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1. Introduction      

The Kalman filter was named after Rudolph E. Kalman published in 1960 his famous paper 

(Kalman, 1960) describing a recursive solution to the discrete-data linear filtering problem. 

There are several tutorial papers and books dealing with the subject for a great variety of 

applications in many areas from engineering to finance (Grewal & Andrews, 2001; Sorenson, 

1970; Haykin, 2001; Bar-Shalom & Li, 1993). All applications involve, in some way, 

stochastic estimation from noisy sensor measurements. This book chapter deals with 

applications of Complex Valued Extended Kalman Filters for training Recurrent Neural 

Networks particularly RTRL (Real Time Recurrent Learning) neural networks. Gradient-

based learning techniques are usually used in back-propagation and Real-Time Recurrent 

Learning algorithms for training feed forward Neural Networks and Recurrent Neural 

Network Equalizers. Known disadvantages of gradient-based methods are slow 

convergence rates and long training symbols necessary for suitable performance of 

equalizers. In order to overcome such problems Kalman filter trained neural networks has 

been considered in the literature. The applications are related to mobile channel equalizers 

using realistic channel responses based on WSSUS (Wide-Sense Stationary Uncorrelated 

Scattering) models. The chapter begins with a detailed description showing the application 

of Extended Kalman Filters to RTRL (Real Time Recurrent Learning) neural networks. The 

main equations are derived in a state space framework in connection to RTRL training. Then 

applications are envisioned for mobile channel equalizers where WSSUS models are 

adequate for handling equalization in presence of time-varying channels. This chapter 

proposes a fully recurrent neural network trained by an extended Kalman filtering 

including covariance matrices adjusted for better filter tuning in training the recurrent 

neural network equalizer. Several structures for the Extended Kalman Filter trained 

equalizer are described in detail, and simulation results are shown comparing the proposed 

equalizers with traditional equalizers and other recurrent neural networks structures. 

Conclusions are drawn in the end of the chapter and future work is also discussed. 

2. Training a complex RTRL neural network using EKF 

This chapter deals with the training of Recurrent Neural Networks that are characterized by 

one or more feedback loops. These feedback loops enable those neural networks to acquire 

Source: Kalman Filter, Book edited by: Vedran Kordić,  
 ISBN 978-953-307-094-0, pp. 390, May 2010, INTECH, Croatia, downloaded from SCIYO.COM
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state representations making them appropriate devices for several applications in 

engineering such as adaptive equalization of communication channels, speech processing 

and plant control. In many real time applications fast training is required in order to make 

the application successful. This chapter extends the EKF (Extended Kalman Filter) learning 

strategy considered by Haykin (Haykin, 2001) for recurrent neural networks to the one 

using Real Time Recurrent Learning (RTRL) training algorithm for complex valued inputs 

and outputs. For instance, in the adaptive channel equalization problem for modulated 

signals, complex envelope signals are used, so a complex RTRL recurrent neural network 

could be useful in such equalization application. Rao, (Rao et. al., 2000) used EKF techniques 

for training a complex backpropagation neural network for adaptive equalization. The 

complex RTRL neural network training was also considered by Kechriotis and Manolakos 

(Kechriotis & Manolakos, 1994) and their training algorithm is also revisited in section 3 of 

this chapter with the use of a state space representation. Results indicate the feasibility of the 

proposed complex EKF trained RTRL neural network for tracking slow time varying signals 

but also shows the proposed structure does not suit scenarios where fast time varying 

signals are concerned. So, better time tracking mechanisms are needed in the proposed 

neural network structure. The authors are currently pursuing enhanced mechanisms in the 

complex RTRL neural network so to incorporate more information in the RTRL neural 

network in order improve fast time tracking. Next sections show details on how the EKF 

training is performed for a complex RTRL neural network. First the structure of a recurrent 

neural network is described then how is usually trained. 

3. Recurrent neural networks 

The structure of the neural network considered in this chapter is that of a fully connected 

recurrent network as depicted in figure 1. The usual training algorithm for that neural 

network is known as RTRL and was derived by Williams and Zipser (Williams & Zipser, 

1989). For complex valued signals the corresponding training algorithm is called Complex 

EKF-RTRL or EKF-CRTRL in this chapter. Usually CRTRL training algorithms use gradient 

techniques for updating the weights such as the training scheme proposed by and Kechriotis 

and Manolakos (Kechriotis & Manolakos, 1994). Their training algorithm can be rewritten in 

terms of a state space representation extending Haykin’s analysis (Haykin, 1999) for 

complex signals.  So, in the noise free case, the dynamic behavior of the recurrent neural 

network in figure 1 can be described by the nonlinear equations. 
 

