Structure
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2.2.4 Barren Nodes:

In [Sha86], Shachter defines a barren node as a sink node, that has no successors 

and hence no matter what value is assigned to the barren node variable, no other node is 

affected, so it may be removed from the diagram. For an example o f a barren node, 

consider Figure 2.4a node c . By extending the notion of barren node to a barren sub 

network defined as a sub network that contains no evidence nodes that is connected to the 

rest of the network by a single incoming edge, it is possible to further divide a large 

dynamic Bayesian network into smaller more manageable sub networks. Once barren 

nodes are remove it is often the case that other barren nodes appear in the network 

structure which can also be removed.

2.2.5 Multiply Sectioned Bayesian Networks:

In general, the division o f the dynamic belief network into independent sub­

networks is not always possible. Fortunately, other techniques for dividing a belief 

network into sections can be adapted to the DBN used here. The multiply sectioned 

Bayesian networks (MSBN) process [Xia96] [Xia03] divides a belief network into a set 

o f interrelated sub-networks by duplicating nodes at the interface between two sub­

networks, provided that the set o f nodes in each interface is a d-separation set and that 

the resulting collection o f sub-networks forms a hyper tree. In the process of the MSBN 

decomposition o f the DBN, two types o f consistency constraints are imposed: global 

consistency constraints and local consistency constraints. Global consistency constraints 

are similar in behavior to persistent attributes while local consistency constraints ensure 

that nodes at the interface between two sections are assigned compatible values. Figure 

2.6 illustrates the division o f a dynamic belief network into two multiply sectioned sub-
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networks. The upper network is a segment o f a DBN before the MSBN concept has been 

applied. The lower network is the same DBN segment with the MSBN concept applied. 

As can be seen by sectioning the network, the two temporal links D -  > 4 +. and

C, —» C/+] are sectioned with the variables at time t being repeated at time t +1 as Dt

and C’. The posterior probabilities o f the interface nodes C, and Dt can be used as the

prior probabilities of the repeated nodes C’ and Dt . This technique allows us to separate

conditionally independent sections o f the DBN thereby creating subnets.

A i+1 D i+1 V

t = i t = i+1

Di+1

Bi+1

t = i+1

Subnet 2Subnet 1

Figure 2.6: Multiply Sectioned Bayesian Network
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2.3 Literature Review/Related Work:

Research in the field of Bayesian Networks for a variety o f reasoning tasks is 

virtually limitless and there are several projects that integrate both BN and CBR in 

innovative ways. The combinations of static and dynamic indices in a CBR system 

together with the use of causal knowledge in the form of a DBN are new innovations 

introduced in this thesis. This section will review related research and compare it to the 

work presented here.

2.3.1 General CBR and BN Literature:

There is a great deal o f literature on CBR systems with some general and 

milestone publications including [Kol93][LEA03],[AP94], To date there are many 

fielded applications, some are illustrated in [CheOl] [CVG01] [HT95] [BSS02] [BM01] 

[BCSV04] [Wat97] with a great deal of them having domains associated with a process 

situation similar to this project, however the domains represented are static in nature and 

adaptation is non-existent or does not relate to the causal structure o f the domain. For 

example in [HT95], one o f the first fielded CBR applications is presented and the domain 

is a cure oven similar to the one presented in this thesis. However, the temporal aspects 

of the domain are treated in a static manner using conventional CBR techniques.

For many years researchers have been looking to Bayesian networks to solve 

modeling situations and hence there are some excellent resources from basic text books 

[RN03], to lecture notes [Jen99], to research papers [ChaOO] [Gom04] [AL98]. The 

topic o f dynamic Bayesian networks is less developed, but there are many resources 

including [RN03] [Mur02] [DK98],
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2.3.2 Literature Related to Ideas Presented in this Thesis:

The following research efforts have aspects that are similar to some o f the 

innovations presented in this thesis, but in general are different in several distinct ways.

In [BH95], a diagnostic and troubleshooting application uses a stylized or layered 

BN set up as a cause, issue and symptom network using discrete variables and was 

developed by a domain expert. A single cause or symptom is used to select a sub section 

o f the BN that is relevant to the cause or symptom. By using d-separation, variables that 

are relevant to current observations are identified. Using the constructed Bayesian 

network, the system generates recommendations for components to repair and makes 

suggestions regarding additional observations, by using the cost of observations. This 

work utilizes the independence assumptions of a causal network to reduce the BN to a 

more manageable Subnet similar to the work. This work does not include direct 

treatment of dynamic variables in a time slice nature and the handling o f static variables 

is unique to the CBR/DBN Retrieval/Adaptation algorithm. The CBR/DBN 

Retrieval/Adaptation algorithm can use discrete or continuous variables.

In [BV98] a framework is described that combines Bayesian networks and case- 

based reasoning to create a knowledge representation scheme capable o f dealing with 

time-varying processes. This scheme uses temporal Bayesian networks as individual 

cases in the case-base. This thesis uses temporal Bayesian networks and independence 

assumptions to improve retrieval in a CBR system. However, it does not represent an 

individual case as a temporal Bayesian network, but rather models the entire case-base as 

a dynamic belief network.
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In [JAS02] a well known time interval theory from [A1184] is used to develop a 

time based representation for cases in a CBR system. A retrieval algorithm based on 

Allen’s thirteen possible time relationships is presented and demonstrated in an oil well 

drilling application. Although the work in [JAS02], utilizes time concepts in the retrieval 

o f cases, more specifically interval based time concepts, this thesis uses a time instance or 

point based representation o f time to represent temporal relationships. This work also 

uses dynamic Bayesian networks and the independence assumptions inherit in BN to 

improve the retrieval and adaptation.

In [SAOO] the application domain is that of user profiling, where the idea is to 

build a repository o f information (a case-base) regarding the users access and querying o f 

a database. When a new query is made new attributes are added to the BN and the 

probability values associated to each node o f the BN are updated. By utilizing the BN 

and its conditional probability tables, cases are matched and ranked as to possible or 

suggested next queries. Again there is no dynamic or time slice innovation in these ideas. 

The independence assumptions utilized in the CBR/DBN Retrieval/Adaptation algorithm 

are not eminent in their process and the complete probability distribution functions are 

required.

In [Gom04] Word Net [MBFCM90] and the case library are used to build a BN. 

Once the BN is constructed, a class diagram (query diagram) is used for the initial query. 

The evidence corresponding to the synsets of the query diagram objects are set to true. 

Once the evidence nodes are set the probability o f the case nodes are calculated and such 

probabilities are used to retrieve and rank corresponding cases. The BN used in this 

project are static and the complete probability distribution is obtained and used to rank 

cases. Once again, in this project there is no dynamic aspect to the data and a complete
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probability distribution function is required. The interesting idea here is that the BN is 

learned from Word Net, the learning of the DBN is a future phase o f the CBR/DBN 

Retrieval/Adaptation algorithm.

A dynamic Bayesian network containing the observable attributes o f the domain 

model is created along with a user created static semantic model in [AL98], Each case is 

indexed by the Bayesian network using binary features. In the first step o f the retrieval 

process the BN is used for retrieving a set o f relevant cases after the observed features are 

entered into the BN as evidence. This similarity metric is based on the calculation o f the 

probability o f the case being on, P(Case node is ON| Features of New Case). All cases 

having similarity metric greater than some threshold value are retrieved in this first step. 

In the second pass the number o f cases is reduced using perhaps a BN approach like 

discriminating between influencing nodes. The CBR/DBN Retrieval/Adaptation 

algorithm utilizes all attributes o f the domain and does not index the cases using the 

DBN. Independence assumptions utilized in the CBR/DBN Retrieval/Adaptation 

algorithm are used to partition the network.

In [MCMC05], temporal case based reasoning is presented from the perspective 

that a temporal episode consists o f a collection o f static cases. The reasoning in this work 

utilizes the episode as its main reasoning block. Much emphasis is placed on the 

utilization o f the episode representation hierarchy or structure and maintaining such 

structure. The temporal episode is separated into static cases. In this thesis a case 

consists o f the entire temporal sequence with both the dynamic and persistent features 

represented in a single case. Case representation is not the focal point of this thesis. The 

separation o f the dynamic and persistent attributes o f a case and the manipulation via the
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use o f causal knowledge available in the case-base is the innovative approach taken in 

this thesis.

There are several other research efforts that utilize BN and CBR, but as seen 

above, are generally different in the ideas o f the dynamic/time sliced BN, the lack o f use 

of independence assumptions given evidence, often require the complete probability 

distribution and the handling o f persistent variables in a dynamic realm. These papers 

include [LS03] [Din98] [Sha86] [WOB98],

2.4 Hugin Expert Systems:

The Hugin Development Environment provides a set of tools for constructing 

model-based decision support systems in domains characterized by inherent uncertainty 

[Kja95]. The models supported are Bayesian networks and their extension, influence 

diagrams. The Hugin Development Environment consists o f the Hugin decision engine, 

Hugin APIs (Application Program Interfaces) and Hugin Graphical User Interface. O f 

interest is the Hugin API, in which a set of routines are available for use by other 

programs (C, C++ or Java). In particular, the d-separation function is interesting, in that 

one could input a BN and then determine which nodes are d-separated from other nodes. 

Figure 2.7 illustrates this function in action in the graphical user interface o f Hugin. 

Basically, the crossed (red) nodes are d-separated from the source nodes which are the 

nodes without an accompanying ellipses. Due to cost restrictions, the Hugin API is not 

available for use in this work, but in theory could be integrated to determine the d- 

separation or conditional independence of attributes of a BN or DBN.
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Figure 2.7: Hugin d-separation

2.5 Probabilistic Network Language:

Intel Corporation has developed Probabilistic Network Language (PNL) as a set 

of routines for handling Bayesian Networks. The library contains high-performance 

implementations o f algorithms for working with Bayesian networks and Markov 

networks, such as belief propagation and junction tree inference, maximum likelihood 

and expectation maximization [Int03], Although PNL is available for free, it is highly 

dependent on Microsoft Visual C++ and hence does not integrate with the application 

developed in this thesis (using Borland C++ Builder). PNL contains a function called d- 

connection that can be used to determine the independence o f nodes in a BN. Again, it is
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possible in theory to utilize the routines available in PNL to resolve d-separation among 

attributes in a BN.

2.6 Tetrad:

Tetrad is a program for creating, simulating data from, estimating, testing, 

predicting with, and searching for causal/statistical models [SSGM94], Tetrad IV is the 

latest version of this software designed in Java and comes with a pleasant user interface. 

Tetrad III comes in a DOS or Solaris based versions and has an application program 

interface that consists o f a library o f routines that can be used with other software. 

Interest in Tetrad III was high due to the integratability and a function called “Build”. 

The purpose o f the build function is to take a set o f data as input and output a set o f causal 

models based on the input data. The idea behind the use o f the build function is that a 

case-base could be taken as input to the build function and produce or learn a causal 

model or perhaps a Bayesian network that could be used for further reasoning. However 

after much experimentation with Tetrad, the build function and real life data, some 

problematic concerns such as the inability to determine the direction o f causal arcs, 

difficulties in handling continuous variables and weaknesses in dealing with latent 

variables have surfaced. Further investigation o f programs such as Tetrad with real life 

data sets is required to be able to utilize such tools in a real life application.

Tetrad can also be used to generate data from a known belief network structure. 

By starting with a network structure as illustrated in Appendix C .l, and using the 

MakeModel function, Tetrad can generate a set o f fully parameterized recursive linear 

structural equations, refer to Appendix C.2 and C.3 for an example. This information can
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then be fed into the Monte function to generate a set o f data coherent with the original 

belief network structure. This procedure is used to produce data for the evaluation o f the 

methods presented in this thesis.
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Chapter 3: The Domain for the CBR Application

During the process o f painting a vehicle in an automotive assembly plant, the paint 

coatings are applied to a vehicle body, then the entire body is processed through a 

sequential oven to cure the coating. Proper cure is essential to produce a high quality 

painted surface; both paint appearance and durability are important qualities o f a paint 

coating. Defects such as poor appearance, over-cure and surface defects are often 

associated with improper cure. Automotive paint curing ovens are typically made of 

several zones (often 4 to 10) that are controlled separately. These oven zones could use a 

variety o f different types o f heating processes, such as infra-red, black wall radiant, 

convection or some other proprietary heating methods and the zones can be o f different 

lengths.

At the DaimlerChrysler Canada Inc./University o f Windsor Automotive Research 

and Development Centre in Windsor, Ontario, there exists a highly automated paint 

laboratory called the Automotive Coating Research Facility (ACRF). This facility is 

dedicated to the research and development o f the processes o f applying paint coatings, 

which includes the curing of such coatings. The paint curing oven in the ACRF is a four 

zone, highly flexible oven used to cure numerous different vehicles and simulate many of 

the ovens located in the DaimlerChrysler assembly plants. The curing process is a 

dynamic process consisting o f a vehicle on a conveyor that passes through the oven, 

where various parameters associated with the oven are monitored and adjusted to achieve 

the proper cure. These parameters include but are not limited to: conveyor speeds in each 

zone, temperature set points and actual values for each zone, and damper settings. The
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ACRF oven has four distinct oven zones. The first two are radiant and the final two are 

convection with two additional heat sources feeding all four zones. Figure 3.1 illustrates 

a schematic and Figure 3.2 shows some photos o f the ACRF curing oven. Although not 

typical of assembly plant ovens, the ACRF oven conveyor has a variable speed drive and 

hence the speed o f the conveyor can be changed in a dynamic fashion. Table 3.1 details 

all the parameters that are used to control the oven.

To Atmoshere

Entrance
Exit

V e h ic le  T ra v e l 
D irec tio n

From Atmoshere

Supply Dampei

Zone #1
Radiant

Zone #2
Radiant

Zone #3
Convection

Z o n e M
Convection

-R a d ia n t  Z one  C onveyor S p e e d  -
 Stabilization Z o n e _ _ _ _

C onveyor S p e e d
B ake Z one 

C onveyor S p eed

Figure 3.1: ACRF Oven Schematic
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Figure 3.2: ACRF Oven Photos

University o f  Windsor, 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3

Units Comments

Oven Parameters

Z o n e # l Set point °F The Set point for Zone #1

Actual °F The Actual temperature for Zone #1

Zone #2 Set point °F The Set point for Zone #2

Actual °F The Actual temperature for Zone #2

Zone #3 Set point °F The Set point for Zone #3

Actual °F The Actual temperature for Zone #3

Zone #4 Set point °F The Set point for Zone #4

Actual °F The Actual temperature for Zone #4

Sill Zone Set point °F The Set point for the Sill Zone

Actual °F The Actual temperature for the Sill zone

Fresh Air Set point °F The Set point for the Fresh Air Zone

Actual °F The Actual temperature for Fresh Air Zone

Supply Damper % Fresh Air Supply Damper opening

Exhaust Damper % Exhaust Air Damper opening

Conveyor Parameters

Radiant fpm Conveyor Speed in Zone #1 & #2

Stabilization fpm Conveyor Speed in Zone #3

Bake fpm Conveyor Speed in Zone #4

Table 3.1: ACRF Oven & Conveyor Parameters

The required cure parameters for any particular coating are outlined by the 

supplier o f the coating based on the chemistry o f the coating. The cure parameters are in 

general of the form of “t minutes at x metal temperature” . Figure 3.3 illustrates a typical 

cure window for a coating. Although the paint supplier has deemed 20 minutes at 285°F 

as the optimal parameters, any point within the cure window provides an acceptable cure. 

Generally, each different coating chemistry has its own distinct cure window.
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Figure 3.3: A Typical Paint Cure Window

The metal temperature o f a vehicle, or effectively the cure of a coating, is 

measured using temperature thermocouples placed on the surface of a vehicle (see Figure 

3.4). The thermocouples are connected to a transducer interface and the data is stored in a 

memory pack for downloading to a PC for analysis once the vehicle has exited the oven. 

The ACRF also uses a proprietary calculated value called the DataPaq Value (DPV) 

[Dat98] as a measure o f cure.

DPV  = f{MetalTemperature,Time)

Note that this thermocouple mechanism is not run on every vehicle. Generally it is 

setting up oven parameters or verification, and is run on several units per day. In an 

automotive assembly plant the same vehicles generally run through the same ovens
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continuously, every production day and the verification o f the cure is required only 

minimally. At the ACRF, the oven conditions and vehicles are continuously changing 

due to the nature o f the research and development activities being conducted. As can be 

seen from Table 3.1 there are a variety of parameters that must be adjusted, and the added 

parameter o f different vehicle styles is also essential.

