1,163,011 research outputs found

    A review of digital forensics methods for JPEG file carving

    Get PDF
    Digital forensics is an important field of cybersecurity and digital crimes investigation. It entails applying file recovery methods to analyze data from storage media and extract hidden, deleted or overwritten files. The recovery process might have accompanied with cases of unallocated partitions of blocks or clusters and the absence of file system metadata. These cases entail advance recovery methods that have carving abilities. The file carving methods include different types of techniques to identify, validate and reassemble the file. This paper presents a comprehensive study of data recovery, file carving, and file reassembling. It focuses on identifying and recovering JPEG Images as it is a wildly covered in the literature. It classifies the carving techniques into three types: signature-, structure-, and content-based carvers. Subsequently, the paper reviews seven advanced carving methods in the literature. Finally, the paper presents a number of research gaps and conclude a number of possible improvements. Generally, both the gaps and possible improvements are associated with the fragmentation problem of data files

    Structure from Articulated Motion: Accurate and Stable Monocular 3D Reconstruction without Training Data

    Full text link
    Recovery of articulated 3D structure from 2D observations is a challenging computer vision problem with many applications. Current learning-based approaches achieve state-of-the-art accuracy on public benchmarks but are restricted to specific types of objects and motions covered by the training datasets. Model-based approaches do not rely on training data but show lower accuracy on these datasets. In this paper, we introduce a model-based method called Structure from Articulated Motion (SfAM), which can recover multiple object and motion types without training on extensive data collections. At the same time, it performs on par with learning-based state-of-the-art approaches on public benchmarks and outperforms previous non-rigid structure from motion (NRSfM) methods. SfAM is built upon a general-purpose NRSfM technique while integrating a soft spatio-temporal constraint on the bone lengths. We use alternating optimization strategy to recover optimal geometry (i.e., bone proportions) together with 3D joint positions by enforcing the bone lengths consistency over a series of frames. SfAM is highly robust to noisy 2D annotations, generalizes to arbitrary objects and does not rely on training data, which is shown in extensive experiments on public benchmarks and real video sequences. We believe that it brings a new perspective on the domain of monocular 3D recovery of articulated structures, including human motion capture.Comment: 21 pages, 8 figures, 2 table

    Meteorites and the Antarctic ice sheet

    Get PDF
    The majority of the meteorite finds were located in the Allan Hills site. All the expected goals involving the recovery of rare or previously unknown types of meteorites, and even the recovery of lunar ejecta, were realized. The relationship between these remarkable concentrations of meteorites and the Antarctic ice sheet itself were less well documented. Ice flow vector studies were made and concentration models were proposed. Earlier estimates of the abundances of meteorite types were based on the number of falls in the world collections. The accumulated data and the future collected data will allow more reliable estimates of the source region of most meteorites

    An information-theoretic view of network management

    Get PDF
    We present an information-theoretic framework for network management for recovery from nonergodic link failures. Building on recent work in the field of network coding, we describe the input-output relations of network nodes in terms of network codes. This very general concept of network behavior as a code provides a way to quantify essential management information as that needed to switch among different codes (behaviors) for different failure scenarios. We compare two types of recovery schemes, receiver-based and network-wide, and consider two formulations for quantifying network management. The first is a centralized formulation where network behavior is described by an overall code determining the behavior of every node, and the management requirement is taken as the logarithm of the number of such codes that the network may switch among. For this formulation, we give bounds, many of which are tight, on management requirements for various network connection problems in terms of basic parameters such as the number of source processes and the number of links in a minimum source-receiver cut. Our results include a lower bound for arbitrary connections and an upper bound for multitransmitter multicast connections, for linear receiver-based and network-wide recovery from all single link failures. The second is a node-based formulation where the management requirement is taken as the sum over all nodes of the logarithm of the number of different behaviors for each node. We show that the minimum node-based requirement for failures of links adjacent to a single receiver is achieved with receiver-based schemes

    Phenomenology of retained refractoriness: On semi-memristive discrete media

    Full text link
    We study two-dimensional cellular automata, each cell takes three states: resting, excited and refractory. A resting cell excites if number of excited neighbours lies in a certain interval (excitation interval). An excited cell become refractory independently on states of its neighbours. A refractory cell returns to a resting state only if the number of excited neighbours belong to recovery interval. The model is an excitable cellular automaton abstraction of a spatially extended semi-memristive medium where a cell's resting state symbolises low-resistance and refractory state high-resistance. The medium is semi-memristive because only transition from high- to low-resistance is controlled by density of local excitation. We present phenomenological classification of the automata behaviour for all possible excitation intervals and recovery intervals. We describe eleven classes of cellular automata with retained refractoriness based on criteria of space-filling ratio, morphological and generative diversity, and types of travelling localisations
    corecore