236 research outputs found

    Effective denoising and adaptive equalization of indoor optical wireless channel with artificial light using the discrete wavelet transform and artificial neural network

    Get PDF
    Indoor diffuse optical wireless (OW) communication systems performance is limited due to a number of effects; interference from natural and artificial light sources and multipath induced intersymbol interference (ISI). Artificial light interference (ALI) is a periodic signal with a spectrum profile extending up to the MHz range. It is the dominant source of performance degradation at low data rates, which can be removed using a high-pass filter (HPF). On the other hand, ISI is more severe at high data rates and an equalizing filter is incorporated at the receiver to compensate for the ISI. This paper provides the simulation results for a discrete wavelet transform (DWT)—artificial neural network (ANN)-based receiver architecture for on-and-off keying (OOK) non-return-to-zero (NRZ) scheme for a diffuse indoor OW link in the presence of ALI and ISI. ANN is adopted for classification acting as an efficient equalizer compared to the traditional equalizers. The ALI is effectively reduced by proper selection of the DWT coefficients resulting in improved receiver performance compared to the digital HPF. The simulated bit error rate (BER) performance of proposed DWT-ANN receiver structure for a diffuse indoor OW link operating at a data range of 10-200 Mbps is presented and discussed. The results are compared with performance of a diffuse link with an HPF-equalizer, ALI with/without filtering, and a line-of-sight (LOS) without filtering. We show that the DWT-ANN display a lower power requirement when compared to the receiver with an HPF-equalizer over a full range of delay spread in presence of ALI. However, as expected compared to the ideal LOS link the power penalty is higher reaching to 6 dB at 200 Mbps data rate

    Bit error performance of diffuse indoor optical wireless channel pulse position modulation system employing artificial neural networks for channel equalisation

    Get PDF
    The bit-error rate (BER) performance of a pulse position modulation (PPM) scheme for non-line-of-sight indoor optical links employing channel equalisation based on the artificial neural network (ANN) is reported. Channel equalisation is achieved by training a multilayer perceptrons ANN. A comparative study of the unequalised `soft' decision decoding and the `hard' decision decoding along with the neural equalised `soft' decision decoding is presented for different bit resolutions for optical channels with different delay spread. We show that the unequalised `hard' decision decoding performs the worst for all values of normalised delayed spread, becoming impractical beyond a normalised delayed spread of 0.6. However, `soft' decision decoding with/without equalisation displays relatively improved performance for all values of the delay spread. The study shows that for a highly diffuse channel, the signal-to-noise ratio requirement to achieve a BER of 10−5 for the ANN-based equaliser is ~10 dB lower compared with the unequalised `soft' decoding for 16-PPM at a data rate of 155 Mbps. Our results indicate that for all range of delay spread, neural network equalisation is an effective tool of mitigating the inter-symbol interference

    Neural networks for optical channel equalization in high speed communication systems