Figure 3.4: Thermocouple Probes

Currently, the ACRF process engineers utilize their past experience in an ad hoc 

manner, in combination with several test thermocouple runs to set the parameters in the 

oven to meet the cure specifications. Depending on many factors, including the geometry 

of the test specimen and complexity of the cure specifications, many trials could be 

required to meet and verify the cure requirements. The process engineers’ past
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experience aspect o f setting up the oven coincides with the CBR model o f reasoning. 

However, the additional thermocouple runs that are often required are costly in terms of 

the resources required to accomplish this task. An automated technique with greater 

accuracy and repeatability than simple human intuition could prove valuable and cost 

effective. The paint curing oven domain discussed above is a dynamic environment with 

temporal entities that provides a good test bed for the CBR system that utilizes dynamic 

Bayesian networks in the retrieval and adaptation of cases. The problem case 

P = [pi’P 2 ’' " ’Pn ) in CBR terminology would be an incomplete set of oven parameters

(often referred to as evidence) from Table 3.1 and the solution case S  = js,,.s2,--- ,sn }

would be a complete set o f oven parameters that achieve the desired cure for the desired 

vehicle.

To model the persistent and dynamic attributes found in an industrial process, this 

thesis proposes using a dynamic Bayesian network representation. The domain expert is 

responsible for designing this network and incorporating both persistent and dynamic 

attributes. In an effort to simplify the representation, attributes can be grouped together to 

form a sort of super node. It should be noted that humans are typically poor at estimating 

probabilities [PeaOO], Therefore, the proposed approach relies mostly on the causal 

knowledge reflected by the structure o f the network rather than on the actual distribution 

and probabilistic estimate. Causal dependencies seem to be much more intuitive than 

numeric probabilities in a DBN. Figure 3.5 illustrates a proposed DBN for the ACRF 

oven process as determined by the ACRF process engineers. The persistent attributes are 

duplicated in each time slice and enclosed at the top o f the network within an ellipse and 

also have arcs (blue) from each time slice. In practice, since the persistent attributes
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® >

Figure 3.5: ACRF Oven Domain DBN
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remain constant, there should be a single set o f persistent attributes with arcs to each time 

slice. The representation used here is a compromise to provide clarity as arcs from each 

persistent attribute to every time slice would confuse the representation. All other nodes 

are dynamic attributes that could possibly change in each time slice. The arc from Metal 

Temp in each time slice represents the temporal link between time slices.
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Chapter 4: CBR in an Industrial Process

A critical aspect o f Bayesian network exact inference methods is the topology o f the 

network, more precisely its connectivity [LD97]. By sectioning the network into sub 

networks and pruning irrelevant sections, it is hoped that a pseudo “divide and conquer” 

strategy can be used on the causal network for reasoning purposes. Although this strategy 

should prove to be more computationally efficient than working with the entire complex 

network, this work prefers to utilize the causal dependencies that these sectioning and 

pruning techniques afford. In [LD97] it is pointed out that, even by using schemes to 

section and prune causal networks, inference in the worst case remains NP-hard, however 

in some practical circumstances the problem becomes reasonable. In this work exact 

inference is not the preferred outcome, but a causally sectioned and pruned network is 

desired to improve retrieval and adaptation. A predicament that arises in real life 

circumstances (industrial processes) is the fact that there often exist both dynamic and 

persistent attributes in the same model and the treatment o f these combinations requires 

different techniques. Persistent attributes tend to be o f greater connectivity, as can be 

seen in the DBN in the examples provided in this work, and are handled separately in a 

statistical error calculation method.

4.1 CBR/DBN Retrieval/Adaptation Algorithm:

In this section, a CBR Retrieval/Adaptation algorithm utilizing a process DBN is 

presented and the main steps reviewed. Then a detailed example utilizing the domain 

outlined in Chapter 3.0 is worked out to provide concrete explanations o f the ideas
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presented in this project. Most CBR systems separate the retrieval and the adaptation (if 

one exists) phases into two distinct and separate processes. In this project we combine 

these two steps into a single phase that utilizes causal knowledge in the form o f a process 

DBN to produce a mechanism to retrieve portions o f previous cases that are relevant to a 

particular section o f the process DBN based on the causal independencies. The 

CBR/DBN Retrieval/Adaptation algorithm is presented in Figure 4.1 and explained 

below.

Step 1 o f the algorithm takes a process description as input and produces a 

dynamic Bayesian network based on causal knowledge or relationships o f the variables 

attributed to the process. For the purposes of this project the causal diagram is created by 

a domain expert. The attributes

c■ 5*' * ? 15 ̂ 1 2?* * *? 1̂/5 ̂ 2 1j^ 2 2 ?" * *j^ 2/5' ' '  ’ ? ? i he case-base are

used to form the process DBN utilizing the causal relationships among the attributes of 

the case-base. Moreover, an expert’s vision o f the causal structure can be different from 

other experts’ ideas and hence this step o f the algorithm could be implemented using a 

learning algorithm for Bayesian networks [SSGM94], However, these algorithms often 

have problematic concerns such as the inability to determine the direction o f causal arcs, 

difficulties in handling continuous variables and weaknesses in dealing with latent 

variables. In summary, the output o f step one is what we call a “process dynamic 

Bayesian network” which details the structure and causality of the process to be reasoned 

about over several time periods.
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1. Causal Knowledge Acquisition: Obtain a dynamic Bayesian belief network 

utilizing expert knowledge of the process.

•  At this time this network is created by the expert.

2. Situation Assessment: Obtain evidence or observations

P  =  \p \ ’P 2 ’" ' ’P n  )■ This evidence is persistent and/or dynamic process 

parameters that would be known or required.

3. Applying Bayesian Network Concepts: Utilizing the evidence from step 2, analyze 

the DBN produced in step 1. Reduce and partition the DBN into sub-networks using 

the ideas outlined in Section 2.2:

a) Prune barren subnets.

b) First-order Markov assumption.

c) D-separation.

4. Case Retrieval -  Dynamic Variables: For each sub-network found in step 3, 

utilizing the known evidence for that particular sub-network and the Multiply Sectioned 

Bayesian Network concept, query the case data for the nearest case obtaining 

unobserved attributes of the particular sub-network. Repeat step 4 for each sub­

network obtained in step 3:

5. Case Retrieval -  Persistent Variables: Calculate the sum of the average variation 

of combinations of persistent variables without evidence and the error of evidence 

variables from retrieved variables. Use the minimum variation plus error to determine 

the persistent variable case.

6. Case Adaptation: Combine the attributes for each sub-network found in step 4 and 

the values from step 5 to determine the completed retrieved/adapted solution

S =  {s1,s2 , - - , s Nc}.

Figure 4.1: CBR/DBN Retrieval/Adaptation Algorithm
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The next step in the algorithm is common to most CBR systems. It is referred to 

as situation assessment and is simply the acquisition o f some known data or observations. 

The data acquired is referred to as the problem case P = {p {, p 2, - - - ,pN ) from which a

complete solution S  = } is to be found. Techniques used in this step range

from the utilization o f known and given data attributes to making skillful assumptions and 

possibly pre-testing methods. On completion o f the situation assessment step, a complete 

set o f evidence or problem case P = \pl, p 2, " ' , P N } is established that will be used as

the start o f the reasoning process.

Thus far, in the previous two steps, a DBN that represents the process to be 

reasoned with and a set of evidence has been obtained. By placing the evidence found in 

step two against the DBN completed in step one and utilizing three well known causal 

and Bayesian network analysis techniques, the DBN can be reduced and partitioned into 

smaller causally independent sub-networks which can be further analyzed individually. 

Initially a reduction of the process DBN can be done utilizing the Barren node concept 

introduced in section 2.2.4. Barren nodes, often referred to as sink nodes, have no 

successors and hence no matter what value is assigned to a barren node, no other node 

can be affected. Hence, barren nodes can simply be eliminated from the DBN structure, 

thereby reducing the size of the entire causal structure. A Markov assumption can be 

used to partition the DBN by utilizing the time limited dependencies. By limiting the size 

o f a subnet to a restricted number o f previous time slices, the DBN can be partitioned. 

Finally, the concept of d-separation is used to partition the network into causally 

independent Subnets. By analyzing the evidence found in step two against the DBN from 

step one, the three d-separation conditions (linear, diverging or converging) can be
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resolved and hence independent portions o f the DBN can be partitioned. This step may 

be performed by the domain expert, but automated determination o f d-separation is 

possible. Hugin Expert Systems (Section 2.4) performed relatively well at d-separation 

and PNL (Section 2.4) showed some promise at automating d-separation inference. In 

summary the output from step three is a set o f causally independent subnets.

In step 4, the evidence from step 2 and the causally independent subnets from step 

three are used to determine the dynamic attributes for the solution case. Available 

evidence from a particular subnet and any evidence for persistent attributes are used to 

query the case-base for the best case(s). Additionally, by utilizing the MSBN concept 

introduced in Section 2.2.5, certain evidence from the previous adjacent subnet is also 

used in the query o f the case-base. Each subnet will have in theory, its own closest case 

for those set o f dynamic attributes in the subnet, which is justified by the independence of 

the subnet given the evidence. Currently, the Euclidean distance metric with a 

normalizing function for different attributes is used to find the closest case for each 

subnet. This procedure is repeated for each subnet, thereby determining the dynamic 

variables for the entire network. The best cases from each subnet will also be used in step 

5 to determine the persistent variables.

The fact that most real life situations involve both persistent and dynamic 

variables is handled in step 5. As can be envisioned from the results in step 4 there could 

be a different set o f values for persistent variables retrieved for each individual subnet. 

This introduces a dilemma as to which values for the persistent variables to use in the 

combined case. The proposed solution to the problem of selecting values for persistent 

variables is based on imposing an additional penalty in the Euclidean distance 

calculations on each combined case whose constituent sub-cases assign conflicting values
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II en is called the error from evidence error metric
II en is called variance from average error metric
II £n is called the total error metric for case n
Let Cj =  ^ i i , d 12 ,---,d 1|,d 21,d 2 2 ,---,d 2 i,- -- ,d t1,d t2 ,---,dh| ]  or Cj =  ja i1,a i2, . . . ,a iNa} be

a case in the case base C

where Nc be the total number of cases.

Na be the number o f attributes in a case. 

yOj are persistent attributes in a case.

be the number o f persistent attributes in a case. 

d w are dynamic attributes in a case.

Nd be the number o f dynamic attributes in a case.

I is the number o f time slices in a case, 

a| are attributes in a case.

Let P =  jp ,, p 2 ,---,Pnp ) be the problem case (evidence)

where Np be the number o f attributes in the problem case.

Let R, =  {r1.r22,- ■ -,rm} be a best case set from sub net i , determined by taking the best m (Combination

Level) cases from sub-net i .

Let Qi =  'jq1,q2,---,qNs}b e  a combination set determined by taking, q! e R ^  e R 2, " - ,q Ns e R Ns

where N s is the number o f sub nets.

Let S =  jQ i,Q 2,- ■ >QNcomb} be the set of all possible combinations of Q-,

where is the total number o f possible combinations 

II Determine the distance from evidence error metric 

for all Cases c, (i =  1 to Nc) 

if (c, e Q ) then

for all Attributes in C, (j =  1 to Na)

e, = e i +  abs(ai j - p j )

II Determine the variance from average error metric 

for all Combinations Q| (i =  1 to )

for all Persistent Attributes p t in Q, (j =  1 to N^,) 

for all Sub nets k =  1 to Ns

Sum( ) = Sum( p ^) + p t from sub net k 

Average ( p l ) = Sum( p t ) I Ns 

©ij =abs(/7 j -  A v e ra g e ^ ) )

II Select the best case in which the persistent values come from 

Select Case Cj with Minimum( )

Figure 4.2: Determination o f Persistent Variables
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to persistent attributes. Basically, the best m (combination level) sub-cases are selected 

from each sub-network and then all possible combinations o f these sub-cases are 

enumerated. In each combination, the mean and variance from the mean o f each 

combination o f variables are calculated and added to the error metric. The combined case 

with the smallest sum of variance and error is selected for the persistent variable 

representation. The algorithm is detailed in Figure 4.2.

In the final step, persistent values found in step five and the dynamic variables 

found in step four are combined to form the complete solution case S = \si, s2, --- , sN ).

These variables can be use in the process to solve the original problem.

4.2 Detailed CBR/DBN Retrieval/Adaptation Example:

This example (referred to as the ACRF topcoat example 1) uses the oven domain 

reviewed in Chapter 3.0, with a real life set o f data (the case-base), consisting o f 137 

separate transducer runs (individual cases) through the oven to produce a case-base.

Starting with step one of the CBR/DBN Retrieval/Adaptation algorithm, Figure 

3.5 illustrates an experts view o f the causal relationships involved in the oven in the form 

of a dynamic Bayesian network.

In the situation assessment step all available evidence from given information, 

observations and assumptions are flushed out as illustrated in Table 4.1. This table was 

generated from the initial problem situation; a vehicle type 0 (SUV) where a temperature 

ramp of 25 °F per minute is required, the oven zone types are fixed and some additional 

realistic assumptions were made.
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Evidence from Table 4.1 is entered into the DBN as illustrated by the shaded 

nodes in Figure 4.4. Next the Bayesian Network analysis tools from Section 2.2 can be 

used to reduce and partition the DBN. First the Ambient Temperature (AmbTemp) node 

at time t = 0 is eliminated because it is a barren node as illustrated by the cross-hatched 

node. By using the d-separation criteria and independence assumptions from [PeaOO], the 

DBN can now be separated into four separate subnets (t = 0, t = 1 and t = 2, t = 3, and t = 

4) because the metal temperature evidence is known for these subnets as illustrated by the 

vertical lines in Figure 4.3.

Variable Evidence Reason

Static Vehicle Type 0 (SUV) O bservations

Dynamic t = 0 Zone Type 0 (not in oven) Entering oven

Ambient Temp 75°F Assumption outside oven

Metal Temp 75°F Assumption outside oven

t = 1 Zone Type 1 (Radiant) Fixed Oven

Conveyor S peed 10 Z1 = Z2 physical limitation, Ramp

t = 2 Zone Type 1 (Radiant) Fixed Oven

Metal Temp 250°F Ramp = 25°/minute

Conveyor S peed 10 Z1 = Z2 physical limitation, Ramp

t = 3 Zone Type 2 (Convection) Fixed Oven

Metal Temp 285°F Cure Window

t = 4 Zone Type 2 (Convection) Fixed Oven

Metal Temp 285°F Cure Window

Conveyor Speed 20 Cure Window

Table 4.1: Evidence for the ACRF Oven Domain
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Figure 4.3: DBN Reduced and Partitioned into Subnets

The next step involves taking each subnet, the persistent evidence, the evidence 

known for that particular subnet and querying the case-base, to retrieve the best case for 

that particular subnet. For this example, utilizing the shaded nodes (evidence) in the 

fourth subnet (VehicleType, ZoneType @ t = 4, ConvSpeed @ t = 4, MetalTemp @ t = 4 

and MetalTemp @ t = 3) a query is made o f the case-base to determine the best case with 

respect to evidence from subnet 4. Note that MetalTemp @ t = 3 is included in the query 

by way of the MSBN concept. This query determines that the best case for Subnet 4 is 

case 30. Hence, the values from case 30 for MetalTemp @ t = 4 (284), ZoneType @ t = 4 

(2), ConvSpeed @ t = 4 (18.9), SillAct @ t = 4 (360), ZoneAct @ t = 4 (300), ZoneSet @ 

t = 4 (300), FAAct @ t = 4 (301) and AmbTemp @ t = 4 (295) will be used for solution 

values for subnet 4. The essential values here would be the zone set point is 300 and the 

conveyor speed is 18.9. This procedure is repeated for each subnet, thereby obtaining a 

best case for each subnet and hence values for all dynamic variables in the dynamic 

Bayesian network model. Note that for this example, the best case for subnet 1 is case 98,
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Test: ACRF Oven Domain Comments: Common DBN example m = 10

Convential CBR w/ Euclidean
CBR/DBN Method Distance

SubNetl A A

Attribute Evidence Time Barren 1 2 Case Value Evidence Case Value Evidence

P e rs is te n t
RunID None All No N/A N/A 120 121 -- 65 66 -
RunDate None All No N/A N/A 120 11/18/2003 - 65 10/4/2002 -
VehicleType 0 All No N/A N/A 120 0 65 7 7

SupplyDamper None All No N/A N/A 120 30 - 65 30 -
ExhaustDamper None All No N/A N/A 120 75 - 65 75 -
FASetPoint None All No N/A N/A 120 290 - 65 300 -
SillSetPoint None All No N/A N/A 120 300 - 65 380 -

