9 research outputs found

    Cavlectometry: Towards Holistic Reconstruction of Large Mirror Objects

    Full text link
    We introduce a method based on the deflectometry principle for the reconstruction of specular objects exhibiting significant size and geometric complexity. A key feature of our approach is the deployment of an Automatic Virtual Environment (CAVE) as pattern generator. To unfold the full power of this extraordinary experimental setup, an optical encoding scheme is developed which accounts for the distinctive topology of the CAVE. Furthermore, we devise an algorithm for detecting the object of interest in raw deflectometric images. The segmented foreground is used for single-view reconstruction, the background for estimation of the camera pose, necessary for calibrating the sensor system. Experiments suggest a significant gain of coverage in single measurements compared to previous methods. To facilitate research on specular surface reconstruction, we will make our data set publicly available

    Real-World Normal Map Capture for Nearly Flat Reflective Surfaces

    Get PDF
    Although specular objects have gained interest in recent years, virtually no approaches exist for markerless reconstruction of reflective scenes in the wild. In this work, we present a practical approach to capturing normal maps in real-world scenes using video only. We focus on nearly planar surfaces such as windows, facades from glass or metal, or frames, screens and other indoor objects and show how normal maps of these can be obtained without the use of an artificial calibration object. Rather, we track the reflections of real-world straight lines, while moving with a hand-held or vehicle-mounted camera in front of the object. In contrast to error-prone local edge tracking, we obtain the reflections by a robust, global segmentation technique of an ortho-rectified 3D video cube that also naturally allows efficient user interaction. Then, at each point of the reflective surface, the resulting 2D-curve to 3D-line correspondence provides a novel quadratic constraint on the local surface normal. This allows to globally solve for the shape by integrability and smoothness constraints and easily supports the usage of multiple lines. We demonstrate the technique on several objects and facades

    Reconstructing mass-conserved water surfaces using shape from shading and optical flow

    Get PDF
    This paper introduces a method for reconstructing water from real video footage. Using a single input video, the proposed method produces a more informative reconstruction from a wider range of possible scenes than the current state of the art. The key is the combination of vision algorithms and physics laws. Shape from shading is used to capture the change of the water's surface, from which a vertical velocity gradient field is calculated. Such a gradient field is used to constrain the tracking of horizontal velocities by minimizing an energy function as a weighted combination of mass-conservation and intensity-conservation. Hence the final reconstruction contains a dense velocity field that is incompressible in 3D. The proposed method is efficient and performs consistently well across water of different types

    Recovering Specular Surfaces Using Curved Line Images

    No full text
    International audienceWe present a new shape-from-distortion framework for recovering specular (reflective/refractive) surfaces. While most existing approaches rely on accurate correspondences between 2D pixels and 3D points, we focus on analyzing the curved images of 3D lines which we call curved line images or CLIs. Our approach models CLIs of local reflections or refractions using the recently proposed general linear cameras (GLCs). We first characterize all possible CLIs in a GLC. We show that a 3D line will appear as a conic in any GLC. For a fixed GLC, the conic type is invariant to the position and orientation of the line and is determined by the GLC parameters. Furthermore, CLIs under single reflection/refraction can only be lines or hyperbolas. Based on our new theory, we develop efficient algorithms to use multiple CLIs to recover the GLC camera parameters. We then apply the curvature-GLC theory to derive the Gaussian and mean curvatures from the GLC intrinsics. This leads to a complete distortion-based reconstruction framework. Unlike conventional correspondence-based approaches that are sensitive to image distortions, our approach benefits from the CLI distortions. Finally, we demonstrate applying our framework for recovering curvature fields on both synthetic and real specular surfaces
    corecore