    Get PDF
    La demande future de bande passante pour les données dépassera les capacités des systèmes de communication optique actuels, qui approchent de leurs limites en raison des limitations de la bande passante électrique des composants de l’émetteur. L’interférence intersymbole (ISI) due à cette limitation de bande est le principal facteur de dégradation pour atteindre des débits de données élevés. Dans ce mémoire, nous étudions plusieurs techniques de réseaux neuronaux (NN) pour combattre les limites physiques des composants de l’émetteur pilotés à des débits de données élevés et exploitant les formats de modulation avancés avec une détection cohérente. Notre objectif principal avec les NN comme égaliseurs de canaux ISI est de surmonter les limites des récepteurs optimaux conventionnels, en fournissant une complexité évolutive moindre et une solution quasi optimale. Nous proposons une nouvelle architecture bidirectionnelle profonde de mémoire à long terme (BiLSTM), qui est efficace pour atténuer les graves problèmes d’ISI causés par les composants à bande limitée. Pour la première fois, nous démontrons par simulation que notre BiLSTM profonde proposée atteint le même taux d’erreur sur les bits(TEB) qu’un estimateur de séquence à maximum de vraisemblance (MLSE) optimal pour la modulation MDPQ. Les NN étant des modèles pilotés par les données, leurs performances dépendent fortement de la qualité des données d’entrée. Nous démontrons comment les performances du BiLSTM profond réalisable se dégradent avec l’augmentation de l’ordre de modulation. Nous examinons également l’impact de la sévérité de l’ISI et de la longueur de la mémoire du canal sur les performances de la BiLSTM profonde. Nous étudions les performances de divers canaux synthétiques à bande limitée ainsi qu’un canal optique mesuré à 100 Gbaud en utilisant un modulateur photonique au silicium (SiP) de 35 GHz. La gravité ISI de ces canaux est quantifiée grâce à une nouvelle vue graphique des performances basée sur les écarts de performance de base entre les solutions optimales linéaires et non linéaires classiques. Aux ordres QAM supérieurs à la QPSK, nous quantifions l’écart de performance BiLSTM profond par rapport à la MLSE optimale à mesure que la sévérité ISI augmente. Alors qu’elle s’approche des performances optimales de la MLSE à 8QAM et 16QAM avec une pénalité, elle est capable de dépasser largement la solution optimale linéaire à 32QAM. Plus important encore, l’avantage de l’utilisation de modèles d’auto-apprentissage comme les NN est leur capacité à apprendre le canal pendant la formation, alors que la MLSE optimale nécessite des informations précises sur l’état du canal.The future demand for the data bandwidth will surpass the capabilities of current optical communication systems, which are approaching their limits due to the electrical bandwidth limitations of the transmitter components. Inter-symbol interference (ISI) due to this band limitation is the major degradation factor to achieve high data rates. In this thesis, we investigate several neural network (NN) techniques to combat the physical limits of the transmitter components driven at high data rates and exploiting the advanced modulation formats with coherent detection. Our main focus with NNs as ISI channel equalizers is to overcome the limitations of conventional optimal receivers, by providing lower scalable complexity and near optimal solution. We propose a novel deep bidirectional long short-term memory (BiLSTM) architecture, that is effective in mitigating severe ISI caused by bandlimited components. For the first time, we demonstrate via simulation that our proposed deep BiLSTM achieves the same bit error rate (BER) performance as an optimal maximum likelihood sequence estimator (MLSE) for QPSK modulation. The NNs being data-driven models, their performance acutely depends on input data quality. We demonstrate how the achievable deep BiLSTM performance degrades with the increase in modulation order. We also examine the impact of ISI severity and channel memory length on deep BiLSTM performance. We investigate the performances of various synthetic band-limited channels along with a measured optical channel at 100 Gbaud using a 35 GHz silicon photonic(SiP) modulator. The ISI severity of these channels is quantified with a new graphical view of performance based on the baseline performance gaps between conventional linear and nonlinear optimal solutions. At QAM orders above QPSK, we quantify deep BiLSTM performance deviation from the optimal MLSE as ISI severity increases. While deep BiLSTM approaches the optimal MLSE performance at 8QAM and 16QAM with a penalty, it is able to greatly surpass the linear optimal solution at 32QAM. More importantly, the advantage of using self learning models like NNs is their ability to learn the channel during the training, while the optimal MLSE requires accurate channel state information