Z oneO
ZoneType 0 t = 0 No 0 - 98 0 0 65 0 0
ConveyorSpeed None t = 0 No 0 - 98 12.6 - 65 11.6 --
FAActual None t = 0 No 0 - 98 180 -- 65 290
SillActual None t =  0 No 0 - 98 330 -- 65 450 --
ZoneSet None t = 0 No 0 - 98 75 - 65 75 -

ZoneActual None t = 0 No 0 - 98 75 -- 65 75 -
AmbientTemp 75 t = 0 Yes 0 - 98 78 m M 65 80 5
MetalTemp 75 t = 0 No 0 1 98 75 matm 65 78 3

Z one 1
ZoneType 1 t=  1 No 1 - 112 1 ,o _ 65 1 0
ConveyorSpeed 10 t=  1 No 1 - 112 9.8 1 ^ m g « 65 10.7 0.7
FAActual None t = 1 No 1 - 112 250 65 290 -
SillActual None t = 1 No 1 - 112 300 - 65 450 --
ZoneSet None t = 1 No 1 - 112 265 - 65 350 --
ZoneActual None t = 1 No 1 - 112 266 - 65 350 --
AmbientTemp None t = 1 No 1 - 112 255 - 65 287 --
MetalTemp None t = 1 No 1 - 112 167 -- 65 193 --

Z one 2
ZoneType 1 t = 2 No 1 - 112 1 0 65 1 0
ConveyorSpeed 10 t = 2 No 1 - 112 9.8 65 10.7 0.7
FAActual None t = 2 No 1 - 112 250 - 65 290 -
SillActual None t = 2 No 1 112 300 - 65 450 -
ZoneSet None t = 2 No 1 - 112 295 - 65 340
ZoneActual None t = 2 No 1 - 112 295 - 65 340 -
AmbientTemp None t = 2 No 1 - 112 289 -- 65 302 --
MetalTemp 250 t = 2 No 1 2 112 254 65 255 5

Z one 3
ZoneType 2 t = 3 No 2 - 112 2 0 65 2 0
ConveyorSpeed None t = 3 No 2 - 112 36.1 - 65 16.4 -
FAActual None t = 3 No 2 - 112 250 - 65 290 -
SillActual None t = 3 No 2 - 112 300 - 65 450 --
ZoneSet None t = 3 No 2 - 112 295 - 65 305 --
ZoneActual None t =  3 No 2 - 112 297 - 65 308 -

AmbientTemp None t =  3 No 2 - 112 292 -- 65 300
MetalTemp 285 t =  3 No 2 3 112 283 65 281 4

Zone 4
ZoneType 2 t = 4 No 3 - 30 2 0 65 2 0
ConveyorSpeed 20 t = 4 No 3 - 30 18.9 1.1 65 19 m m
FAActual None t = 4 No 3 - 30 300 - 65 290 --
SillActual None t = 4 No 3 - 30 360 - 65 450 --
ZoneSet None t = 4 No 3 - 30 300 -- 65 305 --
ZoneActual None t = 4 No 3 - 30 301 - 65 305 --
AmbientTemp None t = 4 No 3 - 30 295 - 65 305 -
MetalTemp 285 t = 4 No 3 - 30 284 65 291 6

8 1

Dynamic Timing: 0.00000 sec 0.01001 sec
Persistent Timing: 0.20029 sec

Table 4.2: ACRF Topcoat Oven Example 1 -  Complete Results
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for subnet 2 is 112 and for subnet 3 is 112. Table 4.2 contains the complete results from 

this example problem.

The next concern is the determination o f the persistent parameters, o f which we 

could possibly have several sets (as many sets as there are subnets). There will be a set of 

persistent parameters for each subnet so it can be determined which case the persistent 

parameters should be taken from. Utilizing the algorithm in Figure 4.2, with 

combination level m = 10, case 27 has the minimum error metric and hence the persistent 

values for SillSet = 280, FASet = 250, SD = 44, ED = 0 and VehicleType = 0 are used in 

the final solution.

The final step is to combine all the values found in step 4 and step 5 to form a 

complete solution case (see Table 4.2).

For comparison purposes throughout this work, a conventional CBR strategy that 

retrieves a single case and employs the same Euclidean distance metric as the CBR/DBN 

Retrieval/Adaptation algorithm will be utilized. The last three columns o f Table 4.2 

represent the results o f the conventional CBR strategy; note the single case that is 

retrieved and the values for that single case. Similar columns exist for the CBR/DBN 

Retrieval/Adaptation algorithm; note the different case numbers for each subnet. O f 

particular interest are the columns labeled “A evidence” which calculate the difference of 

the retrieved value from the evidence as determined in step two o f the CBR/DBN 

Retrieval/Adaptation algorithm. As an evaluation technique, the two “A evidence” 

columns can be compared with the smaller of the two “A evidence” values which 

indicates the superior o f these two values. Note that the superior value for each attribute 

with evidence is shaded. Under this evaluation technique the CBR/DBN 

Retrieval/Adaptation algorithm does quite well as indicated by the shaded cells indicating

University o f Windsor, 2005 54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4

the better value versus evidence, although at an efficiency penalty o f 0.20029 seconds of 

additional computation time. This method o f evaluation will be used for further examples 

presented in Chapter 5.

As further validation o f the CBR/DBN Retrieval/Adaptation approach, a 

thermocouple run was processed through the ACRF oven with the solution parameters 

from this example for verification. This method o f substantiation is not preferred because 

of the considerable cost, but currently it is the only method available. Figure 4.4 

represents the results o f the thermocouple run in chart form. This type o f chart layout with 

Temperature along the “Y” axis and Time along the “X” axis is typically used in 

evaluating thermocouple runs. The two lines on the chart show the temperature as the 

vehicle passes through the oven, one is metal temperature whereas the other is ambient 

temperature. The data from Table 4.3 is also used in evaluating cure properties o f the 

oven. From the table it can determined that the metal temperature was at or above 285°F 

for 21.83 minutes (the initial problem stated 285°F for 20 minutes) and the ramp rate was 

27°F/minute (again the initial problem stated 25°F/minute) . These results are considered 

extremely good, especially considering that the current method o f determining the set 

points is based solely on the experience of a domain expert (or process engineer) as well 

as many trial and error attempts.

Time Above Time To Reach Slope
Probe 285.0°F (mm:ss.t) 285.0°F (mmrss.t) (°F/sec)

#1 (°F) Ambient 26:40.0 09:00.0 2.14

#2 (°F) Metal 21:50.0 13:05.0 0.45

Table 4.3: Thermocouple Results
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P a q f ile : T e s t  1 ,  P r o c e s s :  I M I e d  [ F ull Z o o m  ]

Probe Key
- 1 1  A n b e n t  

—  * 2  M e ta l T e m p e r a tu r e

S>
Q.
E

1 l 1 1 1 i 1 1 ■ i ■ ' 1 i 1 1 1 i 1 1 1 i ■ 1 1 I 1 1 1 i ■ ' 1 I
- 1 & 0 0 . 0  0 0 :0 0 .0  1 0 :0 0 . 0  2 0 :0 0 .0  3 0 :0 0 . 0  4 0 :0 0 .0  5 0 :0 0 . 0  6Q O O .O  7 0 :0 0 .0

fine (mm:ss.t)

Figure 4.4: Temperature Chart

4.3 Complexity of the CBR/DBN Retrieval/Adaptation Algorithm:

The application (see Appendix A) developed to implement sections of the 

CBR/DBN Retrieval Adaptation algorithm initially inputs the entire case-base into RAM. 

Although this type o f input practice could possibly use a large amount of memory, 

depending on the number of cases and the number of attributes in each case, the 

difficulties in obtaining a great number o f cases in an industrial environment could justify 

this action. The bottle neck o f the algorithm as implement is Step 5, where the 

Combination Level has a significant effect on complexity. The yet to be implemented 

steps 1 and 3 also contain computationally complex algorithmics, but could be assisted by 

some domain expert intervention, such as defining some obvious directed edges. Each 

step in the CBR/DBN Retrieval/Adaptation algorithm will now be analyzed for time 

complexity, that is the worst case computation time.
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4.3.1 Step 1: Causal Knowledge Acquisition

Currently, the causal knowledge acquisition step is being completed by a domain 

expert in which case exact time complexity is not scientifically determinable. However, 

it is possible in theory to determine a BN or DBN from the data or in this situation the 

case-base. There are several researched Bayesian network learning algorithms including 

Recursive Autonomy Identification (RAI) [YL05], Inductive Causality (IC) [PeaOO], 

Three Phase Dependency Analysis (TPDA) [CBL97] and the PC Algorithm [SSGM94], 

In Tetrad, the Build module uses the “PC Algorithm” to create a Bayesian network from 

data. This algorithm is repeated in Figure 4.5 and analyzed next. In step A, a complete 

undirected graph is formed by taking each vertex in the set o f vertices and connecting it to 

every other vertex. This takes in worst caseo(iVa2), where N a is the number o f attributes 

or vertices in the sample data. In step B, adjacencies are eliminated by finding 

conditional independence relations in the data in which the worst case is o ( a o3).

Implied in this step is the determination o f independence which is generally done by 

finding the covariance’s o f the input data.

Covariance = cr.. = p a ia j -  E[(Xi -  p t \ x ; -  / / J

The time taken to complete the covariance operation is o {n c2 \  where N c is the number 

o f sets o f data (cases) to be inputted. Step C and D parses though the set of adjacencies 

found in step A so the worst case complexity is o { Na2 )̂ for each step. Reviewing the 

entire algorithm, worst case appears to be o ( a o3). By defining some obvious edges a
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decrease in complexity could possibly be realized in the Tetrad program. In general, 

learning a Bayesian network from data is not a trivial task, most researchers considers it 

an NP-hard problem [CHM04] although [CBL97] appears to have an algorithm with a 

time complexity o f o [n  2). In section 2.6 it was also noted that from experience the

Build module in Tetrad often has problems with determining the direction of the arcs in 

real world problems.

Let Adjacencies(C,a) be the set o f  vertices adjacent to a in a graph C. (In the algorithm, the graph C
is continually updated, so Adjacencies(C,a) is constantly changing as the algorithm progresses

A. Form the complete undirected graph on the vertex set V.
B. n = 0.

repeat
repeat

select an ordered pair o f  variables x and y that are adjacent in C such that
Adjacencies(C,x)\{y} has cardinality greater than or equal to n, and a subset
S o f  Adjacencies(C,x)\{y} o f cardinality n, and if  x and y are independent
given S delete edge x -  y from C and record S in Sepset(x,y) and Sepset(y,x)

until all ordered pairs o f  adjacent variables x and y such that Adjacencies(C,x)\{y}
has cardinality greater than or equal to n and all subsets
S o f Adjacencies(C,x)\{y} o f cardinality n have been tested for independence;
n = n + 1

until for each ordered pair o f adjacent vertices x,y, Adjacencies(C,x)\{y} is o f  cardinality less
than n.

C. For each triple o f  vertices x.y.z such that the pair x,y and the pair y,z are each adjacent in
but the pair x, z are not adjacent in C, orient x -  y -  z are x —>y—>z if  and only if  y is not in
Sepset(x,z).

D. repeat
1. if  x—>y, y and z are adjacent, x and z are not adjacent, and there is no arrowhead at
y, then orient y -  z as y—>z.
2. if  there is a directed path from x to y, and an edge between x and y, then orient x -
y as x—>y.

until no more edges can be oriented.

Figure 4.5: The PC Algorithm, repeated from [SSGM94]

4.3.2 Step 2: Situation Assessment

Since situation assessment in step 2 is a manual operation, it is also difficult to 

determine precisely. The time taken is highly dependent on the domain, knowledge of the
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domain and availability o f data for the domain. It should be noted that situation 

assessment is a common process for most CBR systems and hence this time would be 

included in most CBR systems.

4.3.3 Step 3: Applying Bayesian Network Concepts

In [GVP90] three algorithms are presented for the determination o f all 

independencies implied by a Bayesian network. From these algorithms the time required 

for the best algorithm (#1) to determine the all independencies is O ^ l ) ,  where E  is the 

number o f edges in a network.

4.3.4 Step 4: Case Retrieval -  Dynamic Variables

Figure 4.6 presents an analysis o f step 4 o f the CBR/DBN Retrieval/Adaptation 

algorithm. From line (1) the time to sort the cases is N c log N c , where N c is the number

o f cases if  a good sort algorithm (e.g. Merge Sort) is used [BB96] [LRSC01], It should 

be noted that the algorithm used in the application is not quite that efficient. The 

dominant terms will be the number of cases N c and the number o f subnets N s which is

what could be expected when the case-base is searched once for each subnet. A slight 

increase in efficiency could be obtained by searching the case-base only once and finding 

the best case in each subnet in this single search. This introduces some slight 

programmatic concerns, but these could be handled in a relevantly straightforward 

manner. As can be seen from Figure 4.6 the Dynamic attribute determination portion of 

the CBR/DBN Retrieval/Adaptation algorithm is linear in the number o f cases and 

number of subnets. From the example presented in section 4.1 the time to determine the
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dynamic attributes is close to zero for a reasonable number o f cases. The zero time seems 

to come from the inability to accurately measure computation time at such low time 

intervals.

N c = Nnumber o f cases in the case - base. 

N s = N um bderof subnets.

A'p = Number of persistent attributes.

N d = Number o f dynamic attributes.

Nr
V  P ersisten t A ttribute  D istance D ynam ic  A ttribu te  D istance J

+ (NC * N c) + {Nc *{Nc - 1  ) * N S)
R ank  and Sort Cases

= N cN s (n p + N d + 1)+ Time to Sort Cases 

= N cN s(Np + N d + \ ) + N clog?fc 

( 1)

From [BB96] [LRSC01] assuming the best sort algorithm is used 

= 0 ( N cN s) since N c »  N  & N c »  N d

Figure 4.6: Analysis o f  Step 4 (Dynamic Attribute Determination)

4.3.5 Step 5: Case Retrieval -  Persistent Variables

The number o f best cases from each subnet or combination level m to be used to 

determine the best persistent case can have a major effect on the efficiency o f the 

CBR/DBN Retrieval/Adaptation algorithm. The determination of the persistent attributes 

as presented in this work is a major deviation from typical Euclidean distance retrieval
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type processes and is an added complexity that should be evaluated. When looking at the 

complexity o f step 5 (Figure 4.7) things are much worse as expected and step 5 becomes 

the performance bottle-neck. Determining all combinations o f m persistent attributes 

from each subnet becomes the efficiency quandary. From line (2) in Figure 4.7 it can be 

seen that the complexity o f the persistent attribute determination is o{mNp) or 

exponential in N  . The number of persistent attributes N p is generally fixed for each

domain and this value is generally small, less than the total number o f cases or at least not 

infinite. This leaves the determination o f m which can be any value from one to the total 

number o f cases in the case-base as the significant process in the algorithm and hence 

care must be taken when choosing m . A experimental time analysis o f m that leads to a 

reasonable balance between accuracy and time is presented in the next chapter. The 

space complexity could also become unbearable if  the results o f all combinations were 

saved, so only the best case to-date information is saved.

m(NsN p + N d + N , N p)*m(NsN p + N d + N sN p)*... N p times

= mNp or o[m ' ' ) Exponential time (2)

Figure 4.7: Analysis o f Step 5 (Persistent Attribute Determination)

4.3.6 Step 6: Case Adaptation

The time complexity for this adaptation step is negligible as it is somewhat o f a 

formality to combine the dynamic and persistent attributes into a single case.
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4.4 Euclidean Distance Metric:

This project exclusively uses a Euclidean distance metric [Ray99] to evaluate the 

closeness o f a solution. The Euclidean distance metric is common and relatively simple 

in that the distance between two attributes o f the same type is simply the difference 

between these two attributes.

A problem arises when there is an attempt to find the distance between cases with 

varying types o f attributes, for example discrete variables, continuous variables with 

varying ranges, Boolean variables or dates. The distance between a discrete attribute with 

range 0 to 5 and a continuous attribute with range 0 to 500 can be great and perhaps 

screen the influence o f the discrete variable. To alleviate this problem, all attributes are 

normalized to 100 (with Boolean being either 0 or 50) and a weight (0 to 10) is assigned 

to the attribute. The weight is assigned by the domain expert as a gauge of the influence 

o f the attribute on the process. The Euclidean distance metric is explained here for 

completeness, although it has no significance on the actual CBR/DBN 

Retrieval/Adaptation algorithm and in theory any distance metric or closeness criteria can 

be used.
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Chapter 5: Further Evaluation and Experimental Results

In this section, the CBR/DBN Retrieval/Adaptation algorithm will be evaluated further by 

providing several additional examples from the ACRF oven test domain and some 

addition dynamic environments found in research literature. As illustrated in these 

examples, the CBR/DBN Retrieval/Adaptation algorithm is a feasible option for the 

retrieval and adaptation components in a case-based reasoning environment. It should be 

noted that all testing for this thesis was accomplished on a Dell Optiplex GX720 with a 

Pentium 4 2.8 GHz processor and 512 MB RAM.