x ( n + 1 ) = ϕC ( Wa x ( n ) + Wb u ( n ) ) = 

= ϕ ( real (Wa x ( n ) + Wb u ( n ) ) + i ϕ ( imag( Wa x ( n ) + Wb u ( n ) ) = 

 = xR ( n + 1 ) + i  xI ( n +1 ) = (1) 

 y ( n ) = C x ( n ) (2) 

 

where Wa is a q-by-q matrix, Wb is a q-by-m matrix, C is a p-by-q matrix and ϕ: ℜq → ℜq  is a 
diagonal map described by 
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x1 Ror I ϕ ( x1 Ror I ) 
x2 Ror I ϕ ( x2 Ror I ) 

: : 
: : 

ϕ:

xq R or I 

→ 

ϕ ( xq R or I) 

                                      (3) 

for some memoryless component-wise nonlinearity  ϕc: C→C. The spaces  Cm, Cq, and Cp are 

named the input space, state space, and output space, respectively. It can be said that q, that 

represents the dimensionality of the state space, is the order of the system. So the state space 

model of the neural network depicted in figure 1 is an m-input, p-output recurrent model of 

order q. Equation (1) is the process equation and equation (2) is the measurement equation. 

Moreover, Wa contains the synaptic weights of the q processing neurons that are connected 

to the feedback nodes in the input layer. Besides, Wb contains the synaptic weights of each 

one of the q neurons that are connected to the input neurons, and matrix C defines the 

combination of neurons that will characterize the output. The nonlinear function ϕc (.) 

represents the sigmoid  activation  function  of each one of the q  neurons supposed to  have 

the form 
 

 

Fig. 1. Recurrent Neural Network Structure 
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  ϕC = ϕ ( real ( x )  ) + i ϕ( (imag ( x ) ) (4) 
where 

 ϕ ( x ) = tanh ( x ) = ( 1 – e - 2 X ) / ( 1 + e - 2 X )  (5) 

It should be noted that the function ϕC defined by equation (4) is scalar and is obviously 

different from the vector function ϕC defined by equation (1). 

4. CRTRL learning representation using a state space model 

This section derives the CRTRL learning algorithm in terms of a state space model presented 
in section 3. The process equation (1) can be written in an expanded form as 

x ( n + 1 ) = [ ϕC ( w1H ξ ( n ) )  . . . ϕC ( wqH ξ ( n ) ) ]T = 

= [ ϕ ( real ( w1H ξ ( n ) ) )  . . .  ϕ ( real ( wqH ξ ( n ) ) ) ]T 

 + i [ ϕ ( imag( w1H ξ ( n ) ) )  . . .  ϕ ( imag ( wqH ξ ( n ) ) ) ]T (6) 

where it is supposed that all q neurons have the same activation function given by (4) and H 

is the Hermitian operator. The (q+m)-by-1 vector wj is defined as the synaptic weight vector 

of neuron j in the recurrent neural network, so that 

  

w a, j  
wj  =  , j = 1,2, ..., q 

 
w b, j 

 

 (7) 

where w a , j e w b , j are the j th columns of the transposed weight matrices Wa
T e Wb

T 

respectively. The (q+m)-by-1 vector ξ(n) is defined by 

 

x ( n ) 

ξ ( n )  =
u ( n ) 

(8)

where x(n) is the q-by-1 state vector and u(n) is the m-by-1 input vector.  

Before deriving the CRTRL learning algorithm some new matrices are defined, where the 

indexes A and B indicate real or imaginary parts. 

  
∂x1A 

/∂wj 1B 

∂x1A 

/∂wj 2B 
. . . 

∂x1A 

/∂wj q+mB 

Λj A B ( n ) = 
∂xA ( n ) 

/∂wj B 

∂x2A 

/∂wj 1B 

∂x2A 

/∂wj 2B 

 
. . . 

∂x2A 

/∂wj q+mB 
  : : . : 
  : : . : 

  
∂xqA 

/∂wj 1B 

∂xqA 

/∂wj 2B 
. . . 

∂xqA 

/∂wj q+mB 

(9)
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0T

UjA = ξA T (n) ← j-th row

0T

   (10) 

  

 

 

xA 

 
 

ξA =   

 uA  

 

(11) 

φR ( n ) = diag [ ϕ ‘( real ( w1H ξ ( n ) ) )  . . .  ϕ’ ( real ( wqH ξ ( n ) ) )  ] 

 φI ( n ) = diag[ϕ ‘( imag( w1H ξ ( n ) ) )  . . .  ϕ’ ( imag ( wqH ξ ( n ) ) ) ] (12) 

 

Updating equations for the matrices Λj A B ( n ) is needed for the CRTRL training algorithm. 

