1,111 research outputs found

    Target Contour Recovering for Tracking People in Complex Environments

    Get PDF
    Recovering people contours from partial occlusion is a challenging problem in a visual tracking system. Partial occlusions would bring about unreasonable contour changes of the target object. In this paper, a novel method is presented to detect partial occlusion on people contours and recover occluded portions. Unlike other occlusion detection methods, the proposed method is only based on contours, which makes itself more flexible to be extended for further applications. Experiments with synthetic images demonstrate the accuracy of the method for detecting partial occlusions, and experiments on real-world video sequence are also carried out to prove that the method is also good enough to be used to recover target contours

    Regressing Local to Global Shape Properties for Online Segmentation and Tracking

    Full text link

    Recovering Homography from Camera Captured Documents using Convolutional Neural Networks

    Get PDF
    Removing perspective distortion from hand held camera captured document images is one of the primitive tasks in document analysis, but unfortunately, no such method exists that can reliably remove the perspective distortion from document images automatically. In this paper, we propose a convolutional neural network based method for recovering homography from hand-held camera captured documents. Our proposed method works independent of document's underlying content and is trained end-to-end in a fully automatic way. Specifically, this paper makes following three contributions: Firstly, we introduce a large scale synthetic dataset for recovering homography from documents images captured under different geometric and photometric transformations; secondly, we show that a generic convolutional neural network based architecture can be successfully used for regressing the corners positions of documents captured under wild settings; thirdly, we show that L1 loss can be reliably used for corners regression. Our proposed method gives state-of-the-art performance on the tested datasets, and has potential to become an integral part of document analysis pipeline.Comment: 10 pages, 8 figure

    Visualizing the Invisible: Occluded Vehicle Segmentation and Recovery

    Full text link
    In this paper, we propose a novel iterative multi-task framework to complete the segmentation mask of an occluded vehicle and recover the appearance of its invisible parts. In particular, to improve the quality of the segmentation completion, we present two coupled discriminators and introduce an auxiliary 3D model pool for sampling authentic silhouettes as adversarial samples. In addition, we propose a two-path structure with a shared network to enhance the appearance recovery capability. By iteratively performing the segmentation completion and the appearance recovery, the results will be progressively refined. To evaluate our method, we present a dataset, the Occluded Vehicle dataset, containing synthetic and real-world occluded vehicle images. We conduct comparison experiments on this dataset and demonstrate that our model outperforms the state-of-the-art in tasks of recovering segmentation mask and appearance for occluded vehicles. Moreover, we also demonstrate that our appearance recovery approach can benefit the occluded vehicle tracking in real-world videos
    corecore