5.1 Example 2 - ACRF Oven Domain, Powder Cure:

To solidify the ideas presented in Section 4.1, this section presents another real 

life example from the ACRF oven domain. The realistic example presented in section 4.1 

was essentially a topcoat (basecoat and clearcoat) cure specification. In this example a 

powder primer cure is presented to indicate the robustness o f the approach. Generally 

powder primer and topcoat cure specifications are at opposite ends o f the spectrum as far 

a cure windows go.

The statement of the problem is as follows: given a paint cure window similar to 

Figure 3.3 that indicates that the optimal cure is 20 minutes @ 340°F for an SUV 

(discrete type = 1). This is a practical problem stated in a realistic manner. To add 

robustness to this example, several additional observations will be presented. It is 

required that the exhaust damper be closed (ED = 0%) to keep positive pressure at the 

oven entrance and exit. Additionally, a minimum time is required in the radiant zones
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(maximum speed in the radiant zones is 12.6 fit/min). After the first radiant zone the 

metal temperature should be 175°F and 250°F after the second radiant zone.

Since the domain is the same as section 4.1, the DBN presented in Figure 4.3 will 

be used as the initial DBN model. Step 2 o f the CBR/DBN Retrieval/Adaptation 

algorithm is summarized in Table 5.1. Figure 5.1 illustrates the results o f step 3 o f the 

CBR/DBN Retrieval/Adaptation algorithm with the subnets separated by the vertical lines 

(five subnets for this example). Table 5.2 presents the results o f the entire CBR/DBN 

Retrieval/Adaptation algorithm in a similar manner as in the previous example. Once 

again the algorithm does quite well as can be seen from the shaded cells indicating that a 

particular algorithm is improved over the other for that piece of evidence.

V ariab le E v id en ce R ea so n

P e rs is te n t E x h a u s t D am p e r 0 O b se rv a tio n s

Vehicle Type 0 (SUV) O bservations

Dynamic t = 0 Zone Type 0 (not in oven) Entering oven

Ambient Temp 75°F Assumption outside oven

Metal Temp 75°F Assumption outside oven

t = 1 Zone Type 1 (Radiant) Fixed Oven

Metal Temp 175°F Observations

Conveyor Speed 12.6 Observations - Maximum Speed

t = 2 Zone Type 1 (Radiant) Fixed Oven

Metal Temp 275°F O bservations

Conveyor Speed 12.6 Observations - Maximum Speed

t = 3 Zone Type 2 (Convection) Fixed Oven

Metal Temp 340°F Cure Window

t = 4 Zone Type 2 (Convection) Fixed Oven

Metal Temp 340 Cure Window

Conveyor Speed 20 Cure Window

Table 5.1: Example 2 - Evidence (Step 2)
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Figure 5.1: Example 2 - DBN reduced and partitioned into Subnets (Step 3)
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ACRF Domain Comments: Powder Coat Example 02 m = 10Test:

CBR w/ NN DistanceCBR/DBN Method 
SubNett

2 Case Case ValueValueAttribute Evidence Time Barren Evidence Evidence

P e rs is te n t
N/A N/ARunID None

12 / 11/2001 10/4/2002N/A N/ARunDate None
N/A N / AVehideType
N/A N/ASupplyDamper None
N/A N / AExhaustDamper

310N/A N/A 300FASetPoint None
N/A N/A 360 290SillSetPoint None

Z one 0
ZoneType

12.6 16.4ConveyorSpeed None
290300FAActual None
450243SillActual None

Z o n e S e t None
ZoneActual None
AmbientTemp Yes
MetalTemp

Z one 1
ZoneType

11.513.4ConveyorSpeed 12.6
290300FAActual None

343 450SillActual None
350330ZoneSet

ZoneActual
None

350329None
240 287NoneAmbientTemp
177 193175MetalTemp

Z one 2
ZoneType

11.5ConveyorSpeed 12.6 13.4
290None 300FAActual

380 450SillActual None
340ZoneSet 420None
340420NoneZoneActual

312 302AmbientTemp None
281275MetalTemp

Z one 3
ZoneType

56.4 49.2ConveyorSpeed None
290290FAActual None
450450SillActual None
305ZoneSet 305None

308 308ZoneActual None
300 300AmbientTemp None
281 281340MetalTemp

Z one 4
ZoneType

2.7 19.7ConveyorSpeed 22.7
290290FAActual None
450450SillActual None
305305ZoneSet None
305305ZoneActual None
305305AmbientTemp None

291 291340MetalTemp

0.00000 sec0.00000 sec 
0.25036 sec

Dynamic Timing: 
Persistent Timing:

Table 5.2: Example 2 - Results
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5.2 Example 3 -  ACRF Oven Domain w/ Tetrad Generated Data:

In this example, the data for the case-base was generated from the structure o f the 

dynamic Bayesian network using the Tetrad program introduced earlier. The ACRF oven 

domain DBN will be used as in the previous two examples. The DBN in Tetrad format is 

illustrated in Appendix C. By generating data using Tetrad, the causal relationships 

inherent in the case-base are maintained and hence the rationale behind this project is 

preserved. The data in the case-base itself does not make sense in the terms of the ACRF 

oven domain but the causal nature o f the data is what is of interest. The evidence for this 

example was selected arbitrarily with the only restrictions being keeping the evidence 

between the minimum and maximum values for each attribute. The evidence is presented 

in Table 5.3 and the results are shown in Table 5.4.

V ariable E v id en ce

Static Vehicle Type 16

Dynamic t = 0 Zone Type 15

Conveyor Speed 20

Ambient Temp 1

Metal Temp 6

t=  1 Zone Type 17

Conveyor Speed 17

t = 2 ZoneT ype 17

Conveyor S peed 17

Metal Temp 11

t = 3 Zone Type 18

Metal Temp 16

t = 4 Zone Type 20

Metal Temp 17

Conveyor Speed 24

Table 5.3: ACRF Oven w/ Tetrad Data Example 3 - Evidence (Step 2)
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Test: ACRF Oven Com m ents: Tetrad Data Ex03 m = 10

Attribute Evidence Time Barren

CBR/DBN Method 

SubNeti
1 2 Case Value

A
Evidence

CB Rw /NN Distance
A

Case Value Evidence

Persistent
RunID None All No N/A N/A 191 192 - 142 141 -

RunDate None All No N/A N/A 191 7/10/2005 - 142 5/21/2005 -

VehideType 16.6 All No N/A N/A 191 16.7 142 19.7 3.1

SupplyDamper None All No N/A N/A 191 18.1 - 142 18.4 -
ExhaustDamper None All No N/A N/A 191 18.3 - 142 18.3 -
FASetPoint None All No N/A N/A 191 18.2 - 142 18.7 -

SillSetPoint None All No N/A N/A 191 20.0 - 142 19.3 -

Zone 0
ZoneType 15.0 t = 0 No 0 103 17.7 142 18.4 3.4

ConveyorSpeed 20.0 t = 0 No 0 103 19.9 i S H f l 142 20.7 0.7

FAActual None t = 0 No 0 103 17.6 - 142 17.5 -

SillActual None t = 0 No 0 103 18.2 - 142 19.1 -

ZoneSet None t = 0 No 0 103 16.7 - 142 17.9 -

ZoneActual None t = 0 No 0 103 15.1 - 142 16.4

AmbientTemp 1.0 t  =  0 Yes 0 103 1.0 0.0 142 1.0 0.0
MetafTemp 6.0 t  =  0 No 0 1 103 11.9 ■ S 142 18.9 12.9

Zone 1
ZoneType 17.0 t = 1 No 1 197 18.5 1.5 142 17.2 ^ -  ’.'A/2 •
ConveyorSpeed 17.0 t = 1 No 1 197 16.9 0.1 142 17.1 0.1
FAActual None t = 1 No 1 197 21.8 - 142 17.2 -

SillActual None t = 1 No 1 197 18.3 - 142 20.0 -

ZoneSet None t=1 No 1 197 19.7 - 142 19.6 -

ZoneActual None t=1 No 1 197 24.5 - 142 18.4 -

AmbientTemp None t= 1 No 1 197 1.0 - 142 1.0
MetafTemp None t = 1 No 1 2 197 11.5 - 142 16.4 --

Zone 2
ZoneType 17.0 t = 2 No 2 197 15.8 142 18.4 1.4

ConveyorSpeed 17.0 t = 2 No 2 197 18.1 1.1 142 18.0 K i J u s

FAActual None t = 2 No 2 197 22.6 - 142 17.4 -

SillActual None t = 2 No 2 197 19.6 - 142 20.4 -

ZoneSet None t = 2 No 2 197 18.1 - 142 18.8 -

ZoneActual None t = 2 No 2 197 20.2 - 142 18.3 -

AmbientTemp None t  = 2 No 2 197 1.0 - 142 1.0 -
MetalTemp 11.0 t  = 2 No 2 3 197 15.3 .. -- A e  • 142 19.3 8.3

Zone 3
ZoneType 18.0 t = 3 No 3 185 18.2 142 18.5 0.5

ConveyorSpeed None t = 3 No 3 185 19.6 - 142 18.7 -
FAActual None t = 3 No 3 185 23.4 - 142 19.1 -
SillActual None t = 3 No 3 185 17.8 - 142 19.9

ZoneSet None t = 3 No 3 185 16.8 - 142 17.6

ZoneActual None t = 3 No 3 185 16.9 - 142 17.3 -
AmbientTemp None t = 3 No 3 185 1.0 - 142 1.0

MetafTemp 16.0 t = 3 No 3 4  185 9.5 6.5 142 17.1 fJ M a is B l

Zone 4
ZoneType 20.0 t = 4 No 4 150 19.6 Mam. 142 19.5 0.5

ConveyorSpeed 17.0 t = 4 No 4 150 17.2 i S l H l S f 142 17.9 0.9

FAActual None t = 4 No 4 150 17.3 - 142 18.8 -

SillActual None t = 4 No 4 150 17.0 - 142 20.7

ZoneSet None t = 4 No 4 150 19.1 - 142 18.0 -
ZoneActual None t = 4 No 4 150 19.9 - 142 17.2 -
AmbientTemp None t = 4 No 4 150 1.0 - 142 1.0 -
MetafTemp 24.0 t = 4 No 4 150 15.5 8.5 142 16.6 7.4 ■

9 4

Dynamic Timing: 0.00000 sec 0.00000 sec
Persistent Timing: 0.17015 sec

Table 5.4: ACRF Oven w/ Tetrad Data Example 3 - Results
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Again, when reviewing the “ A from evidence” column for the CBR/DBN 

Retrieval/Adaptation algorithm versus the Standard CBR method, the CBR/DBN 

Retrieval/Adaptation algorithm does extremely well (9 grey cells vs. 4 cells). The 

persistent attribute evidence is also improved CBR/DBN Retrieval/Adaptation algorithm 

giving some credence for step 5.

5.3 Example 4 -  Mildew DBN w/ Tetrad Generated Data:

In this fourth example, a DBN adapted from [Kja95] will be used for step 1 of the 

CBR/DBN Retrieval/Adaptation algorithm. In [Kja95] the sample DBN is used to 

estimate the amount o f dry matter in a field o f wheat over a specific period o f time. This 

domain was chosen because o f the presence o f dynamic and persistent variables, however 

several additional persistent attributes have been added for illustration purposes. Again, 

Tetrad is used to create the case-base (200 cases) for this DBN so the causal relationships 

between attributes are maintained.

Figure 5.2 illustrates the “Dry Matter” DBN after step 3 o f the CBR/DBN 

Retrieval Adaptation algorithm. The evidence variables were chosen fairly randomly 

with the exception that some degree o f d-separation was sought and the evidence is within 

the minimum and maximum limits o f that particular attribute. Table 5.5 presents the 

complete results o f the CBR/DBN Retrieval Adaptation algorithm in a similar manner as 

the previous examples. When reviewing the “ A from evidence” column for the 

CBR/DBN Retrieval/Adaptation algorithm versus the Standard CBR method the 

CBR/DBN Retrieval/Adaptation algorithm does extremely well ( 9 grey cells vs. 4 cells).
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Fungi Fungi FungiFungi

Mildew MidewMildew

L . A . I .

Predp Predp PredpPredp

Micrc MicroMicro

Temp Temp TempTemp

Photo Photo PhotoPhoto

Solar SolarSolar

Dry A Dry ADry A Dry A DryB

D r y M DryMDryM DryM

S u b n e tS u b n e t S u b n e t

Figure 5.2: Mildew Example 4 - DBN after Step 3 (Adapted from [Kja95])
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Test: Miklew Comments: Tetrad Data m = 10

Convential CBR w/ Euclidean
CBR/DBN Method Distance

SubNetl A A
Attribute Evidence Time Barren 1 2 Case Value Evidence Case Value Evidence

P ers is ten t
da None All No N/A N/A 59 47.1 - 107 45.1 -
db None All No N/A N/A 59 46.4 - 107 46.1 -
dm 60.7 All No N/A N/A 59 60.1 107 57.3 3.4

Time t = 0
fu 48.8 t = 0 No 0 1 31 47.0 mm 107 44.2 4.6
ml None t = 0 No 0 1 31 45.4 107 49.1 --
mi 62.3 t = 0 No 0 1 31 59.7 waam 107 51.2 11.1
la None t = 0 No 0 1 31 48.6 107 49.4 -
ph None t = 0 No 0 - 31 56.1 - 107 51.6 -

pr None t = 0 No 0 - 31 145.3 - 107 46.8 --
te None t = 0 No 0 - 31 49.8 - 107 45.5 -
so 42.1 t = 0 No 0 - 31 44.2 107 46.0 3.9

Time t  = 1
fu 49.3 t=1 No 1 - 189 46.4 2.9 107 46.8 w a n
ml 45.3 t=1 No 1 - 189 46.5 107 54.2 8.9 |
mi 52.1 t=1 No 1 - 189 50.7 107 47.0 5-1
la 51.3 t = 1 No 1 - 189 46.9 4.4 107 48.1 m a n
ph None t = 1 No 1 - 189 48.2 - 107 48.9

pr None t= 1 No 1 - 189 45.9 - 107 45.8 -
te None t = 1 No 1 - 189 46.3 - 107 45.5 --
so 49.2 t=1 No 1 - 189 46.0 3.2 107 46.8 H I

Time t  = 2
fu 49.9 t = 2 No 1 2 189 44.8 5.1 107 44.8 5.1
ml None t = 2 No 1 2 189 47.9 - 107 60.1 -
mi 57.9 t = 2 No 1 2 189 46.5 11.4 107 57.2
la None t = 2 No 1 2 189 45.1 - 107 51.3 --
ph None t = 2 No 1 - 189 44.3 - 107 46.7 -

pr None t = 2 No 1 - 189 42.5 - 107 49.5 -
te None t = 2 No 1 - 189 47.8 - 107 44.6 -
so 40.9 t = 2 No 1 - 189 41.0 107 39.8 1.1

Time t  = 3
fu None t = 3 No 2 - 107 0.0 - 107 0.0 -

ml 65.3 t =  3 No 2 - 107 65.1 0.2 107 65.1 0.2
mi 55.6 t = 3 No 2 - 107 48.1 7.5 107 48.1 7.5
la 43.2 t = 3 No 2 - 107 47.2 4.0 107 47.2 4.0
ph None t = 3 No 2 - 107 46.0 - 107 46.0

pr None t = 3 No 2 - 107 44.1 - 107 44.1 --
te None t = 3 No 2 - 107 44.3 - 107 44.3 -
so 47.6 t = 3 No 2 - 107 48.3 0.7 107 48.3 0.7

7 4
Dynamic Timing: 0.00000 sec 0.00000 sec

Persistent Timing: 0.19027 sec

Table 5.5: Mildew Example 4 - Results

5.4 Example 5 -  BATMobile Sensor DBN w/ Tetrad Generated Data:

In the final example, an adaptation o f the BATMobile’s sensory DBN [FHKR95] 

will be used as the starting DBN. In this work autonomous control of vehicles is
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researched using a foundation based on dynamic probabilistic networks. The DBN used 

is adapted again by adding additional persistent attributes and only a single car is 

considered. Tetrad is used to create the case-base.