There are four such matrices and they all can be obtained using their formal definitions. For 

instance: 

  
 

 

∂xR ( n )  
 

Λj R R ( n ) = _______   

  
 

∂wj R 

  
 

(13) 

and so 
 

∂ϕ ( real (Wa x (n) + Wb u (n) ) ) 

 

∂ϕ (  sR )        ∂ϕ ( sR) ∂s R 

Λj R R ( n ) = __________________________  = _________ = ___________________ 

                      ∂wj R 

 

    ∂wj R               ∂s R ∂wj R 

(14)

 

However, 
 

                ∂ϕ (  sR )       =     diag [ ϕ ‘(  s1 R (  n ) ) . . .  ϕ’ ( real (‘(  sq R (  n ) )] = φR ( n ) 

                    ∂s R 
(15) 

 

and 
 

∂ϕ (  sR )       =     WaR Λj R R ( n ) - WaI Λj I R ( n ) + Uj R ( n ) 

                                 ∂wj R  
(16) 

 

where 
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0T  

   

UjR = ξR T ( n ) ,  ξR T ( n ) = [ x R T       u R T ] 
  

 

(17)

So 

 Λj R R ( n ) =  φR (n)  [  WaR Λj R R ( n ) - WaI Λj I R ( n ) + Uj R ( n ) ] (18) 

The other ones can be obtained in a similar way. The four matrices can be written in a 
compact form as 

ΛjRR ΛjRI φR 0  WaR WaI  ΛjRR ΛjRI   UjR -UjI 

  (n+1) (n+1)     (n) +   

ΛjIR ΛjII  0 φI  WaI WaR ΛjIR ΛjII   UjI UjR 

(19)

The weights updating equations are obtained by minimizing  the error 

 ε ( n ) =  ½ eH(n) e (n) = ½ [e R T(n) e R (n) + e I T(n) e I (n) ] (20) 

The error gradient is defined as 
 

                                                     ∇wj ε ( n ) = ∂ε ( n )  +  i  ∂ε ( n )   

                                                                             ∂wj R           ∂wj I 
(21) 

 

where 
 

∂ ε ( n ) =     - Λj R R ( n )T CT e R (n)  - Λj I R ( n )T CT e I (n) 

                      ∂wj R 
(22) 

 

and 
  

∂ ε ( n ) =     - Λj R I ( n )T CT e R (n)  - Λj I I ( n )T CT e I (n) 

                      ∂wj I 
(23) 

 

The weights updating equation uses the error gradient and is written as 

 wj (n+1) =  wj (n) - η ∇wj ε ( n ) (24) 

So the weights adjusting equations can be written as 

  ΛjRR ΛjRI

Δwj(n) = =η
  

 

Δwj R(n)+iΔwjI(n) 

 
{[eRT(n)C eRT(n)C] 

ΛjIR ΛjII

 
(n)} 
 

1 
 

i 
 (25)

The above training algorithm uses gradient estimates and convergence is known to be slow 
(Haykin, 2001) This motivates the use of faster training algorithms such as the one using 
EKF techniques which can be found in (Haykin, 2001)  for real valued signals. Next section 
shows the application of EKF techniques in the CRTRL training. 
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5. EKF-CRTRL learning 

This section derives the EKF-CRTRL learning algorithm. For that, the supervised training of 
the fully recurrent neural network in figure 1 can be viewed as an optimal filtering problem, 
the solution of which, recursively utilizes information contained in the trained data in a 
manner going back to the first iteration of the learning process. This is the essence of 
Kalman filtering (Kalman, 1960). The state-space equations for the network may be modeled 
as 
 

w j (n+1) = w j (n) + ω j (n)      j=1 ,…, q ϕC ( w1 H ξ (n – 1) )

: 

ϕC ( wj H ξ (n – 1) ) + υ (n) 

x(n) = ϕ C  (Wa x (n-1) + Wb u (n -1)) + υ (n) = : 

: 

ϕC ( wq H ξ (n – 1) )

 (26) 

 

where ω j (n) is the process noise vector , υ (n) is the measurement noise vector, both 

considered to be white and zero mean having diagonal covariance matrices Q and R 

respectively and now the weight vectors wj (j= 1, q) play the role of state. It is also supposed 

that all q neurons have the same activation function given by (4).  It is important to stress 

that when applying the extended Kalman filter to a fully recurrent neural network one can 

see two different contexts where the term state is used (Haykin, 1999). First, in the evolution 

of the system through adaptive filtering which appears in the changes to the recurrent 

network’s weights by the training process. That is taken care by the vectors wj (j= 1, q). 

