6,029 research outputs found

    Sparse Randomized Kaczmarz for Support Recovery of Jointly Sparse Corrupted Multiple Measurement Vectors

    Full text link
    While single measurement vector (SMV) models have been widely studied in signal processing, there is a surging interest in addressing the multiple measurement vectors (MMV) problem. In the MMV setting, more than one measurement vector is available and the multiple signals to be recovered share some commonalities such as a common support. Applications in which MMV is a naturally occurring phenomenon include online streaming, medical imaging, and video recovery. This work presents a stochastic iterative algorithm for the support recovery of jointly sparse corrupted MMV. We present a variant of the Sparse Randomized Kaczmarz algorithm for corrupted MMV and compare our proposed method with an existing Kaczmarz type algorithm for MMV problems. We also showcase the usefulness of our approach in the online (streaming) setting and provide empirical evidence that suggests the robustness of the proposed method to the distribution of the corruption and the number of corruptions occurring.Comment: 13 pages, 6 figure

    Measurement Bounds for Sparse Signal Ensembles via Graphical Models

    Full text link
    In compressive sensing, a small collection of linear projections of a sparse signal contains enough information to permit signal recovery. Distributed compressive sensing (DCS) extends this framework by defining ensemble sparsity models, allowing a correlated ensemble of sparse signals to be jointly recovered from a collection of separately acquired compressive measurements. In this paper, we introduce a framework for modeling sparse signal ensembles that quantifies the intra- and inter-signal dependencies within and among the signals. This framework is based on a novel bipartite graph representation that links the sparse signal coefficients with the measurements obtained for each signal. Using our framework, we provide fundamental bounds on the number of noiseless measurements that each sensor must collect to ensure that the signals are jointly recoverable.Comment: 11 pages, 2 figure

    Cramer-Rao Bound for Sparse Signals Fitting the Low-Rank Model with Small Number of Parameters

    Full text link
    In this paper, we consider signals with a low-rank covariance matrix which reside in a low-dimensional subspace and can be written in terms of a finite (small) number of parameters. Although such signals do not necessarily have a sparse representation in a finite basis, they possess a sparse structure which makes it possible to recover the signal from compressed measurements. We study the statistical performance bound for parameter estimation in the low-rank signal model from compressed measurements. Specifically, we derive the Cramer-Rao bound (CRB) for a generic low-rank model and we show that the number of compressed samples needs to be larger than the number of sources for the existence of an unbiased estimator with finite estimation variance. We further consider the applications to direction-of-arrival (DOA) and spectral estimation which fit into the low-rank signal model. We also investigate the effect of compression on the CRB by considering numerical examples of the DOA estimation scenario, and show how the CRB increases by increasing the compression or equivalently reducing the number of compressed samples.Comment: 14 pages, 1 figure, Submitted to IEEE Signal Processing Letters on December 201

    Joint recovery algorithms using difference of innovations for distributed compressed sensing

    Get PDF
    Distributed compressed sensing is concerned with representing an ensemble of jointly sparse signals using as few linear measurements as possible. Two novel joint reconstruction algorithms for distributed compressed sensing are presented in this paper. These algorithms are based on the idea of using one of the signals as side information; this allows to exploit joint sparsity in a more effective way with respect to existing schemes. They provide gains in reconstruction quality, especially when the nodes acquire few measurements, so that the system is able to operate with fewer measurements than is required by other existing schemes. We show that the algorithms achieve better performance with respect to the state-of-the-art.Comment: Conference Record of the Forty Seventh Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 201

    Identification of Matrices Having a Sparse Representation

    Get PDF
    We consider the problem of recovering a matrix from its action on a known vector in the setting where the matrix can be represented efficiently in a known matrix dictionary. Connections with sparse signal recovery allows for the use of efficient reconstruction techniques such as Basis Pursuit (BP). Of particular interest is the dictionary of time-frequency shift matrices and its role for channel estimation and identification in communications engineering. We present recovery results for BP with the time-frequency shift dictionary and various dictionaries of random matrices
    corecore