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Abstract—Distributed compressed sensing is concerned with represent-

ing an ensemble of jointly sparse signals using as few linear measurements

as possible. Two novel joint reconstruction algorithms for distributed

compressed sensing are presented in this paper. These algorithms are

based on the idea of using one of the signals as side information; this

allows to exploit joint sparsity in a more effective way with respect to

existing schemes. They provide gains in reconstruction quality, especially

when the nodes acquire few measurements, so that the system is able

to operate with fewer measurements than is required by other existing

schemes. We show that the algorithms achieve better performance with

respect to the state-of-the-art.

I. INTRODUCTION

Distributed compressed sensing (DCS) has recently attracted great

interest as an efficient technique for acquiring data in a distributed

fashion [1]–[3]. DCS relies on the theory of compressed sensing (CS)

to reduce the dimensionality of the signal acquired by each node of

the distributed network, supposed to be sparse under some basis, by

means of random projections. On the other hand, it also exploits the

inter-correlation among the different signals in the ensemble to lower

the number of measurements that each node needs to acquire, without

requiring cooperation among nodes. Sensor networks represent the

foremost application that can benefit from this technique because of

their need of simple signal representations while meeting strict low

complexity constraints (e.g., see [4]). A joint reconstruction algorithm

can outperform separate recovery of the sensors’ signals exploiting

the correlation among them. Joint sparsity models have been proposed

to account for sparsity patterns appearing in an ensemble of signals,

e.g. signals acquired by nodes of a sensor network. According to

the correlation model different algorithms have been proposed, such

as the Texas Hold ’Em [5], and the Sort and Intersect algorithms

[6] for the JSM-1 model, in which signals are composed of a sparse

common component plus a sparse innovation component. Concerning

other models, we can find the DCS-SOMP [2] method for JSM-2

(common sparse supports) and the TECC and ACIE algorithms for

JSM-3 [2] (nonsparse common component, sparse innovations).

This paper proposes two novel joint reconstruction algorithms. The

algorithms are based on the idea of using one signal in the ensemble

as side information. This allows to devise recovery schemes that

attempt to reconstruct the difference between a signal and the side

information, rather than an individual signal. In particular, we show

that the proposed algorithms obtain lower reconstruction error with

respect to other existing algorithms [5] [6], and minimize the number

of measurements that have to be collected by each node.

This work is supported by the European Research Council under the
European Communitys Seventh Framework Programme (FP7/2007-2013) /
ERC Grant agreement n.279848.

II. BACKGROUND

A. Compressed sensing

Compressed sensing is a novel theory for signal sampling and

acquisition [7], [8]. It is able to acquire signals in an already

compressed fashion, i.e., using fewer coefficients than is dictated

by the classical Nyquist-Shannon theory. Let us consider a signal

x ∈ R
n, having a sparse representation under basis Ψ ∈ R

n×n:

x = Ψθ with ‖θ‖
0
= k ≪ n, being ‖θ‖

0
the l0 norm of θ,

i.e., the number of its nonzero entries. We acquire measurements as

a vector of random projections y = Φx = ΦΨθ, y ∈ R
m, using

a sensing matrix Φ ∈ R
m×n. The best way to recover the original

signal from its measurements is by solving an optimization problem

trying to minimize the l0 norm of the signal in the sparsity domain.

However, this problem is computationally intractable due to its NP-

hard complexity, so it is common to consider a relaxed form using

the l1 norm, which can be solved by means of linear programming

techniques:

θ̂ = argmin
θ

‖θ‖
1

subject to y = ΦΨθ.

This method is equivalent to l0 norm minimization provided that

the sensing matrix satisfies the Restricted Isometry Property (RIP)

with constant δ2k <
√
2 − 1 [9]. The number of measurements

to be acquired is typically m = O
(

k log n
k

)

. A quadratically-

constrained variant of the previous optimization problem is often

used when dealing with noise with norm bounded by ε affecting

the measurements:

θ̂ = argmin
θ

‖θ‖
1

subject to ‖ΦΨθ − y‖
2
≤ ε. (1)

B. Distributed compressed sensing

In a distributed scenario, an ensemble of signals with both intra-

and inter-sensor correlations is considered. The notion of joint

sparsity has been introduced in [2] for the framework of DCS. Among

the joint sparsity models discussed in [2], we focus on the JSM-1

and JSM-3 models, according to which the J signals in the ensemble

have sparse innovation components and sparse or nonsparse common

component, respectively.

