2,786 research outputs found

    Recursion Schemes, Discrete Differential Equations and Characterization of Polynomial Time Computations

    Get PDF
    This paper studies the expressive and computational power of discrete Ordinary Differential Equations (ODEs). It presents a new framework using discrete ODEs as a central tool for computation and algorithm design. We present the general theory of discrete ODEs for computation theory, we illustrate this with various examples of algorithms, and we provide several implicit characterizations of complexity and computability classes. The proposed framework presents an original point of view on complexity and computation classes. It unifies several constructions that have been proposed for characterizing these classes including classical approaches in implicit complexity using restricted recursion schemes, as well as recent characterizations of computability and complexity by classes of continuous ordinary differential equations. It also helps understanding the relationships between analog computations and classical discrete models of computation theory. At a more technical point of view, this paper points out the fundamental role of linear (discrete) ordinary differential equations and classical ODE tools such as changes of variables to capture computability and complexity measures, or as a tool for programming many algorithms

    A Characterisation of Functions Computable in Polynomial Time and Space over the Reals with Discrete Ordinary Differential Equations: Simulation of Turing Machines with Analytic Discrete ODEs

    Get PDF
    We prove that functions over the reals computable in polynomial time can be characterised using discrete ordinary differential equations (ODE), also known as finite differences. We also provide a characterisation of functions computable in polynomial space over the reals. In particular, this covers space complexity, while existing characterisations were only able to cover time complexity, and were restricted to functions over the integers, and we prove that no artificial sign or test function is needed even for time complexity. At a technical level, this is obtained by proving that Turing machines can be simulated with analytic discrete ordinary differential equations. We believe this result opens the way to many applications, as it opens the possibility of programming with ODEs, with an underlying well-understood time and space complexity

    Simulation of Turing machines with analytic discrete ODEs: FPTIME and FPSPACE over the reals characterised with discrete ordinary differential equations

    Full text link
    We prove that functions over the reals computable in polynomial time can be characterised using discrete ordinary differential equations (ODE), also known as finite differences. We also provide a characterisation of functions computable in polynomial space over the reals. In particular, this covers space complexity, while existing characterisations were only able to cover time complexity, and were restricted to functions over the integers. We prove furthermore that no artificial sign or test function is needed even for time complexity. At a technical level, this is obtained by proving that Turing machines can be simulated with analytic discrete ordinary differential equations. We believe this result opens the way to many applications, as it opens the possibility of programming with ODEs, with an underlying well-understood time and space complexity.Comment: arXiv admin note: text overlap with arXiv:2209.1340

    Unconditional Stability for Multistep ImEx Schemes: Theory

    Get PDF
    This paper presents a new class of high order linear ImEx multistep schemes with large regions of unconditional stability. Unconditional stability is a desirable property of a time stepping scheme, as it allows the choice of time step solely based on accuracy considerations. Of particular interest are problems for which both the implicit and explicit parts of the ImEx splitting are stiff. Such splittings can arise, for example, in variable-coefficient problems, or the incompressible Navier-Stokes equations. To characterize the new ImEx schemes, an unconditional stability region is introduced, which plays a role analogous to that of the stability region in conventional multistep methods. Moreover, computable quantities (such as a numerical range) are provided that guarantee an unconditionally stable scheme for a proposed implicit-explicit matrix splitting. The new approach is illustrated with several examples. Coefficients of the new schemes up to fifth order are provided.Comment: 33 pages, 7 figure

    Spectral methods for CFD

    Get PDF
    One of the objectives of these notes is to provide a basic introduction to spectral methods with a particular emphasis on applications to computational fluid dynamics. Another objective is to summarize some of the most important developments in spectral methods in the last two years. The fundamentals of spectral methods for simple problems will be covered in depth, and the essential elements of several fluid dynamical applications will be sketched

    Poisson integrators

    Full text link
    An overview of Hamiltonian systems with noncanonical Poisson structures is given. Examples of bi-Hamiltonian ode's, pde's and lattice equations are presented. Numerical integrators using generating functions, Hamiltonian splitting, symplectic Runge-Kutta methods are discussed for Lie-Poisson systems and Hamiltonian systems with a general Poisson structure. Nambu-Poisson systems and the discrete gradient methods are also presented.Comment: 30 page
    corecore