Second, in the operation of the recurrent network itself that can be observed by the recurrent 

nodes activities. That is taken care by the vector x(n). In order to pave the way for the 

application of Kalman filtering to the state-space model given by equations (6), it is 

necessary to linearize the second equation in (6) and rewrite it in the form 

 
  w1 

          x( n ) = [ Λ1 (n – 1)  . . . Λj (n – 1)  . . . Λq (n – 1) ]  : 

  wj 
   : 

  wq

 (27)

                         = ∑j=1q Λj (n – 1) wj + υ (n)  
 

The synaptic weights were divided in q groups for the application of the decoupled 

extended Kalman filter (DEKF) (Haykin, 1999). The framework is now set for the application 

of the Kalman filtering algorithm (Haykin, 1999) which is summarized in Table 1. Equations 

in Table 1 are extensions from real to complex values. The expression involving Λj can be 

evaluated through the definition 

 Λj (n) =  ∂x (n) / ∂wj R  - i ∂x (n) / ∂wj I (28) 

The training procedure was improved in the EKF training by the use of heuristic fine-tuning 

techniques for the Kalman filtering.  The tuning incorporated in the filter algorithm in Table 
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1 is based on the following. It is known that initial values of both the observation and the 

process noise covariance matrices affect the filter transient duration. These covariances not 

only account for actual noises and disturbances in the physical system, but also are a means 

of declaring how suitably the assumed model represents the real world system (Maybeck, 

1979). Increasing process noise covariance would indicate either stronger noises driving the 

dynamics or increased uncertainty in the adequacy of the model itself to depict the true 

dynamics accurately. In a similar way, increased observation noise would indicate the 

measurements are subjected to a stronger corruptive noise, and so should be weighted less 

by the filter. That analysis indicate that a large degree of uncertainty is expected in the initial 

phase of the Kalman filter trained neural network so that it seems reasonable to have large 

initial covariances for the process and observation noises. Therefore the authors suggest a 

heuristic mechanism, to be included in the extended Kalman filter training for the recurrent 

neural network, that keeps those covariances large in the beginning of the training and then 

decreases during filter operation. In order to achieve that behavior, a diagonal matrix is 

added both to the process and to the observation noise covariance matrices individually. 

Each diagonal  matrix is composed by an identity matrix times a complex valued parameter 

which decreases at each step exponentially. The initial value of this parameter is set by 

means of simulation trials.  Simulation results indicated the success of such heuristic 

method.   

 

Initialization: 
1. Set the synaptic weights of the recurrent network to small values 

selected from a complex uniform distribution. 

2. Set Kj(0)=(δR + i δI) I where δR e δI are small  positive constants.  

3. Set R(0) = (γR  + i γI ) I where (γR and γI are large positive constants, 
typically 102 – 103.  

Heuristic Filter Tuning: 

1. Set R(n) = R(n) + α I, where  α decreases exponentially in time. 

2. Set Q(n) = Q(n) + β I, where β decreases exponentially in time. 

Compute  for n = 1, 2,  ... 

1

1

1

( ) [ ( ) ( 1) ( ) ( )]

( ) ( ) ( ) ( )

( ) ( ) ( 1)

( 1) ( ) ( ) ( )

( 1) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ( ) ( ))

d(n) is the desired

q
H

j j j

j

H

j j j

q

j j

j

j j j

j j j j j j

RR II IR RI

j j j j j

n n K n n R n

G n K n n n

n d n C n w

w n w n G n n

K n K n G n n K n Q n

n n n i n n

α

α

−

=

=

Γ = Λ − Λ +

= Λ Γ

= − Λ −

+ = +

+ = − Λ +

Λ = Λ +Λ + Λ −Λ

∑

∑

 output at instant n 

 

 

Table 1. Recurrent Neural Network Training Via Decoupled Extended Kalman Filter DEKF 
Algorithm Complex ( Decoupled Extended Kalman Filter) 
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The authors applied the EKF-CRTL training in channel equalization problems for mobile 
and cell communications scenarios and representative papers are (Coelho & Biondi , 2006), 
(Coelho, 2002) and, (Coelho & Biondi , 2006). 

6. Results and conclusion 

Numerical results were obtained for the EKF-CRTRL neural network derived in the 

previous section using the adaptive complex channel equalization application. The objective 

of such an equalizer is to reconstruct the transmitted sequence using the noisy 

measurements of the output of the channel (Proakis, 1989). 