θj = θC + θI,j ∀j ∈ [1, J ]

‖θC‖0 = kC and ‖θI,j‖0 = kI,j ∀j ∈ [1, J ]

A joint reconstruction algorithm can leverage the structure of the joint

sparsity model to improve performance, namely to achieve higher

quality for the same number of measurements or decrease the number

of measurements needed to achieve the same quality.

Some of the existing joint reconstruction algorithms for the JSM-

1 model include the weighted l1 minimization proposed in [2],



which requires numerical optimization of the weights, the Texas

Hold ’Em [5] and the Sort and Intersect algorithms [6]. Texas Hold

’Em averages a subset of the measurements of all the sensors to

estimate the common component, which is then subtracted from the

measurements to recover the innovations. Sort and Intersect also

estimate the common component, in a nonlinear way. In particular,

in Sort the coefficients of a first estimate of the signal are sorted by

decreasing magnitude and compared to ones of the side information

to decide which positions belong to the common support, while in

Intersect the supports of a first estimate of the signal and of the

side information are intersected to find the support of the common

component.

As far as the JSM-3 model is concerned, the common component

is not sparse, hence a joint recovery algorithm must be used in order

to acquire fewer than n measurements per signal. The Transpose Es-

timation of Common Component (TECC) algorithm described in [2]

estimates the common component by stacking all the measurements

from all nodes in a single problem and then recover the innovations

alone by cancelling the measurements of the estimated common

component. A key requirement for TECC to work is having different

sensing matrices Φj so that, when stacked, they span the whole

R
n. The Alternating Common and Innovation Estimation (ACIE)

algorithm [2] is an improvement over TECC, based on an iterative

scheme that alternates improvements on the estimate of the common

component with improvements in the estimate of the innovations, at

the expense of a great computational complexity. As in TECC, each

node must have a different sensing matrix in order to work properly.

This is different from the scenario we are considering, in which all

nodes use the same sensing matrix.

III. PROPOSED ALGORITHMS

The proposed algorithms focus on the JSM-1 and JSM-3 models

discussed in section II-B. We also suppose that side information is

available at the decoder in the form of perfect knowledge of one of

the signals. From now on we suppose, without loss of generality, that

the known signal is x1. From a practical perspective, the requirement

of side information is not a limitation; under the JSM-1 model the SI

signal is sparse, so we can acquire m1 < n measurements, with m1

large enough to get the desired accuracy. Under the JSM-3 model

the SI signal is not sparse and has to be acquired uncompressed

or compressed using a standard technique. However, as the number

of nodes increases, the overhead due to side information becomes

negligible. The savings in the number of measurements to be acquired

by the other nodes outweigh the small overhead due to the acquisition

of side information, thus making the framework interesting even for

the JSM-3 model, where the SI signal is not compressed.

A. Difference-Of-Innovations (DOI) algorithm

Algorithm 1 DOI algorithm

Require: A = ΦΨ
for j in 2 : J do

Compute ydiff,j = yj − y1

Recover θdiff,j from ydiff,j

θ̂j = θ1 + θdiff,j

end for

The underlying idea of this first algorithm is to exploit side

information to eliminate the need to recover the common component.

Figure 1(a) presents a schematic representation of the algorithm, also

outlined in Alg.1. Proceeding pairwise by using the side information

and each of the J signals in the ensemble, it is possible to compute

the difference between the measurements of the side information

and those of signal j. This removes exactly any component that is

common to the two signals, so we are left with measurements of

the difference of the innovation components. It is then possible to

recover the difference signal from these measurements using any

recovery procedure such as l1 minimization. Once the difference

signal is recovered, it is then sufficient to add the side information to

fully recover signal j. It is interesting to notice that, unlike [5], this

algorithm does not introduce any error due to an inexact estimation

of the common component. However, the difference signal is, in

general, less sparse than the individual innovation component, so we

can expect performance gains only when innovations are significantly

sparser than the common component. In particular, as a rule of thumb,

we expect gains for kC ≥ 2kI,j . This condition is easily satisfied

for highly correlated ensembles where there is a dominant common

component and much sparser innovations. Also note that the DOI

algorithm can be readily implemented in a parallel manner since any

recovery only involves the side information and the measurements of

the signal to be recovered.