Figure 5.3 illustrates the “BATmobile” DBN after step 3 o f the CBR/DBN 

Retrieval Adaptation algorithm. Evidence was chosen in a similar manner as Example 4.

S u b n e t  0 S u b n e t  1

Humid

Figure 5.3: Batmobile Example 5 - DBN after Step 3 (Adapted from [FHKR95])

Table 5.6 presents the complete results o f the CBR/DBN Retrieval Adaptation algorithm 

in a similar manner as the previous examples. When reviewing the “ A from evidence”
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Test: BatMobile Sensor Com ments: Tetrad Data m = 10

A ttr ib u te E v id e n c e T im e B a r r e n

C B R /D B N  M e th o d  
S u b N e t l

1 2  C a s e V a lu e
A

Evidence

C o n v e n t i a l  C B R  w / E u c l id e a n  
D is t a n c e

A
C a s e  V a lu e  Evidence

P e rs is ten t
te 52.6 All No N/A N/A 142 53.8 48 58 5.4
hu None All No N/A N/A 142 49.7 48 54.4 --

pr None All No N/A N/A 142 53.3 48 52.3 --

Time t  = 0
ss 47.3 t  =  0 No 0 100 59.0 48 60.6 13.3
exp None t  =  0 No 0 100 55.2 - 48 55.6 --
cxd None t  =  0 No 0 100 52.5 -- 48 55.5
cyp None t  =  0 No 0 100 52.9 - 48 52.7
cyd None t  =  0 No 0 100 54.1 - 48 48.9
axp 62.3 t  = 0 No 0 100 65.6 3 .3 48 63.1 wm
axd 71.6 t = 0 No 0 100 67.8 48 57.5 14.1 I
ayp 70.4 t = 0 No 0 100 54.5 15.9 48 56.3 a s
ayd 57.3 t = 0 No 0 100 58.0 ■ ■ 48 59.7 2.4

Time t  = 1
ss None t=  1 No 0 1 100 60.1 - 48 56.7 -
exp None t=  1 No 0 1 100 53.0 ■■ 48 56.4
cxd None t = 1 No 0 1 100 59.2 - 48 54.0
cyp None t = 1 No 0 1 100 57.6 - 48 46.8
cyd None t = 1 No 0 1 100 51.4 48 49.8
axp None t = 1 No 0 100 62.1 48 57.3 -
axd None t = 1 No 0 100 65.0 48 55.7 -
ayp None t = 1 No 0 100 67.2 48 58.8 --
ayd None t = 1 No 0 100 59.5 -• 48 54.6

Time t  = 2
ss 46.1 t = 2 No 1 48 55.8 9.7 48 55.8 9.7
exp 62.3 t = 2 No 1 48 56.3 6.0 48 56.3 6.0
cxd 60.4 t = 2 No 1 48 57.5 2.9 48 57.5 2.9
cyp 31.6 t = 2 No 1 48 45.6 14.0 48 45.6
cyd 38.6 t = 2 No 1 48 48.8 10.2 48 48.8 10.2
axp None t = 2 No 1 48 65.4 48 65.4 -
axd None t = 2 No 1 48 50.8 48 50.8
ayp None t = 2 No 1 48 47.8 48 47.8
ayd None t = 2 No 1 48 54.5 48 54.5 ••

Time t  = 3
ss None t = 3 No 1 48 71.6 - 48 71.6 -
exp None t = 3 No 1 48 63.1 - 48 63.1
cxd None t = 3 No 1 48 57.1 - 48 57.1
cyp None t = 3 No 1 48 39.4 - 48 39.4

cyd None t = 3 No 1 48 48.3 - 48 48.3
axp 90.6 t = 3 No 1 48 83.5 7.1 48 83.5 7.1
axd 70.4 t = 3 No 1 48 70.8 0.4 48 70.8 0.4

ayp 93.6 t = 3 No 1 48 59.1 34.5 48 59.1 34.5
ayd 46.4 t = 3 No 1 48 61.1 14.7 48 61.1 14.7

4 2

Dynamic Timing: 0.00000 sec 0.00000 sec
Persistent Timing: 0.16023 sec

Table 5.6: BATmobile Example 5 - Results

column for the CBR/DBN Retrieval/Adaptation algorithm versus the Standard CBR 

method, the CBR/DBN Retrieval/Adaptation algorithm does extremely well (4 shaded 

cells vs. 1 cell).
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A tr ib u te

U n n o rm a liz e d  V a lu e s

E v id e n c e
C B R /D B N
R e tr ie v e d

V a lu e

C o n v e n t io n a l  
C B R  R e tr ie v e d  

V a lu e

N o rm a liz ie d  & W e ig h te d  V a lu e s

E v id e n c e
C B R /D B N
R e tr ie v e d

V a lu e

C o n v e n t io n a l  
C B R  R e tr ie v e d  

V a lu e

N o rm a liz e d  & W e ig h te d  
A b s o lu t e  f ro m  E v id e n c e

C B R /D B N
R e tr ie v e d

V a lu e

C o n v e n t io n a l  
C B R  R e tr ie v e d  

V a lu e

E x a m p le  1
- Vehicle Type 0 0 7 0 0 600 600
0 Ambient Temp 75 78 80 90 94
0 Metal Temp 75 75 78 135 135 1 4 0 ^ ^ ^ ^ ^ H
1 Conv Speed 10 9.8 10.7 160 157 171
2 Conv Speed 10 9.8 10.7 160 157 1 7 1 ^ ^ | ^ ^ H
2 Metal Temp 250 254 255 450 457 459N W f f B f i B l  9
3 Metal Temp 285 283 281 513 509 506s 9 | | H b B  7.2
4 Conv Speed 20 18.9 19 320 302 304 i 7 6 H H g a n a
4 Metal Temp 285 284 291 513 511 524 ^  108

T o ta l s 2616 2597 3252 ■ ■ ■ ■ ■ H i  682.2

#  B e s t  1
E x a m p le  2

0 Ambient Temp 75 79 80 90 95 96 6
0 Metal Temp 75 82 78 135 148 140
1 Conv Speed 12.6 13.4 11.5 202 214 184 S ^ B ^ B S E K  17.6
1 Metal Temp 175 177 193 315 319 3 4 7 ^ ^ H H s i  32.4
2 Conv Speed 12.6 13.4 11.5 202 214 1 8 4 ^ ^ ^ B H 1  17.6
2 Metal Temp 275 281 255 495 506 4 5 9 | ^ ^ ^ B R q I 36
4 Conv Speed 20 22.7 19.7 320 363 315| 4 3 .2 ^ |g S M M E 8

T o ta ls 3210 3205 3°72H H i m  226
# B e s t  2

E x a m p le  3
- Vehicle Type 16.6 16.7 19.7 2656 2672 3 1 5 2 B H B M H  496.0
0 Zone Type 15 17.7 18.4 1313 1549 1 6 1 0 ^ ^ ^ ^ ^ B U  297.5
0 Conv Speed 20 19.9 20.7 2286 2274 2 3 6 6 ^ ^ ^ ^ ^ ^ ^ R 9 i
0 Metal Temp 6 11.9 18.9 174 345 5 4 9 ^ ^ ^ H h I  374.5
1 Zone Type 17 18.5 17.2 1488 1619
2 Zone Type 17 15.8 18.4 1488 1383 1610 W K B B B m  122.5
2 Conv Speed 17 18.1 18 1943 2069 2057 1 7 5 r r f l
2 Metal Temp II 15.3 19.3 319 444 5 6 < > ( H H g ^ g |  241.0
3 Zone Type 18 18.2 18.5 1575 1593 1 6 I 9 M ^ B E S 9 s  43.8
3 Metal Temp 16 9.5 17.1 465 276 496 r  1 8 8 J ^ ^ ^ M S ^
4 Zone Type 20 19.6 19.5 1750 1715 1 7 0 6 9 H H M n  43.8
4 Conv Speed 17 17.2 17.9 1943 1966 2 0 4 6 t ^ ^ B H K & i  102.9
4 Metal Temp 24 15.5 16.6 697 450 4821 2 4 0 8 H 3 B M I

T o ta ls 20638 20885 2 2 3 i : a U M H S i l i  2191.8

# B e s t  b H U H U n s  4
E x a m p le  4

- dm 60.7 60.1 57.3 182 180 m t f M H B N S i  10.2
0 fu 48.8 47 44.2 244 235 2 2 l 9 | ^ H I ^ U |  23.0
0 mi 62.3 59.7 51.2 374 358 3 0 7 ^ ^ ^ ^ H B h  66.6
0 so 42.1 44.2 46 379 398 414 35.1
1 fu 49.3 46.4 46.8 247 232 234 i T T p w r r f w ^
1 ml 45.3 46.5 54.2 362 372 434 I H B B n  71.2
1 mi 52.1 50.7 47 313 304 282 30.6
1 la 51.3 46.9 48.1 308 281 289 2 M E S S 3 B S I 3
1 so 49.2 46 46.8 443 414 421 28.8 |fe® BiifiK 8^>
2 mi 57.9 46.5 57.2 347 279 343 6 8 . 4 | | W s ^ ^ 2
2 sO 40.9 41 39.8 368 369 358 9 3

T o ta l s 3566 3423 3 4 7 5 p B | H B ^ d  304.1

# B e s t  s U s s I M  4
E x a m p le  5

- te 52.6 53.8 58 158 161 174 16.2
0 ss 47.3 59 60.6 378 472 485 ^ P r P f f n r r f f l  inc .4
0 axp 62.3 65.6 63.1 436 459 442 23.1
0 axd 71.6 67.8 57.5 501 475 403 98.7
0 ayp 70.4 54.5 56.3 493 382 394 111 3 | ^ ^ f ‘̂ 9 & 7
0 ayd 57.3 58 59.7 401 406 418 16.8

T o ta l s 2367 2355 2315 342.4
# B e s t  2

Table 5.6: Example Summary
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It should also be noted that in the five examples presented in this work, the 

persistent variables, as determined by the CBR/DBN Retrieval/Adaptation algorithm, are 

all improved as compared to the conventional CBR method. The next section will present 

a real time evaluation o f determination o f the persistent variables

In Table 5.6, a table summarizing o f the five examples offered in this thesis is 

presented. This table contains only the attributes in which a different in the value is 

retrieve by the CBR/DBN Adaptation/Retrieval algorithm and the standard CBR 

technique. This table contains the normalized and weight attribute values for comparison 

purposes. Again the shaded cells represent the superior value based on the evidence. The 

CBR/DBN Retrieval/Adaptation algorithm performs extremely well in all examples.

5.5 Evaluation of the Combination Level - m  :

The persistent attribute determination segment o f the algorithm can have 

significant time complexity consequences. Consider the worst case, choosing m = 137 

for the ACRF Oven Topcoat example presented in section 4.1, the CBR/DBN 

Retrieval/Adaptation algorithm then takes 828.78 seconds (~13 minutes and 48 seconds) 

to determine the best persistent case (see Table 5.7). This leads to the question o f what is 

an appropriate value for the combination level and what is more important accuracy or 

speed o f the algorithm. As mentioned earlier, the number of persistent attributes N p is

generally fixed, thus complexity generally is polynomial in the value m and care should 

be taken in choosing m . Figure 5.4 plots the persistent case error metric e versus the 

time required to compute the metric for the example presented in section 5.1. This 

information verifies that the CBR/DBN Retrieval/Adaptation Algorithm is polynomial in
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Dynamic
Average

Persistent
Average

Best
Persistent

Error
Metric

m Seconds Seconds
Case

£n
1 0.00 0.15 112 185.6
2 0.00 0.15 112 175.6
5 0.00 0.17 120 153.6
10 0.00 0.19 120 102.0
15 0.00 0.25 104 98.8
20 0.00 0.53 104 95.6
25 0.00 1.06 104 95.6
30 0.00 2.06 105 15.0
35 0.00 3.64 105 5.8
40 0.00 6.12 105 5.8
45 0.00 9.62 105 5.8
50 0.00 14.61 105 4.2
55 0.00 21.33 105 4.2
60 0.00 30.08 105 4.2
65 0.00 41.34 105 3.8
70 0.01 55.95 105 3.2
75 0.00 73.69 105 3.2
80 0.00 95.85 105 3.2
85 0.00 122.72 105 3.2
90 0.00 153.84 105 2.0
95 0.00 190.43 105 1.8
100 0.00 234.60 105 1.8
105 0.00 284.47 43 0.0
110 0.00 342.13 43 0.0
115 0.00 409.49 43 0.0
120 0.00 486.99 43 0.0
125 0.00 573.36 7 0.0
130 0.00 672.37 7 0.0
135 0.00 781.38 7 0.0
137 0.00 828.78 7 0.0

Table 5.7: Determining the Best Persistent Case from Example 1

growth when compared to m , as mentioned in the previous section. Once again, after 

reviewing Figure 5.4 it should be noted that at m > 35 ( s  = 5.8 and time = 3.64 seconds) 

there is little change in s  and the time required is still reasonable. Table 5.8 and Figure 

5.5 provide analysis o f the ACRF Oven with Tetrad generated data Example 3 with
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results comparable to that o f example 1. There appears to be a region where there is a 

reasonable trade-off between accuracy and time complexity. The domain area of the 

CBR/DBN Retrieval/Adaptation algorithm could have an effect on the determination o f 

m since either a low error metric (greater accuracy) could be crucial or perhaps the time 

required to compute m could be of greater importance. It should also be noted that at this 

time there is no provision for ties in the determination o f the best persistent case as can be 

seen from Table 5.7 where the best persistent case changes from 43 to 7 when m goes 

from 120 to 125, yet the error metric remains at zero.

E v a lu a t io n  o f  m  v s . T im e

[ vs Time — Persistent Value Error Metric

900.0

800.0

700.0

600.0

-3
|  500.0
b V)

|  400.0
P

300.0

200.0 

100.0

0.0

0 20 40 60 80 100 120 140 160

m  - N um ber o f  C ases in C om binations

Figure 5.4: Evaluation o f the Combination Level (m) from Example 1
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m

Dynamic
Average

Seconds

Persistent
Average

Seconds

Best
Persistent

Case

Error
Metric

1 0.0 0.17 1149 1179.1
2 0.0 0.18 103 816.0
5 0.0 0.23 196 587.4
10 0.0 0.19 190 577.3
15 0.0 0.38 196 546.2
20 0.0 0.70 79 426.3
25 0.0 1.36 79 411.3
30 0.0 2.68 48 387.3
35 0.0 4.88 48 387.3
40 0.0 8.24 48 385.2
45 0.0 13.11 48 382.4
50 0.0 19.82 48 382.4
55 0.0 28.94 48 380.8
60 0.0 40.95 48 380.8
65 0.0 56.37 48 380.8
70 0.0 75.81 48 380.8
75 0.0 99.74 48 380.8
80 0.0 129.08 48 380.8
85 0.0 164.54 48 380.8
90 0.0 206.87 48 380.7
95 0.0 256.66 48 380.7
100 0.0 315.15 111 379.4
105 0.0 383.02 111 379.4
110 0.0 461.38 111 379.4
115 0.0 551.13 111 379.4
120 0.0 653.52 48 379.0
125 0.0 769.49 131 359.8
130 0.0 918.18 131 359.8
135 0.0 1053.93 131 359.8
140 0.0 1224.24 131 359.8
145 0.0 1409.67 131 359.8
150 0.0 1594.91 131 359.8
155 0.0 1841.03 131 359.8
160 0.0 2092.45 131 359.8
165 0.0 2334.18 131 359.8
170 0.0 2625.43 131 359.8
175 0.0 2944.22 131 359.8
180 0.0 3325.66 131 359.8
185 0.0 3679.74 172 344.2
190 0.0 4169.58 172 317.3
195 0.0 4590.06 172 317.2
199 0.0 4984.51 172 317.2

Table 5.8: Determining the Best Persistent Case from Example 3
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Figure 5.5: Evaluation o f the Combination Level (m) from Example 3
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Chapter 6

Chapter 6: Conclusions and Future Directions

The CBR reasoning methodology seems to fit the definition o f artificial intelligence by 

way o f the parallel nature o f CBR and how humans begin reasoning or decision processes 

by remembering past experiences. The methodology of CBR is well developed and 

researched, but specific details in the implementation are open ended. This presents 

copious opportunities for research and development into the details of how the 

methodology o f CBR is actually implemented. Motivation for this thesis comes from 

these opportunities to apply additional artificial intelligence theory in the implementation 

of CBR systems. Bayesian networks, dynamic Bayesian networks and probabilistic 

causal models are ideas that have artificial intelligence origins and have been well studied 

and documented. By utilizing these artificial intelligence concepts in a CBR system a 

robust CBR system has been developed that assists in two of the more difficult problems 

in CBR, namely retrieval and adaptation. The idea o f using several artificial intelligence 

ideas to solve a problem is not new in itself, but the techniques used in this thesis lead to 

some innovative ideas. Furthermore, the real-life industrial test environment presented 

adds validity and appeal to this research.