A WSS-US (Wide Sense Stationary-Uncorrelated Scattering) channel model was used which 
is suitable for modeling mobile channels (Hoeher, 1992). It was assumed a 3-ray multipath 
intensity profile with variances (0.5, 0.3, 0.2). The scattering function of the simulated 
channel is typically that depicted in figure 2. This function assumes that the Doppler 
spectrum has the shape of the Jakes spectrum (Jakes, 1969). The input sequence was 
considered complex, QPSK whose real and imaginary parts assumed the values +1 and – 
1.The SNR was 40 dB and the EKF-CRTRL equalizer had 15 input neurons and 1 processing 
neuron. It was used a Doppler frequency of zero. The inputs comprised the current and 
previous 14 channel noisy measurements. Figure 3 shows the square error in the output vs. 
number of iterations. 
 

 

Fig. 2. Scattering Function of the Simulated Mobile Channel 

Figure 3 shows a situation where the mobile receiving the signal is static, e.g. Doppler 

frequency zero Hz. Figure 4 shows a scenario where the mobile is moving slowly, e.g. 

Doppler frequency 10 Hz. To assess the benefits in the EKF-CRTRL training algorithm one 

can compare the square error in its output with that in the output of the CRTRL algorithm 

that uses gradient techniques as described in section 3. Figure 5 shows the square error in 

the output of the CRTRL equalizer for a 0 Hz Doppler frequency. It can be noted that 

convergence is slower than the EKF-CRTRL algorithm and that was obtained consistently 

with all simulations performed. 
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Fig. 3. Square error in the output of the EKF-CRTRL Equalizer (m=15,q=1, SNR=40 dB, 6 
symbol delay and Doppler Frequency Zero Hz) vs. number of iterations 
 

 
 

Fig. 4. Square error in the output of  the EKF-CRTRL Equalizer( m=15,q=1, SNR=40 dB, 6 
symbol delay and Doppler Frequency 10 Hz) vs. number of iterations 

The results achieved with the EKF-CRTRL equalizer were superior to those of (Kechriotis et. 

al, 1994). Their derivation of CRTRL uses gradient techniques for training the recurrent 

neural network as the revisited CRTRL algorithm described in section 3 of this chapter. 

Faster training techniques are useful particularly in mobile channel applications where the 

number of training symbols should be small, typically about 30 or 40. The EKF-CRTRL 

training algorithm led to a faster training for fully recurrent neural networks. The EKF-

CRTRL would be useful in all real time engineering applications where fast convergence is 

needed. 
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Fig. 5. Square error in the output of the CRTRL Equalizer( m=12,q=1, SNR=40 dB, 6 symbol 
delay and Doppler Frequency Zero Hz) vs. number of iterations 

 

Fig. 6. Performance of the EKF-CRTRL equalizer and the PSP-LMS equalizer for fD =0 Hz 

 

Fig. 7. Performance of the EKF-CRTRL equalizer and the PSP-LMS equalizer for fD =10 Hz 
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However, the proposed equalizer is outperformed by the class of equalizers known in the 
literature as (PSP (Per Surviving Processing) equalizers which are a great deal more 
computational complex than the proposed equalizer. Figure 6 and 7 show comparisons 
involving the recurrent neural network equalizer regarding symbol error rate performances 
where one can see the superiority of the PSP-LMS equalizer. Details of such class of 
equalizers can be found in (Galdino & Pinto, 1998) and are not included here because is 
beyond the scope of the present chapter. In order to assess the EKF-CRTRL equalizer 
performance compared with traditional equalizers figure 8 shows symbol error rates for the 
equalizer presented in this chapter and the traditional Decision feedback equalizer (Proakis, 
 

 

Fig. 8. Symbol Error Rate (SER) x SNR for fD =10 

 

Fig. 9. Performance of the Kalman filter trained equalizer with Tuning for fD = 0 

www.intechopen.com



Complex Extended Kalman Filters for Training Recurrent Neural Network Channel Equalizers 

 

57 

1989). One can see the superiority of the EKF-CRTRL equalizer in the figure. Such results 
suggest for future work to include in the recurrent network a mechanism to enhance 
temporal tracking for fast time varying scenarios in high mobility speeds, typically above 50 
km/h, e.g. Doppler frequencies above 40 Hz. The authors are currently working on that. 
Finally, figure 9 show the efficiency of the heuristic tuning mechanism proposed in this 
chapter in connection with the EKF-CRTRL equalizer. One can see the superior results in 
terms of error rate for equalizers with such tuning algorithm. 
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