282 research outputs found

    Recurrent network of perceptrons with three state synapses achieves competitive classification on real inputs

    Get PDF
    We describe an attractor network of binary perceptrons receiving inputs from a retinotopic visual feature layer. Each class is represented by a random subpopulation of the attractor layer, which is turned on in a supervised manner during learning of the feed forward connections. These are discrete three state synapses and are updated based on a simple field dependent Hebbian rule. For testing, the attractor layer is initialized by the feedforward inputs and then undergoes asynchronous random updating until convergence to a stable state. Classification is indicated by the sub-population that is persistently activated. The contribution of this paper is two-fold. This is the first example of competitive classification rates of real data being achieved through recurrent dynamics in the attractor layer, which is only stable if recurrent inhibition is introduced. Second, we demonstrate that employing three state synapses with feedforward inhibition is essential for achieving the competitive classification rates due to the ability to effectively employ both positive and negative informative features

    Framework of hierarchy for neural theory

    Get PDF

    New acceleration technique for the backpropagation algorithm

    Full text link
    Artificial neural networks have been studied for many years in the hope of achieving human like performance in the area of pattern recognition, speech synthesis and higher level of cognitive process. In the connectionist model there are several interconnected processing elements called the neurons that have limited processing capability. Even though the rate of information transmitted between these elements is limited, the complex interconnection and the cooperative interaction between these elements results in a vastly increased computing power; The neural network models are specified by an organized network topology of interconnected neurons. These networks have to be trained in order them to be used for a specific purpose. Backpropagation is one of the popular methods of training the neural networks. There has been a lot of improvement over the speed of convergence of standard backpropagation algorithm in the recent past. Herein we have presented a new technique for accelerating the existing backpropagation without modifying it. We have used the fourth order interpolation method for the dominant eigen values, by using these we change the slope of the activation function. And by doing so we increase the speed of convergence of the backpropagation algorithm; Our experiments have shown significant improvement in the convergence time for problems widely used in benchmarKing Three to ten fold decrease in convergence time is achieved. Convergence time decreases as the complexity of the problem increases. The technique adjusts the energy state of the system so as to escape from local minima

    Efficient and Accurate Spiking Neural Networks

    Get PDF

    Surrogate Gradient Learning in Spiking Neural Networks

    Get PDF
    Spiking neural networks are nature's versatile solution to fault-tolerant and energy efficient signal processing. To translate these benefits into hardware, a growing number of neuromorphic spiking neural network processors attempt to emulate biological neural networks. These developments have created an imminent need for methods and tools to enable such systems to solve real-world signal processing problems. Like conventional neural networks, spiking neural networks can be trained on real, domain specific data. However, their training requires overcoming a number of challenges linked to their binary and dynamical nature. This article elucidates step-by-step the problems typically encountered when training spiking neural networks, and guides the reader through the key concepts of synaptic plasticity and data-driven learning in the spiking setting. To that end, it gives an overview of existing approaches and provides an introduction to surrogate gradient methods, specifically, as a particularly flexible and efficient method to overcome the aforementioned challenges

    Deep learning with asymmetric connections and Hebbian updates

    Get PDF
    We show that deep networks can be trained using Hebbian updates yielding similar performance to ordinary back-propagation on challenging image datasets. To overcome the unrealistic symmetry in connections between layers, implicit in back-propagation, the feedback weights are separate from the feedforward weights. The feedback weights are also updated with a local rule, the same as the feedforward weights - a weight is updated solely based on the product of activity of the units it connects. With fixed feedback weights as proposed in Lillicrap et. al (2016) performance degrades quickly as the depth of the network increases. If the feedforward and feedback weights are initialized with the same values, as proposed in Zipser and Rumelhart (1990), they remain the same throughout training thus precisely implementing back-propagation. We show that even when the weights are initialized differently and at random, and the algorithm is no longer performing back-propagation, performance is comparable on challenging datasets. We also propose a cost function whose derivative can be represented as a local Hebbian update on the last layer. Convolutional layers are updated with tied weights across space, which is not biologically plausible. We show that similar performance is achieved with untied layers, also known as locally connected layers, corresponding to the connectivity implied by the convolutional layers, but where weights are untied and updated separately. In the linear case we show theoretically that the convergence of the error to zero is accelerated by the update of the feedback weights