This thesis presents a dynamic reasoning system based on the case-based 

reasoning paradigm that utilizes the causal knowledge elicited from experts or inherent in 

the data (case-base) to perform the retrieval and adaptation steps. By representing the 

causal knowledge inherent in a process, in the form o f a dynamic Bayesian network and 

performing analysis using some well known Bayesian network techniques, several 

independent subnets are formed. These subnets are conditionally independent given the
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evidence determined from the problem case. From each of these individual subnets a best 

case(s) is retrieved, realizing this independence o f each subnet giving some evidence. 

The dynamic attribute values from each subnet are determined from the best case 

retrieved from each o f these subnets. The persistent parameters are then determined by 

calculating an error metric for each o f the best cases previously established from the 

independent subnets. This error metric takes into consideration a number of 

combinations o f best cases determined from the independent subnets and calculate a two 

part computation involving the variance from evidence and a statistical computation. The 

final solution case is the combination o f the dynamic variables from these best cases and 

persistent variables from the case with the minimum error metric. The ideas presented in 

this thesis were demonstrated using a real life dynamic industrial environment with some 

persistent parameters. Several examples from the real life domain and some dynamic 

Bayesian network research literature were presented to concrete the ideas o f utilizing the 

causal information inherent in the data (or case-base) and an evaluation was presented 

comparing standard case-based reasoning techniques. These evaluations validate the 

ideas presented in this work and give credibility to the CBR/DBN Retrieval/Adaptation 

algorithm as implemented in a complete CBR system. In all examples the CBR/DBN 

algorithm out performed standard CBR techniques. The additional complexity that the 

CBR/DBN Retrieval/Adaptation algorithm contains is analyzed to justify the process.

A major goal o f future research is to automate Step 1 -  Causal Knowledge 

Acquisition, o f the CBR/DBN Retrieval/Adaptation algorithm. This will allow the 

application to learn the dynamic Bayesian network from the initial case-base, thereby 

eliminating the need to elicit this knowledge from experts. Automation o f Step 3 -  

Applying Bayesian Network Concepts, is also planned in the future. The use o f Bayesian
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Network mechanics on the DBN would require significant effort but would add to the 

robustness o f the application. Implementation and evaluation in different domains is also 

a key to the success of this project. The domain illustrated in this paper is a robust and 

realistic environment with real life data, but additional evaluation is also forthcoming. 

Currently, the work presented here relies exclusively on the causal structure reflected by 

the DBN. However, it would be desirable to explore the possibility o f using the 

probability distribution in assessing similarities as well as in the adaptation phase.
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Appendix A - CBR/DBN Retrieval/Adaptation Application Overview

The CBR/DBN Retrieval Adaptation algorithm is currently implemented in the C++ 

programming language using the Borland C++ Builder© Version 6.0 [Sai03] [LouCOl] 

[HBSA01] development environment. The choice of programming language and 

development environment was based solely on user experience and knowledge and 

should not have had a major impact on the CBR/DBN Retrieval Adaptation algorithm 

itself. The concern with using this development environment is that it is not a 

Microsoft® platform and hence integration o f third party components is often difficult or 

impossible.

The representation of the knowledge for the application is done in a standard text 

format file as are most o f the files required for the application. The cases are represented 

as a simple vector of attributes with each case on a different line and separate attributes 

represented in columns. Although this format for the case-base is extremely simple it 

serves the purpose quite well for the case-bases used. A more progressive approach to 

knowledge representation could have involved an XML document representation that 

could provide increased portability. The knowledge representation is actually 

independent of the CBR/DBN Retrieval/Adaptation algorithm and can be modified to 

accommodate large more complicated sets o f data without affecting the operation of the 

algorithm itself. It should also be noted that the entire case-base is read into RAM and 

hence read/write operations do not have a significant effect on time complexity. However 

for large case bases these ideas could be revisited. Figure A .l illustrates the simple 

layout of the ACRF oven case base.
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The CBR/DBN Retrieval/Adaptation Application consists o f three main dialogs or 

components: process files, dbn components and results of inference dialogs. Initially a 

process file must be created that details the input files. Figure A.2 illustrates the “modify 

process file” dialog box that allows the user to modify a current process file. The idea 

behind a process file is that it contains all o f the information about the data for a process. 

There can be several process files for different process domains, hence adding an element 

o f domain independence to the application. In the new or modify process file dialog box, 

all the details o f the attributes for the process are entered including name, weight, type, 

etc. The user can create, modify, and delete process files thereby adding great flexibility 

to the application. Process files are saved with the “ .pro” file extension in a standard text 

format, in the “processes” directory. The sections o f a process file are illustrated in 

Appendices B .l, B.2, and B.3.
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Figure A .l: Case Representation

The second main component involves the setting up o f the process DBN. It is 

assumed that a process file has already been setup and the DBN has the necessary links to 

an appropriate process file. In this set o f dialogs the user can create, modify and delete 

DBN files. Associated process files, evidence, barren nodes and subnets are entered here 

and stored as “*.dbn” files in the “dbn” directory. Basically, the *.dbn files contain all 

the information about the dynamic Bayesian network created in step one o f the algorithm. 

Again, these files are in standard text format for convenient out of application editing. 

Figure A.3 illustrates the modify DBN dialog box and Appendices B.4, B.5 and B.6 

present several sections o f the *.dbn file.
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a

Figure A.2: Process Setup

The third major module is the inference command which actually performs the 

CBR/DBN Retrieval Adaptation algorithm. This action will ask the user for a “DBN” file 

and a data file (the case-base) and perform the CBR/DBN Retrieval Adaptation algorithm 

based on options outlined in the setup menu item. The number o f cases m involved in 

the persistent attribute determination (default = 10) can be adjusted in the setup menu. By 

selecting the “Inference -  Go” menu item and selecting a “DBN” file and a data file the 

inference process in under way. This process could take some time depending on the 

value o f m, but when complete, all of the information regarding the inference process is 

displayed in a tabbed dialog box, as illustrated in Figure A.3. This dialog box contains all
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the information regarding the inference just preformed in a convenient tabbed sheet form. 

In particular, the Best Case sheet contains all information regarding the selection o f the 

best case and the general sheet contains some timing information. All this information 

can be saved in a text format by selecting the save button and naming the file. The file is 

illustrated in Appendices B.7, B.8, B.9, B.10 and B .l 1.

S e tu p  DBN I n fo rm a tio n

le ta lTem p

Figure A.3: DBN Setup

In summary, to use the CBR/DBN Retrieval/Adaptation application setup the 

process file, setup the DBN file, select how many cases (m) to be used in the 

determination o f the persistent attributes and select Inference -  Go. The CBR/DBN
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Retrieval/Adaptation application provides an easy to use interface for the algorithm with 

domain independence qualities. It provides flexibility to operate on a variety o f domains, 

through the use o f process files and DBN files, something all CBR applications strive to 

achieve. The two absent mechanisms o f the application are: the fact that the DBN created 

in step one cannot be determined automatically and the fact that Bayesian inference 

cannot be completed automatically. Both o f these two issues, although not implausible, 

have been investigated and reviewed briefly in previous sections. It is hoped that in 

future versions o f this application that implementations of these two mechanisms can be 

included to provide a robust application.
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Appendix B -  CBR/DBN Retrieval/Adaptation Application Files

In this appendix, the files associated with the CBR/DBN Retrieval/Adaptation 

algorithm are outline. The examples presented are from Example 3 - The ACRF Oven 

Domain Example with Tetrad data. Figure B .l presents the “General” section o f a 

process file “*.pro”, which contains general configuration information regarding the 

process. Examples o f information contained in this section are the name o f the process 

and the numbers o f persistent, dynamic and time slices in the process.

[General]
ProcessName =ACRF Oven #2
ProcessNo =2
NoPersistent =7
NoDynamic =8
NoTimeslices =5

Figure B .l: Process file -  General Section Configuration

In Figure B.2, a persistent attribute o f the process is configured as can be found in 

a process file. Each persistent attribute in the process contains a configuration as shown 

in Figure B.2. Information particular to each persistent attribute such as the attribute 

name, type o f attribute, the weight, a maximum value and a minimum value are 

configured in this section. One o f these sections exists for each persistent attribute.

In Figure B.3, a dynamic attribute of the process is configured as can be found in a 

process file. Each dynamic attribute in the process contains a configuration as shown in 

Figure B.3. Information particular to each dynamic attribute such as the attribute name,
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type o f attribute, the weight, a maximum value and a minimum value are configured in 

this section. One o f these sections exists for each persistent attribute.

[PersistentO]
Persistent =RunID
DiscreteConituous =1
CardinalOrdinal =1
IRBDType =0
W eight =1
TemporalLink =0
MaxValue =500
MinValue =0

Figure B.2: Process fde -  Persistent Attribute Configuration

[DynamicO]
Dynamic =ZoneType
DiscreteConituous =1
CardinalOrdinal =0
IRBDType =1
W eight =7
TemporalLink =0
MaxValue =22
M inValue =14

Figure B.3: Process file -  Dynamic Attribute Configuration

The DBN file contains configuration information regarding the dynamic Bayesian 

network model o f the process and the evidence regarding such. Figure B.4 presents the 

“General” section o f a DBN file “*.dbn”, which contains general configuration 

information regarding process. Examples of information contained in this section are the 

name of the dynamic Bayesian network, the process file associated with the DBN, the 

and the numbers o f persistent, dynamic and time slices in the process as well as the 

number o f subnets in the pruned and sectioned process DBN.

In Figure B.5, a persistent node of a process DBN is configured as can be found in 

a DBN file. Each persistent node in the DBN contains a configuration as shown in Figure
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B.5. Information specific to a persistent node such as the node name, evidence if 

available and an indication o f whether or not the node is a barren node. There is one o f 

these sections for each persistent attribute.

[General]
DBNName = ACRF Tetrad Data
ProcessFile =C:\CBR_Tighe\Processes\ACRF Oven 10.pro
NoPersistent =7
NoDynamic =8
NoAttributes =15
NoTotalAttributes =47
NoTimeslices =5
NoSubnets =4

Figure B.4: DBN file -  General Section Configuration

[PersistentNodeO]
Name =RunID
UseEvidence =0
IRBDType =0
IEvidence =-1
REvidence =-1
BEvidence =-1
DEvidence =0
BarrenNode =0
SubNetl =-1
SubNet2 =-1
W eight =1
MaxValue =500
M inValue =0

Figure B.5: DBN file -  Persistent Node Configuration

In Figure B.6, a dynamic node o f a process DBN is configured as can be found in 

a DBN file. Each dynamic node in the DBN contains a configuration as shown in Figure 

B.5. Information particular to each persistent node such as the node name, evidence if 

available, whether or not the node is a barren node, and the subnets that the node is in. 

There is one o f these sections for each persistent attribute.
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[DynamicNode - 0 - 0]
Name =Zo
UseEvidence =1
IRBDType =1
IEvidence =-1
REvidence =15
BEvidence =-1
DEvidence =0
BarrenNode =0
SubNetl =0
SubNet2 =-1
Weight =7
MaxValue =22
MinValue =14

Figure B.6: DBN file -  Dynamic Node Configuration

In the next several sections the results from the inference operation will be 

reviewed. These results can be reviewed either in the tabbed dialog box at run time or 

saved to an output text file (*.out) for further analysis. In Figure B.7 a summary o f the 

inference results is presented including comments, the combination level and timing 

information. In Table B .l the original process dynamic Bayesian network is displayed as 

the problem case. In Table B.2, the original process DBN is displayed as a solution case, 

that is, with the retrieved and adapted persistent and dynamic variables. The table also 

displays the cases from where the solution values were found.

Inference ID = ACRF 10
Comments = Tetrad Data with ACRF Oven DBN

Number o f  Persistent Attributes = 7
Number o f Dynamic Attributes = 8
Number o f  Time Slices = 5
Number o f SubNets = 4
Number o f  Persistent Combination Attributes (m) = 1 3 0
Time for Dynamic Inference = 0.000000
Time for Persistent Inference = 918.180278
Best Persistent Case = 131
Error Metric Case = 359.8

Figure B.7: Inference Results -  Summary
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Table B .l: Inference Results -  Problem Case 

**************** p)ynam ic Bayesian Network Summary ******************

Attribute Name P/D Type Time Evidence Barren SubNetl SubNet2 W eight Max Value Min Value

RunID Persistent Integer All None No N/A N/A 1 500 0
RunDate Persistent Date All None No N/A N/A 1 10000 0
VehicleType Persistent Real All 16.0 No N/A N/A 8 21 16
SupplyDamper Persistent Real All None No N/A N/A 3 22 15
ExhaustDamper Persistent Real All None No N/A N/A 3 22 15
FASetPoint Persistent Real All None No N/A N/A 4 22 15
SillSetPoint Persistent Real All None No N/A N/A 4 21 13

ZoneType Dynamic Real = 0 15.0 No 0 — 7 22 14
ConveyorSpeed Dynamic Real = 0 20.0 No 0 — 8 22 15
FAActual Dynamic Real = 0 None No 0 — 6 25 11
SillActual Dynamic Real = 0 None No 0 — 6 23 13
ZoneSet Dynamic Real = 0 None No 0 — 4 22 14
ZoneActual Dynamic Real = 0 None No 0 — 8 26 9
AmbientTemp Dynamic Real = 0 1.0 Yes 0 - 6 2 1
MetalTemp Dynamic Real = 0 6.0 No 0 1 9 31 0

ZoneType Dynamic Real = 1 17.0 No 1 — 7 22 14
ConveyorSpeed Dynamic Real = 1 17.0 No 1 ~ 8 22 15
FAActual Dynamic Real = 1 None No 1 — 6 25 11
SillActual Dynamic Real = l None No 1 — 6 23 13
ZoneSet Dynamic Real = 1 None No 1 — 4 22 14
ZoneActual Dynamic Real = 1 None No 1 — 8 26 9
AmbientTemp Dynamic Real = 1 None No 1 -- 6 2 1
MetalTemp Dynamic Real = 1 None No 1 — 9 31 0

ZoneType Dynamic Real = 2 17.0 No 1 — 7 22 14
ConveyorSpeed Dynamic Real = 2 17.0 No 1 — 8 22 15
FAActual Dynamic Real = 2 None No 1 — 6 25 11
SillActual Dynamic Real = 2 None No 1 — 6 23 13
ZoneSet Dynamic Real = 2 None No 1 — 4 22 14
ZoneActual Dynamic Real = 2 None No 1 — 8 26 9
AmbientTemp Dynamic Real = 2 None No 1 - 6 2 1
MetalTemp Dynamic Real = 2 11.0 No 1 2 9 31 0

ZoneType Dynamic Real = 3 18.0 No 2 — 7 22 14
ConveyorSpeed Dynamic Real = 3 None No 2 - 8 22 15
FAActual Dynamic Real = 3 None No 2 — 6 25 11
SillActual Dynamic Real = 3 None No 2 — 6 23 13
ZoneSet Dynamic Real = 3 None No 2 — 4 22 14
ZoneActual Dynamic Real = 3 None No 2 — 8 26 9
AmbientTemp Dynamic Real = 3 None No 2 - 6 2 1
MetalTemp Dynamic Real = 3 16.0 No 2 3 9 31 0

ZoneType Dynamic Real = 4 20.0 No 3 — 7 22 14
ConveyorSpeed Dynamic Real = 4 17.0 No 3 - 8 22 15
FAActual Dynamic Real = 4 None No 3 — 6 25 11
SillActual Dynamic Real = 4 None No 3 — 6 23 13
ZoneSet Dynamic Real = 4 None No 3 — 4 22 14
ZoneActual Dynamic Real = 4 None No 3 — 8 26 9
AmbientTemp Dynamic Real = 4 None No 3 - 6 2 1
MetalTemp Dynamic Real = 4 24.0 No 3 - 9 31 0
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Table B.2: Inference Results -  Solution Case

G-3SC 3$£3$C3|C3|C3jC3$C3fC5|C3|C3|C3|C3$C3|C3$C3|C5|C3|C3jc

Attribute Name P/D Type Time Evidence Barren Case # Value SubNetl SubNet2

RunID Persistent Integer All None No 132 133 N/A N/A
RunDate Persistent Date All None No 132 5/12/2005 N/A N/A
VehicleType Persistent Real All 16.0 No 132 19.0 N/A N/A
SupplyDamper Persistent Real All None No 132 19.2 N/A N/A
ExhaustDamper Persistent Real All None No 132 19.0 N/A N/A
FASetPoint Persistent Real All None No 132 20.5 N/A N/A
SillSetPoint Persistent Real All None No 132 18.9 N/A N/A