    Multi-Agent Feedback Enabled Neural Networks for Intelligent Communications

    Get PDF
    In the intelligent communication field, deep learning (DL) has attracted much attention due to its strong fitting ability and data-driven learning capability. Compared with the typical DL feedforward network structures, an enhancement structure with direct data feedback have been studied and proved to have better performance than the feedfoward networks. However, due to the above simple feedback methods lack sufficient analysis and learning ability on the feedback data, it is inadequate to deal with more complicated nonlinear systems and therefore the performance is limited for further improvement. In this paper, a novel multi-agent feedback enabled neural network (MAFENN) framework is proposed, consisting of three fully cooperative intelligent agents, which make the framework have stronger feedback learning capabilities and more intelligence on feature abstraction, denoising or generation, etc. Furthermore, the MAFENN frame work is theoretically formulated into a three-player Feedback Stackelberg game, and the game is proved to converge to the Feedback Stackelberg equilibrium. The design of MAFENN framework and algorithm are dedicated to enhance the learning capability of the feedfoward DL networks or their variations with the simple data feedback. To verify the MAFENN framework’s feasibility in wireless communications, a multi-agent MAFENN based equalizer (MAFENN-E) is developed for wireless fading channels with inter-symbol interference (ISI). Experimental results show that when the quadrature phase-shift keying (QPSK) modulation scheme is adopted, the SER performance of our proposed method outperforms that of the traditional equalizers by about 2 dB in linear channels. When in nonlinear channels, the SER performance of our proposed method outperforms that of either traditional or DL based equalizers more significantly, which shows the effectiveness and robustness of our proposal in the complex channel environment

    Performance comparison of blind and non-blind channel equalizers using artificial neural networks

    Get PDF
    In digital communication systems, multipath propagation induces Inter Symbol Interference (ISI). To reduce the effect of ISI different channel equalization algorithms are used. Complex equalization algorithms allow for achieving the best performance but they do not meet the requirements for implementation of real-time detection at low complexity, thus limiting their application. In this paper, we present different blind and non-blind equalization structures based on Artificial Neural Networks (ANNs) and, also, we analyze their complexity versus performance. Since the activation function at the output layer depends on the cost function with respect to the input, in the present work we use mean squared error as loss function for the output layer. The simulated network is based on multilayer feedforward perceptron ANN, which is trained by utilizing the error back-propagation algorithm. The weights of the network are updated in accordance with training of the network to improve the convergence speed. Simulation results demonstrate that the implementation of equalizers using ANN provides an upper hand over the performance and computational complexity with respect to conventional methods

    Multichannel Nonlinear Equalization in Coherent WDM Systems based on Bi-directional Recurrent Neural Networks

    Full text link
    Kerr nonlinearity in the form of self- and cross-phase modulation imposes a fundamental limitation to the capacity of wavelength division multiplexed (WDM) optical communication systems. Digital back-propagation (DBP), that requires solving the inverse-propagating nonlinear Schr\"odinger equation (NLSE), is a widely adopted technique for the mitigation of impairments induced by Kerr nonlinearity. However, multi-channel DBP is too complex to be implemented commercially in WDM systems. Recurrent neural networks (RNNs) have been recently exploited for nonlinear signal processing in the context of optical communications. In this work, we propose multi-channel equalization through a bidirectional vanilla recurrent neural network (bi-VRNN) in order to improve the performance of the single-channel bi-VRNN algorithm in the transmission of WDM M-QAM signals. We compare the proposed digital algorithm to full-field DBP and to the single channel bi-RNN in order to reveal its merits with respect to both performance and complexity. We finally provide experimental verification through a QPSK metro link, showcasing over 2.5 dB optical signal-to-noise ratio (OSNR) gain and up to 43% complexity reduction with respect to the single-channel RNN and the DBP.Comment: 9 page

    Recurrent Neural Network Based Narrowband Channel Prediction

    No full text
    In this contribution, the application of fully connected recurrent neural networks (FCRNNs) is investigated in the context of narrowband channel prediction. Three different algorithms, namely the real time recurrent learning (RTRL), the global extended Kalman filter (GEKF) and the decoupled extended Kalman filter (DEKF) are used for training the recurrent neural network (RNN) based channel predictor. Our simulation results show that the GEKF and DEKF training schemes have the potential of converging faster than the RTRL training scheme as well as attaining a better MSE performance
    corecore