B. Performance bound

In this section we evaluate a bound to the reconstruction error of

the DOI algorithm. In particular, it can be shown that:
∥

∥

∥
θ̂j − θj

∥

∥

∥

2

= ‖θI,1 − θI,j + θdiff,j‖2
= ‖θdiff,j − (θI,j − θI,1)‖2 ≤ Cε (2)

where ε = ‖ydiff,j − Φ (xI,1 − xI,j)‖2 is the norm of the noise

affecting the measurements of the difference signal and C is a

constant that depends on the method used for reconstruction and on

the RIP constant of the sensing matrix. When there is no quantization,

or other sources of noise, we have ε = 0 and, provided that there are

enough measurements available, reconstruction is perfect. This means

that the DOI algorithm can achieve perfect reconstruction, unlike [5]

which is limited by the residual noise in the averaging procedure.

C. Texas DOI algorithm

Algorithm 2 Texas DOI algorithm

Require: J ,A = ΦΨ, kI

ŷC = 1

J

J
∑

j=1

yj

ŷI,1 = y1 − ŷC

Recover θ̂I,1 from ŷI,1

for j in 2 : J do

ydiff,j = yj − y1

ŷI,j = ydiff,j + ŷI,1

Recover θ̂I,j from ŷI,j

θ̂j = θ1 − θ̂I,1 + θ̂I,j

end for

The second proposed algorithm, called Texas DOI, attempts at

overcoming the drawbacks of DOI and [5]. Figure 1(b) presents a

schematic representation of the algorithm, also outlined in Alg.2.

Albeit it maintains the idea of [5] of averaging a fraction of the

collected measurements, it avoids any explicit reconstruction of

the common component, but rather employs the measurements of
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Fig. 1. Joint reconstruction algorithms

the common component, and combines this with the use of side

information in a fashion similar to the DOI algorithm. In particular,

side information is used to get differences of innovation components,

but the measurements of the innovation component of the side

information (yI,1) can be obtained subtracting the output of the

averaging procedure from the original SI measurements. This allows

to perform recovery on the innovation component of a single signal

by removing yI,1. The algorithm can be implemented in a parallel

manner if the averaging procedure and the recovery of xI,1 are

computed first. In fact all the remaining operations for the recovery

of the signals only involve the available quantities related to the side

information and the measurements of the signal to be recovered.

D. Performance bound

In this section we show a bound to the reconstruction error of the

Texas DOI algorithm, whose proof is reported in the appendix. In

particular, it can be shown that:

∥

∥

∥
θ̂j − θj

∥

∥

∥

2

≤ 2C ·
√
1 + δk√

J
η, (3)

being δk the RIP constant of matrix A = ΦΨ, and ‖θI,j‖2 = η for

all j ∈ [1, J ]. This analysis points out some interesting properties of

the algorithm. Even if quantization or other sources of noise are not

considered by the analysis, the algorithm is still affected by a certain

reconstruction error, in the same way as [5]. This does not happen

with DOI, which we showed in section III-B to be exact. Here, and in

[5], the limiting factor lies in the averaging procedure that imposes

a floor on the reconstruction error, which cannot be overcome by

adjustments on the rate. However, this error floor decreases as 1√
J

,

so the performance of an ensemble with a large number of signals

may indeed be limited by the quantization rate or other sources of

noise rather than the averaging procedure.

IV. EXPERIMENTAL RESULTS

We compared the two proposed algorithms with some of the

existing joint reconstruction algorithms in the literature for the JSM-

1 model such as Texas Hold ’Em [5], Intersection and Sort [6]. The

simulations have been performed using a sensing matrix with i.i.d.

zero-mean Gaussian entries with unit-norm columns and a JSM-1

ensemble of signals sparse in the identity basis. The amplitude of the

nonzero entries of the signal is randomly generated according to a

standard Gaussian distribution. Each measurement is quantized using

R bits. For the Texas Hold ’Em algorithm all the measurements of

each node are considered community measurements, thus contribut-

ing to the estimation of the common component. Figure IV shows that

the proposed algorithms achieve lower MSE when few measurements

are available. Texas DOI can achieve the best performance but is

not able to improve when m increases due to the error floor in

(3). The DOI algorithm leverages the side information to remove

the common component, but the recovery step is performed on the

difference of measurements of the innovation components, hence it

is outperformed by Texas DOI for low m. In fact, Texas DOI is

able to run the compressed sensing recovery procedures only for

the individual innovation components, whereas DOI has to recover

the difference between two innovation signals, which is typically

less sparse. When few measurements are available the algorithms in

[6] may have trouble in recovering the common component because

they rely on an initial estimate of the unknown signals. Hence the

greatest gains are achieved when a limited number of measurements

is available. The Texas DOI algorithm borrows ideas from both

the Texas Hold ’Em strategy and the DOI procedure. Texas DOI

inherits the averaging procedure from Texas Hold ’Em, which is very

efficient when the number of nodes is large. However exploiting side

information allows to improve over Texas Hold ’Em when the signals

are highly correlated and few measurements are available because

Texas Hold ’Em may have difficulties in recovering the common

component. This allows each node to work closer to the minimum

number of measurements needed by CS reconstruction for successful

recovery.