ZoneType Dynamic Real = 0 15.0 No 103 17.7 0 —

ConveyorSpeed Dynamic Real = 0 20.0 No 103 19.9 0 -

FAActual Dynamic Real = 0 None No 103 17.6 0 —
SillActual Dynamic Real = 0 None No 103 18.2 0 —
ZoneSet Dynamic Real = 0 None No 103 16.7 0 —

ZoneActual Dynamic Real = 0 None No 103 15.1 0 —

AmbientTemp Dynamic Real = 0 1.0 Yes 103 1.0 0 —

MetalTemp Dynamic Real = 0 6.0 No 103 11.9 0 1

ZoneType Dynamic Real = 1 17.0 No 197 18.5 1 —

ConveyorSpeed Dynamic Real = 1 17.0 No 197 16.9 1 -
FAActual Dynamic Real = 1 None No 197 21.8 1 —
SillActual Dynamic Real = 1 None No 197 18.3 1 —
ZoneSet Dynamic Real = 1 None No 197 19.7 1 —
ZoneActual Dynamic Real = 1 None No 197 24.5 1 —
AmbientTemp Dynamic Real = 1 None No 197 1.0 1 -
MetalTemp Dynamic Real = 1 None No 197 11.5 1 —

ZoneType Dynamic Real = 2 17.0 No 197 15.8 1 —
ConveyorSpeed Dynamic Real = 2 17.0 No 197 18.1 1 -
FAActual Dynamic Real = 2 None No 197 22.6 1 —
SillActual Dynamic Real = 2 None No 197 19.6 1 —
ZoneSet Dynamic Real = 2 None No 197 18.1 1 —
ZoneActual Dynamic Real = 2 None No 197 20.2 1 —
AmbientTemp Dynamic Real = 2 None No 197 1.0 1 -

MetalTemp Dynamic Real = 2 11.0 No 197 15.3 1 2

ZoneType Dynamic Real = 3 18.0 No 185 18.2 2 —

ConveyorSpeed Dynamic Real = 3 None No 185 19.6 2 -
FAActual Dynamic Real = 3 None No 185 23.4 2 —
SillActual Dynamic Real = 3 None No 185 17.8 2 —
ZoneSet Dynamic Real = 3 None No 185 16.8 2 —
ZoneActual Dynamic Real = 3 None No 185 16.9 2 —
AmbientTemp Dynamic Real = 3 None No 185 1.0 2 -
MetalTemp Dynamic Real = 3 16.0 No 185 9.5 2 3

ZoneType Dynamic Real = 4 20.0 No 150 19.6 3 —
ConveyorSpeed Dynamic Real = 4 17.0 No 150 17.2 3 -
FAActual Dynamic Real = 4 None No 150 17.3 3 —
SillActual Dynamic Real = 4 None No 150 17.0 3 —

ZoneSet Dynamic Real = 4 None No 150 19.1 3 —

ZoneActual Dynamic Real = 4 None No 150 19.9 3 —

AmbientTemp Dynamic Real = 4 None No 150 1.0 3 -

MetalTemp Dynamic Real = 4 24.0 No 150 15.5 3 - -
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In Table B.3, a summary o f the normalized and weighted distance from the problem case 

for each case in the case-base is presented. Each case is listed vertically and the distance 

from the problem case for each subnet is listed horizontally.

Table B.3: Inference Results -  Subnet Distance Summary 

^^Gcircst Neighbor Distsocc Summary
Case SubNet - 0 SubNet - 1 SubNet - 2 SubNet - 3

1 1,406.4 1,891.3 956.4 976.4
2 1,341.7 1,313.0 708.9 1,205.9
3 1,312.0 1,567.0 957.0 852.0
4 871.1 1,624.7 466.0 824.9
5 1,438.4 1,609.7 1,210.3 1,119.7
6 1,440.7 1,384.7 777.3 1,101.8
7 881.0 1,415.5 519.1 818.8
8 1,343.3 1,523.0 782.7 933.3
9 1,276.3 1,020.4 557.8 1,212.3
10 1,574.3 1,760.1 1,275.8 1,254.5
11 1,289.0 1,535.1 620.8 941.0
12 1,242.4 1,484.0 870.4 1,007.6
13 1,373.1 1,583.4 741.9 881.5
14 1,220.3 1,507.2 999.7 1,198.4
15 1,416.8 1,869.5 846.6 856.4
16 1,092.4 1,270.2 562.4 807.4
17 1,207.6 1,876.9 650.4 701.7
18 1,007.5 1,084.5 379.4 806.7
19 920.3 1,085.5 444.8 1,201.9
20 1,319.0 1,346.7 724.7 1,020.4
21 1,668.1 1,608.0 1,000.0 1,308.1
22 876.6 1,257.1 586.4 847.2
23 1,246.2 1,670.1 726.0 1,200.2
24 1,208.2 1,583.7 672.0 885.9
25 1,424.5 1,472.0 875.4 1,563.5
26 829.3 1,317.2 367.7 900.3
27 1,182.5 1,455.5 623.5 881.5
28 970.1 1,290.9 546.0 912.0
29 1,497.5 1,881.4 1,232.9 1,307.5
30 980.3 1,518.4 889.6 927.6
31 974.1 1,081.9 563.4 1,224.4
32 864.1 1,170.3 616.0 1,226.4
33 1,491.5 1,904.1 1,201.1 1,089.1
34 739.1 764.1 821.4 1,393.8
35 1,057.5 1,114.2 503.5 1,249.3
36 1,318.6 1,763.8 1,200.3 1,160.0
37 1,233.4 1,247.4 1,025.2 960.3
38 1,309.8 1,324.1 757.3 1,150.7
39 1,220.4 1,352.8 798.0 1,368.9
40 1,385.8 1,649.3 689.3 1,082.2
41 1,362.2 1,972.4 975.3 762.9
42 1,188.4 1,027.6 558.0 1,130.0

University o f  W indsor, 2005 95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix C

Table B.3: Inference Results -  Subnet Distance Summary (continued)

43 1,536.2 1,914.2 1,144.1 1,268.7
44 1,667.3 1,739.5 1,358.3 1,156.5
45 1,007.1 1,217.6 379.4 1,052.8
46 1,203.2 1,459.5 742.2 1,001.6
47 1,562.0 1,779.2 887.2 1,187.2
48 1,233.9 1,367.6 838.3 658.9
49 1,178.7 1,144.9 499.8 1,197.7
50 1,483.9 1,566.6 675.3 1,349.0
51 1,372.7 1,914.9 1,190.1 1,137.6
52 1,336.4 1,942.7 899.9 1,018.0
53 1,068.8 1,314.2 556.1 729.6
54 1,133.0 1,464.1 634.0 900.5
55 961.5 1,248.8 564.8 837.3
56 1,411.4 1,488.9 935.9 1,095.1
57 1,358.9 2,051.0 1,347.0 1,375.2
58 1,530.3 1,674.6 776.1 1,077.1
59 1,257.3 1,373.2 796.2 702.6
60 1,374.6 1,659.4 699.5 921.2
61 920.9 1,124.2 939.0 911.8
62 1,356.7 1,427.3 767.2 964.9
63 1,374.4 1,758.0 592.2 900.8
64 1,168.9 1,612.9 958.3 1,106.2
65 1,288.3 1,602.9 1,006.3 884.9
66 866.3 830.7 765.4 1,237.7
67 1,407.2 1,646.7 963.0 941.4
68 993.6 1,428.5 617.3 1,010.2
69 1,211.9 1,141.4 668.9 748.0
70 1,121.4 1,619.1 943.3 1,178.1
71 1,037.7 1,680.9 722.8 554.4
72 1,029.7 888.4 654.3 987.2
73 1,450.4 1,701.5 1,209.1 1,153.6
74 1,383.4 2,117.1 977.6 1,037.2
75 1,230.0 2,023.8 765.9 880.5
76 1,311.5 1,688.8 680.3 1,081.8
77 950.9 1,769.9 967.3 1,080.0
78 1,493.9 2,217.0 1,601.0 1,642.7
79 1,424.0 1,485.9 802.5 911.8
80 729.5 912.7 479.4 1,226.9
81 1,217.4 1,828.9 920.4 882.2
82 1,272.9 1,461.0 797.9 792.2
83 1,440.9 2,156.3 1,273.7 986.7
84 1,255.5 1,303.3 600.1 708.6
85 1,025.8 1,397.5 683.8 771.0
86 1,337.2 1,938.5 704.9 922.6
87 1,220.2 1,738.8 1,056.5 1,067.0
88 1,061.5 1,936.4 632.0 947.7
89 1,591.0 2,221.5 1,376.5 1,345.5
90 1,275.6 1,240.9 486.7 644.1
91 1,032.0 1,335.4 837.2 990.9
92 1,394.5 1,865.4 1,392.4 1,131.9
93 1,204.3 1,585.6 896.2 1,326.1
94 991.3 1,561.0 523.0 968.7
95 1,397.2 1,894.1 1,078.7 1,073.3
96 1,377.2 2,307.5 1,032.4 1,110.4
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Table B.3: Inference Results -  Subnet Distance Summary (continued)

97 1,369.1 1,517.7 680.2 661.8
98 1,181.7 1,829.3 627.8 784.7
99 1,091.9 1,467.5 879.1 903.5
too 1,772.7 2,024.1 1,360.2 1,272.8
101 911.3 1,543.0 534.6 1,057.2
102 1,333.4 2,058.2 1,052.6 1,005.7
103 547.0 976.0 449.0 983.0
104 1,001.2 953.1 359.8 882.1
105 1,041.3 1,311.3 735.8 1,130.0
106 1,079.6 1,192.1 589.2 1,059.8
107 1,248.9 1,473.3 937.3 809.7
108 1,104.4 1,481.9 625.9 807.8
109 1,290.8 1,419.0 694.2 1,250.4
110 1,219.4 1,027.9 427.9 618.4
111 1,073.6 1,273.4 596.2 1,061.7
112 1,235.7 1,133.5 596.1 952.6
113 1,422.6 1,893.0 872.2 1,198.6
114 1,320.3 1,577.2 869.2 989.1
115 1,290.2 1,462.7 683.5 873.8
116 1,637.6 1,692.5 1,094.9 995.7
117 1,276.9 1,362.9 730.9 927.0
118 1,166.1 1,751.0 897.3 1,051.2
119 1,745.3 2,188.4 1,616.0 1,448.5
120 1,816.3 2,429.2 1,503.9 1,477.4
121 1,163.6 1,151.5 531.0 1,173.8
122 1,010.2 1,466.5 874.2 957.5
123 1,333.1 1,814.0 817.0 1,019.9
124 1,003.1 1,627.5 1,014.1 1,089.2
125 1,192.0 2,004.2 893.3 998.8
126 1,156.2 1,615.1 1,108.2 825.6
127 1,203.2 1,838.2 856.6 1,137.7
128 1,525.1 1,882.1 1,472.7 1,614.8
129 1,232.8 1,742.2 586.0 819.9
130 1,235.1 1,634.5 884.4 1,083.8
131 1,148.4 1,327.8 725.2 1,099.1
132 1,282.9 1,599.8 794.4 1,062.0
133 1,084.6 1,439.6 643.8 995.6
134 1,069.8 1,321.6 800.1 1,058.3
135 1,238.9 1,408.9 667.9 873.9
136 1,405.1 1,439.2 672.4 870.2
137 918.5 1,513.4 832.7 1,025.0
138 893.7 1,231.8 439.6 733.5
139 1,173.8 1,694.0 849.8 1,173.3
140 1,516.6 1,666.2 1,156.4 1,115.4
141 1,849.3 2,032.1 1,131.0 1,210.0
142 895.7 1,036.9 466.4 538.9
143 1,222.0 1,328.8 448.6 794.2
144 601.6 918.3 486.7 1,253.8
145 1,075.8 1,470.5 698.8 879.0
146 1,407.6 1,769.1 815.9 888.0
147 1,406.6 1,738.3 715.7 1,136.9
148 1,232.7 1,497.0 824.8 1,049.3
149 1,434.9 1,289.0 538.9 839.8
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Table B.3: Inference Results -  Subnet Distance Summary (continued)

150 1,027.2 1,316.8 391.7 462.8
151 1,369.5 1,761.7 1,139.6 1,099.0
152 1,073.2 1,364.3 911.5 1,214.2
153 1,011.1 1,554.3 854.8 1,046.3
154 1,416.7 1,895.7 1,100.0 1,039.4
155 838.6 1,349.3 473.6 966.6
156 1,011.6 1,048.6 608.1 762.2
157 1,416.1 1,694.9 877.6 1,047.0
158 681.0 1,665.9 664.7 928.5
159 1,052.5 1,754.8 842.0 1,110.2
160 860.3 1,305.2 389.0 1,165.5
161 1,366.9 1,420.5 739.0 1,221.9
162 1,283.2 1,690.7 630.0 890.7
163 1,506.6 1,909.2 1,119.9 1,155.1
164 1,311.5 1,584.4 720.2 646.1
165 1,436.8 1,987.5 995.2 903.5
166 1,315.1 1,481.3 985.9 1,233.8
167 887.2 1,189.9 480.9 846.5
168 1,403.6 1,554.2 865.3 770.2
169 1,257.2 1,788.1 848.6 1,018.5
170 1,239.2 1,509.3 675.5 929.5
171 1,499.3 2,150.3 1,124.7 1,194.4
172 1,266.7 1,438.9 745.3 793.4
173 1,614.0 1,998.5 1,210.4 1,398.2
174 844.7 1,482.0 674.8 663.3
175 1,091.2 1,519.6 715.2 798.8
176 824.5 1,189.0 497.5 922.4
177 1,423.8 1,853.1 901.2 1,110.3
178 1,466.9 2,127.9 1,108.5 1,265.2
179 1,681.1 1,935.0 1,097.2 1,132.1
180 993.3 1,150.4 489.1 966.5
181 1,599.3 1,960.3 966.7 760.1
182 1,795.1 2,106.9 1,270.2 1,366.4
183 948.8 1,432.1 656.2 933.9
184 1,514.0 1,748.5 866.2 837.9
185 953.5 1,018.2 317.3 939.8
186 1,306.1 1,594.9 652.8 1,085.4
187 1,315.4 1,626.4 767.2 993.6
188 1,439.8 1,601.2 564.6 1,062.0
189 1,121.3 1,010.6 600.6 1,111.6
190 1,084.4 1,435.6 498.8 895.9
191 613.9 1,377.9 382.7 849.7
192 1,409.2 1,877.5 997.4 997.4
193 1,391.9 1,230.3 877.3 1,005.0
194 906.9 1,005.3 491.6 1,107.2
195 1,023.6 1,324.4 766.5 836.5
196 1,230.2 1,554.1 1,010.1 1,073.4
197 845.8 729.9 378.7 1,056.6
198 1,416.7 1,704.5 1,004.6 835.3
199 1,797.3 1,732.7 1,283.4 1,049.7
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In Table B.4, a summary o f the case rank (best being 1, and worst being 199) for each 

case in the case-base with respect to each subnet is presented.

