15,770 research outputs found

    A Tensor-Based Dictionary Learning Approach to Tomographic Image Reconstruction

    Full text link
    We consider tomographic reconstruction using priors in the form of a dictionary learned from training images. The reconstruction has two stages: first we construct a tensor dictionary prior from our training data, and then we pose the reconstruction problem in terms of recovering the expansion coefficients in that dictionary. Our approach differs from past approaches in that a) we use a third-order tensor representation for our images and b) we recast the reconstruction problem using the tensor formulation. The dictionary learning problem is presented as a non-negative tensor factorization problem with sparsity constraints. The reconstruction problem is formulated in a convex optimization framework by looking for a solution with a sparse representation in the tensor dictionary. Numerical results show that our tensor formulation leads to very sparse representations of both the training images and the reconstructions due to the ability of representing repeated features compactly in the dictionary.Comment: 29 page

    Provable Bounds for Learning Some Deep Representations

    Full text link
    We give algorithms with provable guarantees that learn a class of deep nets in the generative model view popularized by Hinton and others. Our generative model is an nn node multilayer neural net that has degree at most nγn^{\gamma} for some γ<1\gamma <1 and each edge has a random edge weight in [−1,1][-1,1]. Our algorithm learns {\em almost all} networks in this class with polynomial running time. The sample complexity is quadratic or cubic depending upon the details of the model. The algorithm uses layerwise learning. It is based upon a novel idea of observing correlations among features and using these to infer the underlying edge structure via a global graph recovery procedure. The analysis of the algorithm reveals interesting structure of neural networks with random edge weights.Comment: The first 18 pages serve as an extended abstract and a 36 pages long technical appendix follow

    Astronomical Data Analysis and Sparsity: from Wavelets to Compressed Sensing

    Get PDF
    Wavelets have been used extensively for several years now in astronomy for many purposes, ranging from data filtering and deconvolution, to star and galaxy detection or cosmic ray removal. More recent sparse representations such ridgelets or curvelets have also been proposed for the detection of anisotropic features such cosmic strings in the cosmic microwave background. We review in this paper a range of methods based on sparsity that have been proposed for astronomical data analysis. We also discuss what is the impact of Compressed Sensing, the new sampling theory, in astronomy for collecting the data, transferring them to the earth or reconstructing an image from incomplete measurements.Comment: Submitted. Full paper will figures available at http://jstarck.free.fr/IEEE09_SparseAstro.pd

    Representation Learning: A Review and New Perspectives

    Full text link
    The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning

    Exact Recovery Conditions for Sparse Representations with Partial Support Information

    Get PDF
    We address the exact recovery of a k-sparse vector in the noiseless setting when some partial information on the support is available. This partial information takes the form of either a subset of the true support or an approximate subset including wrong atoms as well. We derive a new sufficient and worst-case necessary (in some sense) condition for the success of some procedures based on lp-relaxation, Orthogonal Matching Pursuit (OMP) and Orthogonal Least Squares (OLS). Our result is based on the coherence "mu" of the dictionary and relaxes the well-known condition mu<1/(2k-1) ensuring the recovery of any k-sparse vector in the non-informed setup. It reads mu<1/(2k-g+b-1) when the informed support is composed of g good atoms and b wrong atoms. We emphasize that our condition is complementary to some restricted-isometry based conditions by showing that none of them implies the other. Because this mutual coherence condition is common to all procedures, we carry out a finer analysis based on the Null Space Property (NSP) and the Exact Recovery Condition (ERC). Connections are established regarding the characterization of lp-relaxation procedures and OMP in the informed setup. First, we emphasize that the truncated NSP enjoys an ordering property when p is decreased. Second, the partial ERC for OMP (ERC-OMP) implies in turn the truncated NSP for the informed l1 problem, and the truncated NSP for p<1.Comment: arXiv admin note: substantial text overlap with arXiv:1211.728
    • …
    corecore