    Analog Spiking Neuromorphic Circuits and Systems for Brain- and Nanotechnology-Inspired Cognitive Computing

    Get PDF
    Human society is now facing grand challenges to satisfy the growing demand for computing power, at the same time, sustain energy consumption. By the end of CMOS technology scaling, innovations are required to tackle the challenges in a radically different way. Inspired by the emerging understanding of the computing occurring in a brain and nanotechnology-enabled biological plausible synaptic plasticity, neuromorphic computing architectures are being investigated. Such a neuromorphic chip that combines CMOS analog spiking neurons and nanoscale resistive random-access memory (RRAM) using as electronics synapses can provide massive neural network parallelism, high density and online learning capability, and hence, paves the path towards a promising solution to future energy-efficient real-time computing systems. However, existing silicon neuron approaches are designed to faithfully reproduce biological neuron dynamics, and hence they are incompatible with the RRAM synapses, or require extensive peripheral circuitry to modulate a synapse, and are thus deficient in learning capability. As a result, they eliminate most of the density advantages gained by the adoption of nanoscale devices, and fail to realize a functional computing system. This dissertation describes novel hardware architectures and neuron circuit designs that synergistically assemble the fundamental and significant elements for brain-inspired computing. Versatile CMOS spiking neurons that combine integrate-and-fire, passive dense RRAM synapses drive capability, dynamic biasing for adaptive power consumption, in situ spike-timing dependent plasticity (STDP) and competitive learning in compact integrated circuit modules are presented. Real-world pattern learning and recognition tasks using the proposed architecture were demonstrated with circuit-level simulations. A test chip was implemented and fabricated to verify the proposed CMOS neuron and hardware architecture, and the subsequent chip measurement results successfully proved the idea. The work described in this dissertation realizes a key building block for large-scale integration of spiking neural network hardware, and then, serves as a step-stone for the building of next-generation energy-efficient brain-inspired cognitive computing systems

    Personalized Health Monitoring Using Evolvable Block-based Neural Networks

    Get PDF
    This dissertation presents personalized health monitoring using evolvable block-based neural networks. Personalized health monitoring plays an increasingly important role in modern society as the population enjoys longer life. Personalization in health monitoring considers physiological variations brought by temporal, personal or environmental differences, and demands solutions capable to reconfigure and adapt to specific requirements. Block-based neural networks (BbNNs) consist of 2-D arrays of modular basic blocks that can be easily implemented using reconfigurable digital hardware such as field programmable gate arrays (FPGAs) that allow on-line partial reorganization. The modular structure of BbNNs enables easy expansion in size by adding more blocks. A computationally efficient evolutionary algorithm is developed that simultaneously optimizes structure and weights of BbNNs. This evolutionary algorithm increases optimization speed by integrating a local search operator. An adaptive rate update scheme removing manual tuning of operator rates enhances the fitness trend compared to pre-determined fixed rates. A fitness scaling with generalized disruptive pressure reduces the possibility of premature convergence. The BbNN platform promises an evolvable solution that changes structures and parameters for personalized health monitoring. A BbNN evolved with the proposed evolutionary algorithm using the Hermite transform coefficients and a time interval between two neighboring R peaks of ECG signal, provides a patient-specific ECG heartbeat classification system. Experimental results using the MIT-BIH Arrhythmia database demonstrate a potential for significant performance enhancements over other major techniques

    A Review of Findings from Neuroscience and Cognitive Psychology as Possible Inspiration for the Path to Artificial General Intelligence

    Full text link
    This review aims to contribute to the quest for artificial general intelligence by examining neuroscience and cognitive psychology methods for potential inspiration. Despite the impressive advancements achieved by deep learning models in various domains, they still have shortcomings in abstract reasoning and causal understanding. Such capabilities should be ultimately integrated into artificial intelligence systems in order to surpass data-driven limitations and support decision making in a way more similar to human intelligence. This work is a vertical review that attempts a wide-ranging exploration of brain function, spanning from lower-level biological neurons, spiking neural networks, and neuronal ensembles to higher-level concepts such as brain anatomy, vector symbolic architectures, cognitive and categorization models, and cognitive architectures. The hope is that these concepts may offer insights for solutions in artificial general intelligence.Comment: 143 pages, 49 figures, 244 reference
    corecore