Table B.4: Inference Results -  Case Rank by. subnet

Rank SubNet - 0 SubNet - 1 SubNet - 2 SubNet - 3
1 103 197 185 150
2 144 34 104 142
3 191 66 26 71
4 158 72 197 110
5 80 80 45 90
6 34 144 18 164
7 176 104 191 48
8 26 103 160 97
9 155 194 150 174
10 174 189 110 17
11 197 185 138 59
12 160 9 19 84
13 32 42 143 53
14 66 110 103 138
15 4 142 4 69
16 22 156 142 181
17 7 31 155 156
18 167 18 80 41
19 138 19 167 168
20 142 35 90 85
21 194 61 144 98
22 101 112 180 82
23 137 69 194 172
24 19 49 176 143
25 61 180 190 175
26 183 121 49 18
27 77 32 35 16
28 185 176 7 108
29 55 167 94 107
30 28 106 121 7
31 31 45 101 129
32 30 193 149 4
33 94 138 28 126
34 180 90 53 198
35 68 37 9 195
36 104 55 42 55
37 124 22 16 184
38 45 16 31 149
39 18 111 188 167
40 122 149 55 22
41 153 28 129 191
42 156 84 22 3
43 195 160 106 15
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Table B.4: Inference Results -  Case Rank by. Subnet (

44 85 105 63 136
45 150 2 112 115
46 72 53 111 135
47 91 150 84 145
48 71 26 189 75
49 105 134 156 13
50 159 38 32 27
51 35 195 68 104
52 88 131 11 81
53 53 143 27 65
54 134 91 108 24
55 152 20 98 146
56 111 155 162 162
57 145 39 88 190
58 106 117 54 26
59 190 152 133 54
60 133 48 17 63
61 175 59 186 99
62 99 191 72 165
63 16 6 183 79
64 108 85 158 61
65 189 135 135 28
66 70 7 69 60
67 54 109 24 176
68 131 161 136 86
69 126 62 174 117
70 121 68 50 30
71 118 183 170 158
72 64 190 97 170
73 139 172 76 8
74 49 136 115 183
75 98 133 85 185
76 27 27 40 11
77 42 46 109 67
78 125 82 145 88
79 46 115 60 112
80 127 54 86 122
81 93 122 2 37
82 17 99 175 62
83 24 145 147 180
84 69 25 164 155
85 81 107 71 94
86 110 166 20 1
87 87 108 131 103
88 14 174 23 83
89 39 12 117 72
90 143 79 105 114
91 75 56 161 91
92 196 148 13 187
93 148 14 46 133
94 129 170 172 116
95 37 137 38 192
96 48 97 66 125
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Table B.4: Inference Results - Case Rank by. Subnet (

97 130 30 75 46
98 112 175 195 193
99 135 8 62 102
100 170 11 187 12
101 12 101 58 68
102 23 196 6 52
103 107 168 8 169
104 84 153 132 123
105 169 94 59 20
106 59 50 82 137
107 172 3 39 74
108 82 114 134 154
109 90 13 79 153
110 9 24 146 157
111 117 164 123 148
112 132 93 34 199
113 162 186 148 118
114 65 132 137 45
115 11 188 91 197
116 115 65 48 101
117 109 21 159 134
118 186 5 15 106
119 38 64 169 111
120 164 126 139 188
121 76 70 153 132
122 3 4 127 87
123 166 187 168 95
124 187 124 184 196
125 36 130 114 58
126 20 67 12 77
127 114 40 113 76
128 123 60 122 40
129 102 158 25 130
130 52 140 193 186
131 86 23 157 33
132 2 58 99 124
133 8 71 130 56
134 62 76 47 151
135 57 162 30 131
136 41 116 125 6
137 161 139 93 64
138 97 157 118 194
139 151 73 52 159
140 51 198 177 177
141 13 199 152 96
142 63 147 81 189
143 60 87 56 140
144 96 44 107 5
145 74 129 61 42
146 40 184 70 105
147 193 118 1 92
148 92 159 3 179
149 95 63 64 147
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Table B.4: Inference Results - Case Rank by. Subnet (

150 168 10 67 51
151 136 151 181 127
152 1 36 77 38
153 147 146 41 73
154 67 77 74 163
155 146 47 166 44
156 192 169 165 36
157 56 123 192 160
158 157 81 14 139
159 198 98 21 121
160 154 127 198 70
161 15 177 65 47
162 113 92 196 171
163 177 15 124 49
164 79 17 37 14
165 25 192 96 113
166 149 29 102 23
167 165 128 87 19
168 5 1 95 2
169 188 113 116 141
170 6 95 179 9
171 83 154 154 152
172 73 33 126 161
173 178 163 178 31
174 50 43 163 32
175 33 51 171 80
176 78 179 141 166
177 29 88 151 66
178 171 86 43 35
179 163 52 140 109
180 184 181 51 144
181 140 41 36 10
182 128 165 33 178
183 58 173 73 43
184 43 125 5 100
185 47 75 173 29
186 10 100 29 21
187 89 141 182 93
188 181 57 83 89
189 173 102 10 50
190 116 182 199 182
191 44 74 57 39
192 21 178 44 57
193 179 171 100 34
194 119 83 89 173
195 100 119 92 119
196 182 78 128 120
197 199 89 120 25
198 120 96 78 128
199 141 120 119 78
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Appendix C -  Tetrad III Files

In this appendix, the files associated with the Tetrad software are reviewed. The 

examples presented are from Example 3 - The ACRF Oven Domain Example with Tetrad 

data. In Figure C .l, a graph structure in the format required by Tetrad is illustrated. The 

first line indicates that the file is a graph definition and each o f the following lines define 

an arc from the first attribute to the second attribute. For example fa denotes the 

persistent attribute, fresh air set point in the oven domain, faO denotes the actual fresh air 

temperature in at time zero. The first line o f Figure C .l, indicates that there is an arc 

from the fresh air set point to the actual fresh air temperature at time zero. Other 

notations include: sd = supply damper, ed = exhaust damper, ss = sill set point, zs = zone 

set point, sa = actual sill temperature, zt = actual zone temperature, at = ambient 

temperature, mt = metal temperature, cs = conveyor speed, and vt = vehicle type. A 

number after the attribute code indicates a dynamic variable and the time slice o f the

dynamic variable.

/graph
fa faO zal atl mt2 mt3 fa4 za4
sd faO zal m tl fa fa3 Za4 at4
ed faO vt m tl sd fa3 Za4 mt4
ss saO csl m tl ed fa3 vt mt4
zsO zaO ztl m tl ss sa3 Cs4 mt4
faO zaO sal m tl zs3 za3 zt4 mt4
zaO atO m tl mt2 fa3 za3 sa4 mt4
zaO mtO fa fa2 za3 at3 fal zal
vt mtO sd fa2 za3 mt3 sa2 mt2
csO mtO ed fa2 vt mt3 zs4 za4
ztO mtO ss sa2 cs3 mt3 zsl zal
saO mtO zs2 za2 zt3 mt3 zt2 mt2
mtO m tl fa2 za2 sa3 mt3 Ss sa4
fa fat za2 at2 mt3 mt4
sd fa t za2 mt2 fa fa4
ed fat vt mt2 sd fa4
ss sal cs2 mt2 ed fa4

F igure  C .l:  Tetrad III -  Graph File from Example 3
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In Figure C.2 and Figure C.3, the linear equation model is presented. The file is built by 

using the “BuildModel” command with the name o f the graph file from Figure C .l as an 

argument.

/graph
fa faO 1.4781 ss sal 0.9729 sal mtl 0.1608 cs3 mt3 1.1562
fa fal 1.4755 ss sa2 0.9076 zsl zal 0.8569 zt3 mt3 1.2245
fa fa2 1.3196 ss sa3 0.3941 zal mtl 0.6759 fa4 za4 0.0348
fa fa3 0.7034 ss sa4 0.7563 csl mtl 1.3154 sa4 mt4 0.9079
fa fa4 1.2279 saO mtO 1.1695 ztl mtl 0.0831 zs4 za4 1.4347

faO zaO 0.0259 zsO zaO 1.2657 mt2 mt3 1.2163 za4 mt4 1.4250
sd faO 0.5469 zaO mtO 1.3572 fa2 za2 0.0002 cs4 mt4 1.4548
sd fal 0.5137 mtO m tl 0.9287 sa2 mt2 1.3039 zt4 mt4 0.3964
sd fa2 0.9903 vt mtO 0.7393 zs2 za2 0.0829
sd fa3 0.6291 vt mtl 0.7509 za2 mt2 0.7264
sd fa4 0.4778 vt mt2 1.3607 cs2 mt2 0.3175
ed faO 0.9254 vt mt3 1.0462 zt2 mt2 0.1490
ed fal 0.9345 vt mt4 0.7404 mt3 mt4 0.6593
ed fa2 0.8551 csO mtO 1.0177 fa3 za3 0.0465
ed fa3 0.3129 ztO mtO 0.6987 sa3 mt3 0.1525
ed fa4 0.1331 mtl mt2 0.2556 zs3 za3 0.9944
ss saO 0.9701 fal zal 1.1214 za3 mt3 1.0367

Figure C.2: Tetrad III -  Linear Equation File - Graph Section from Example 3

The data for the Tetrad III examples presented in this thesis was generated by the 

“Monte” function with an argument o f a linear equation model as presented in Figure C.2 

and C.3. This data file is illustrated in Figures C.4, C.5 and C.6. In Figure C.4, the 

header section is presented which contains the network structure with some parameters 

and distributions that are specified in the command line. Figure C.5 details the structural 

model created for the data. Figure C.6 contains a portion o f the data that was generated 

for Example 3. It should be noted that this data was normalized and weighted before use 

in the example.
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/linearm odel 
Variable Dist. Type Parameters

fa Normal 0
faO Normal 0
sd Normal 0
ed Normal 0
ss Normal 0
saO Normal 0
zsO Normal 0
zaO Normal 0
mtO Normal 0
vt Normal 0
csO Normal 0
ztO Normal 0
m tl Normal 0
fal Normal 0
sal Normal 0
zsl Normal 0
zal Normal 0
csl Normal 0
z tl Normal 0
mt2 Normal 0
fa2 Normal 0
sa2 Normal 0
zs2 Normal 0
za2 Normal 0
cs2 Normal 0
zt2 Normal 0
mt3 Normal 0
fa3 Normal 0
sa3 Normal 0
zs3 Normal 0
za3 Normal 0
cs3 Normal 0
zt3 Normal 0
mt4 Normal 0
fa4 Normal 0
sa4 Normal 0
zs4 Normal 0
za4 Normal 0
cs4 Normal 0
zt4 Normal 0

Figure C.3: Tetrad III -  Linear Equation File -  Linear Model Section Example 3
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The Generating Model 
Linear Structural Equation Model

Distribution over exogenous variables

Error Distributional 
term for Family Parameters

fa Normal Mean: 0.0000 Variance: 1.0000
faO Normal Mean: 0.0000 Variance: 1.0000
sd Normal Mean: 0.0000 Variance: 1.0000
ed Normal Mean: 0.0000 Variance: 1.0000
ss Normal Mean: 0.0000 Variance: 1.0000
saO Normal Mean: 0.0000 Variance: 1.0000
zsO Normal Mean: 0.0000 Variance: 1.0000
zaO Normal Mean: 0.0000 Variance: 1.0000
mtO Normal Mean: 0.0000 Variance: 1.0000
vt Normal Mean: 0.0000 Variance: 1.0000
csO Normal Mean: 0.0000 Variance: 1.0000
ztO Normal Mean: 0.0000 Variance: 1.0000
m tl Normal Mean: 0.0000 Variance: 1.0000
fal Normal Mean: 0.0000 Variance: 1.0000
sal Normal Mean: 0.0000 Variance: 1.0000
zsl Normal Mean: 0.0000 Variance: 1.0000
zal Normal Mean: 0.0000 Variance: 1.0000
csl Normal Mean: 0.0000 Variance: 1.0000
ztl Normal Mean: 0.0000 Variance: 1.0000
mt2 Normal Mean: 0.0000 Variance: 1.0000
fa2 Normal Mean: 0.0000 Variance: 1.0000
sa2 Normal Mean: 0.0000 Variance: 1.0000
zs2 Normal Mean: 0.0000 Variance: 1.0000
za2 Normal Mean: 0.0000 Variance: 1.0000
cs2 Normal Mean: 0.0000 Variance: 1.0000
zt2 Normal Mean: 0.0000 Variance: 1.0000
mt3 Normal Mean: 0.0000 Variance: 1.0000
fa3 Normal Mean: 0.0000 Variance: 1.0000
sa3 Normal Mean: 0.0000 Variance: 1.0000
zs3 Normal Mean: 0.0000 Variance: 1.0000
za3 Normal Mean: 0.0000 Variance: 1.0000
cs3 Normal Mean: 0.0000 Variance: 1.0000
zt3 Normal Mean: 0.0000 Variance: 1.0000
mt4 Normal Mean: 0.0000 Variance: 1.0000
fa4 Normal Mean: 0.0000 Variance: 1.0000
sa4 Normal Mean: 0.0000 Variance: 1.0000
zs4 Normal Mean: 0.0000 Variance: 1.0000
za4 Normal Mean: 0.0000 Variance: 1.0000
cs4 Normal Mean: 0.0000 Variance: 1.0000
zt4 Normal Mean: 0.0000 Variance: 1.0000

Figure C.4: Tetrad III -  Data File -  Header Section from Example 3
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Structural Equations

fa = el 
sd = e3 
ed = e4 
ss = e5
saO = 0.970ss + e6 
zsO = e7 
vt = elO 
csO = e l 1 
ztO = e l2
fal = 1.475fa + 0 .514sd+  0.934ed + e l4  
sal = 0.973ss + e l5  
zsl = e l6
zal = 1.121 fal + 0.857zsl + e l7  
csl = e l8  
z tl = e l9
fa2 =  1.319fa+ 0 .990sd+  0.855ed + e21 
sa2 = 0.908ss + e22 
zs2 = e23
za2 = 0.000fa2 + 0.083zs2 + e24 
cs2 = e25 
zt2 = e26
fa3 = 0.703fa + 0.629sd + 0.313ed + e28 
sa3 = 0.394ss + e29 
zs3 = e30
za3 = 0.046fa3 + 0.994zs3 + e3 1 
cs3 = e32 
zt3 = e33
fa4 = 1.228fa + 0.478sd + 0.133ed + e35 
sa4 = 0.756ss + e36 
zs4 = e37
za4 = 0.035fa4 + 1.435zs4 + e38 
cs4 = e39 
zt4 = e40
faO = 1.478fa + 0 .547sd+  0.925ed + e2 
zaO = 0.026fa0 + 1.266zs0 + e8
mtO = 1.169sa0+ 1.357zaO+ 0.739vt+  1.018cs0+ 0.699zt0 + e9 
m tl = 0.929mt0 + 0 .751vt+  0.161sal + 0.676zal + 1 .315csl+  0 .0 8 3 z tl+ e l3
mt2 = 1.3 61 vt + 0.255mtl + 1.304sa2+ 0.726za2 + 0.317cs2+ 0.149zt2 + e20
mt3 = 1.046vt+ 1.216mt2 + 0.152sa3 + 1.037za3 + 1.156cs3+ 1.224zt3 + e27
mt4 = 0 .740vt+  0.659mt3 + 0.908sa4 + 1.425za4+ 1.455cs4+ 0.396zt4 + e34

F igure C.5: Tetrad III -  Data File -  Structure Equations from Example 3
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/Continuousraw
200
fa faO sd ed ss saO zsO zaO mtO vt

csO ztO m tl fal sal zsl zal csl z tl mt2
fa2 sa2 zs2 za2 cs2 zt2 mt3 fa3 sa3 zs3
za3 cs3 zt3 mt4 fa4 sa4 zs4 za4 cs4 zt4
0.9850 0.6570 -1.1163 0.8115 1.2959 0.4334 -1.0452 •-1.5883 -1.8794 0.6009

-1.3897 -0.2841 2.3312 0.3495 1.9547 -0.5993 -0.5342 2.0853 1.2062 1.2310
1.1331 0.4423 0.3353 -0.3564 -0.6165 -0.0925 0.9318 1.7588 0.7586 0.6118
0.4502 -0.0763 -1.8141 3.4874 1.8192 1.6252 -0.6512 -0.7385 1.0983 1.0836
0.8556 2.6106 0.9462 1.1997 -1.3288 -1.9751 -0.1815 -0.0892 -0.8692 0.4348
0.2480 1.0844 -1.2820 4.1214 -2.8490 -0.5212 1.7082 -1.5212 -0.8999 -3.2579
3.0700 -2.1967 -0.5314 -0.7281 1.2036 -1.0166 -5.7608 2.1596 -0.1928 0.7767
0.9636 -0.8578 -0.7958 -6.5467 1.8575 -0.7858 -0.3981 -2.0652 0.4321 0.5993
0.6781 -0.6582 -0.4098 -1.0634 1.5611 0.4565 -0.2150 0.6303 3.4299 0.4564
0.8842 0.1093 6.1988 -0.3237 1.5091 0.6014 1.2090 -■0.1065 0.2413 0.0479
-1.8822 0.4643 0.8316 -2.7024 -0.5041 -1.2233 1.3935 -1.2675 0.2715 0.4494
0.0124 0.3283 1.4448 2.6459 0.6304 1.7335 1.8096 0.8678 -1.2502 -0.3942
0.1353 -1.2391 0.1466 -1.2846 -1.2153 -0.8452 0.3450 1.7960 1.4220 -1.0511
0.9539 -1.4151 -0.0389 -2.2873 -1.6479 -0.7030 -3.9477 1.2989 -0.5116 -1.5824

Figure C.6: Tetrad III -  D ata File -  Raw Data Section (partial) from Example 3
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