38,876 research outputs found

    Kaleidoscope JEIRP on Learning Patterns for the Design and Deployment of Mathematical Games: Final Report

    Get PDF
    Project deliverable (D40.05.01-F)Over the last few years have witnessed a growing recognition of the educational potential of computer games. However, it is generally agreed that the process of designing and deploying TEL resources generally and games for mathematical learning specifically is a difficult task. The Kaleidoscope project, "Learning patterns for the design and deployment of mathematical games", aims to investigate this problem. We work from the premise that designing and deploying games for mathematical learning requires the assimilation and integration of deep knowledge from diverse domains of expertise including mathematics, games development, software engineering, learning and teaching. We promote the use of a design patterns approach to address this problem. This deliverable reports on the project by presenting both a connected account of the prior deliverables and also a detailed description of the methodology involved in producing those deliverables. In terms of conducting the future work which this report envisages, the setting out of our methodology is seen by us as very significant. The central deliverable includes reference to a large set of learning patterns for use by educators, researchers, practitioners, designers and software developers when designing and deploying TEL-based mathematical games. Our pattern language is suggested as an enabling tool for good practice, by facilitating pattern-specific communication and knowledge sharing between participants. We provide a set of trails as a "way-in" to using the learning pattern language. We report in this methodology how the project has enabled the synergistic collaboration of what started out as two distinct strands: design and deployment, even to the extent that it is now difficult to identify those strands within the processes and deliverables of the project. The tools and outcomes from the project can be found at: http://lp.noe-kaleidoscope.org

    Security Requirements Elicitation from Airline Turnaround Processes

    Get PDF
    Security risk management is an important part of system development. Given that a majority of modern organizations rely heavily on information systems, security plays a big part in ensuring smooth operations of business processes. For example, many people rely on e-services offered by banks and medical establishments. Inadequate security measures in information systems have unwanted effects on an organization’s reputation and on people’s lives. This case study paper targets the secure system development problem by suggesting the application of security requirements elicitation from business processes (SREBP). This approach provides business analysts with means to elicit and introduce security requirements to business processes through the application of the security risk-oriented patterns (SRPs). These patterns help find security risk occurrences in business processes and present mitigations for these risks. At the same time, they reduce the efforts needed for risk analysis. In this paper, the authors report their experience to derive security requirements for mitigating security risks in the distributed airline turnaround Systems

    Proximate and ultimate factors in evolutionary thinking on art

    Get PDF
    Art is often described as an evolutionary adaptation, but not enough thought has been given to arguments in support of this claim. This can lead to a variety of explanatory issues, such as unjustly describing artmaking as an adaptation, not recognizing its complex nature, and its potentially even more complex evolutionary trajectory. This paper addresses one subject in particular, which is the conceptual distinction between ultimate and proximate levels of explanation. More specifically, this brief analysis investigates to what extent functional, adaptive explanations and proximate mechanisms might be confused, leading to strong adaptationist claims that may not be in accordance with the available evidence. In this paper, two hypotheses are discussed from this perspective, and it is argued that both of them, upon closer and more extensive analysis, might not stand the adaptationist test

    A technique for evaluating the application of the pin-level stuck-at fault model to VLSI circuits

    Get PDF
    Accurate fault models are required to conduct the experiments defined in validation methodologies for highly reliable fault-tolerant computers (e.g., computers with a probability of failure of 10 to the -9 for a 10-hour mission). Described is a technique by which a researcher can evaluate the capability of the pin-level stuck-at fault model to simulate true error behavior symptoms in very large scale integrated (VLSI) digital circuits. The technique is based on a statistical comparison of the error behavior resulting from faults applied at the pin-level of and internal to a VLSI circuit. As an example of an application of the technique, the error behavior of a microprocessor simulation subjected to internal stuck-at faults is compared with the error behavior which results from pin-level stuck-at faults. The error behavior is characterized by the time between errors and the duration of errors. Based on this example data, the pin-level stuck-at fault model is found to deliver less than ideal performance. However, with respect to the class of faults which cause a system crash, the pin-level, stuck-at fault model is found to provide a good modeling capability

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve

    The future of technology enhanced active learning – a roadmap

    Get PDF
    The notion of active learning refers to the active involvement of learner in the learning process, capturing ideas of learning-by-doing and the fact that active participation and knowledge construction leads to deeper and more sustained learning. Interactivity, in particular learnercontent interaction, is a central aspect of technology-enhanced active learning. In this roadmap, the pedagogical background is discussed, the essential dimensions of technology-enhanced active learning systems are outlined and the factors that are expected to influence these systems currently and in the future are identified. A central aim is to address this promising field from a best practices perspective, clarifying central issues and formulating an agenda for future developments in the form of a roadmap
    corecore