It should be noted that Texas Hold ’Em does not use side informa-

tion. However, the overhead due to acquiring more measurements to

recover the side information with the desired accuracy is negligible

in our simulations. As an example, in the case of J = 100,

the side information can be recovered from m1
∼= 5k = 125

measurements quantized with rate R1 = 8. This means that the total

number of bits is (J − 1)mR + m1R1 for DOI and Texas DOI

and Jm′R for Texas Hold ’Em, with m′ > m in order to achieve

Jm′R = (J − 1)mR + m1R1. However, typically m′ − m < 1,

so no extra measurement has to be assigned to Texas Hold ’Em to

compensate for the overhead of SI, which is completely negligible.

The algorithms have also been tested on the JSM-3 model of

distributed compressed sensing and compared against the TECC

algorithm presented in [2]. As explained in section III the proposed

algorithms rely on the usage of the same sensing matrix for all nodes,

while TECC requires different matrices. Figure VI shows the MSE

as a function of the number of measurements acquired by each node.

The proposed algorithms are able to outperform TECC and confirm

the behaviour presented for the JSM-1 model.

V. CONCLUSIONS

We proposed two novel joint reconstruction algorithms for the

JSM-1 and JSM-3 models in distributed compressed sensing. Thanks

to the use of side information, it is possible to devise methods that
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avoid the need to reconstruct the common component, thus allowing

to deal with the case of a non-sparse common component in a

straightforward manner. The algorithms provide performance gains

over other existing techniques, especially when few measurements

are available, thus allowing to decrease the number of measurements

needed to achieve a target quality in the reconstruction or to improve

quality for the same number of measurements.

VI. APPENDIX

PROOF OF THE PERFORMANCE BOUND OF Texas DOI

∥

∥

∥
θ̂j − θj

∥

∥

∥

2

=
∥

∥

∥

(

θ1 − θ̂I,1 + θ̂I,j

)

− θj

∥

∥

∥

2

=
∥

∥

∥
θI,1 − θ̂I,1 − θI,j + θ̂I,j

∥

∥

∥

2

=
∥

∥

∥

(

θI,1 − θ̂I,1

)

+
(

θ̂I,j − θI,j

)
∥

∥

∥

2

≤
∥

∥

∥
θI,1 − θ̂I,1

∥

∥

∥

2

+
∥

∥

∥
θ̂I,j − θI,j

∥

∥

∥

2

(4)

Let us analyse how the innovation components are recovered.

ŷI,1 = y1 − ŷC = yI,1 −
1

J

J
∑

l=1

yI,l

ŷI,j = yj − y1 + ŷI,1 = yI,j −
1

J

J
∑

l=1

yI,l

Let n = 1

J

J
∑

l=1

yI,l denote the error in the estimation of the common

component, due to imperfect cancellation of the innovations. Hence,

ŷI,j = AθI,j − n for j ∈ [1, J ]. Suppose that we use a recon-

struction procedure (e.g. BPDN (1)) from noisy measurements that

has a performance guarantee ensuring that the reconstruction error is

proportional to the noise norm with a constant C depending on the

reconstruction method and on the RIP constant of A. Assuming that

enough measurements have been acquired so that A satisfies the RIP

of order k with constant δk with high probability, that ‖θI,j‖2 = η

for all j ∈ [1, J ] and that the θI,j’s are pairwise orthogonal (i.e.
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θ
T
I,jθI,k = 0 for j 6= k), we can write:

∥

∥

∥
θ̂I,j − θI,j

∥

∥

∥

2

≤ C ‖n‖
2
= C

∥

∥

∥

∥

∥

1

J

J
∑

j=1

AθI,j

∥

∥

∥

∥

∥

2

≤ C

√
1 + δk√

J
‖θI,j‖2 = C

√
1 + δk√

J
η (5)

where δk is the RIP constant of matrix A = ΦΨ. Finally, we can

plug this result in (4) and we obtain:
∥

∥

∥
θ̂j − θj

∥

∥

∥

2

≤
∥

∥

∥
θI,1 − θ̂I,1

∥

∥

∥

2

+
∥

∥

∥
θ̂I,j − θI,j

∥

∥

∥

2

≤ 2C ·
√
1 + δk√

J
η (6)
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