4,600 research outputs found

    3D scanning of cultural heritage with consumer depth cameras

    Get PDF
    Three dimensional reconstruction of cultural heritage objects is an expensive and time-consuming process. Recent consumer real-time depth acquisition devices, like Microsoft Kinect, allow very fast and simple acquisition of 3D views. However 3D scanning with such devices is a challenging task due to the limited accuracy and reliability of the acquired data. This paper introduces a 3D reconstruction pipeline suited to use consumer depth cameras as hand-held scanners for cultural heritage objects. Several new contributions have been made to achieve this result. They include an ad-hoc filtering scheme that exploits the model of the error on the acquired data and a novel algorithm for the extraction of salient points exploiting both depth and color data. Then the salient points are used within a modified version of the ICP algorithm that exploits both geometry and color distances to precisely align the views even when geometry information is not sufficient to constrain the registration. The proposed method, although applicable to generic scenes, has been tuned to the acquisition of sculptures and in this connection its performance is rather interesting as the experimental results indicate

    Integration of Absolute Orientation Measurements in the KinectFusion Reconstruction pipeline

    Full text link
    In this paper, we show how absolute orientation measurements provided by low-cost but high-fidelity IMU sensors can be integrated into the KinectFusion pipeline. We show that integration improves both runtime, robustness and quality of the 3D reconstruction. In particular, we use this orientation data to seed and regularize the ICP registration technique. We also present a technique to filter the pairs of 3D matched points based on the distribution of their distances. This filter is implemented efficiently on the GPU. Estimating the distribution of the distances helps control the number of iterations necessary for the convergence of the ICP algorithm. Finally, we show experimental results that highlight improvements in robustness, a speed-up of almost 12%, and a gain in tracking quality of 53% for the ATE metric on the Freiburg benchmark.Comment: CVPR Workshop on Visual Odometry and Computer Vision Applications Based on Location Clues 201

    LabelFusion: A Pipeline for Generating Ground Truth Labels for Real RGBD Data of Cluttered Scenes

    Full text link
    Deep neural network (DNN) architectures have been shown to outperform traditional pipelines for object segmentation and pose estimation using RGBD data, but the performance of these DNN pipelines is directly tied to how representative the training data is of the true data. Hence a key requirement for employing these methods in practice is to have a large set of labeled data for your specific robotic manipulation task, a requirement that is not generally satisfied by existing datasets. In this paper we develop a pipeline to rapidly generate high quality RGBD data with pixelwise labels and object poses. We use an RGBD camera to collect video of a scene from multiple viewpoints and leverage existing reconstruction techniques to produce a 3D dense reconstruction. We label the 3D reconstruction using a human assisted ICP-fitting of object meshes. By reprojecting the results of labeling the 3D scene we can produce labels for each RGBD image of the scene. This pipeline enabled us to collect over 1,000,000 labeled object instances in just a few days. We use this dataset to answer questions related to how much training data is required, and of what quality the data must be, to achieve high performance from a DNN architecture

    Non-iterative RGB-D-inertial Odometry

    Full text link
    This paper presents a non-iterative solution to RGB-D-inertial odometry system. Traditional odometry methods resort to iterative algorithms which are usually computationally expensive or require well-designed initialization. To overcome this problem, this paper proposes to combine a non-iterative front-end (odometry) with an iterative back-end (loop closure) for the RGB-D-inertial SLAM system. The main contribution lies in the novel non-iterative front-end, which leverages on inertial fusion and kernel cross-correlators (KCC) to match point clouds in frequency domain. Dominated by the fast Fourier transform (FFT), our method is only of complexity O(nlogn)\mathcal{O}(n\log{n}), where nn is the number of points. Map fusion is conducted by element-wise operations, so that both time and space complexity are further reduced. Extensive experiments show that, due to the lightweight of the proposed front-end, the framework is able to run at a much faster speed yet still with comparable accuracy with the state-of-the-arts

    Real-time High Resolution Fusion of Depth Maps on GPU

    Full text link
    A system for live high quality surface reconstruction using a single moving depth camera on a commodity hardware is presented. High accuracy and real-time frame rate is achieved by utilizing graphics hardware computing capabilities via OpenCL and by using sparse data structure for volumetric surface representation. Depth sensor pose is estimated by combining serial texture registration algorithm with iterative closest points algorithm (ICP) aligning obtained depth map to the estimated scene model. Aligned surface is then fused into the scene. Kalman filter is used to improve fusion quality. Truncated signed distance function (TSDF) stored as block-based sparse buffer is used to represent surface. Use of sparse data structure greatly increases accuracy of scanned surfaces and maximum scanning area. Traditional GPU implementation of volumetric rendering and fusion algorithms were modified to exploit sparsity to achieve desired performance. Incorporation of texture registration for sensor pose estimation and Kalman filter for measurement integration improved accuracy and robustness of scanning process

    Creating 3D Models of Buildings by Car-Mounted LIDAR

    Get PDF

    3D Registration and Integrated Segmentation Framework for Heterogeneous Unmanned Robotic Systems

    Get PDF
    The paper proposes a novel framework for registering and segmenting 3D point clouds of large-scale natural terrain and complex environments coming from a multisensor heterogeneous robotics system, consisting of unmanned aerial and ground vehicles. This framework involves data acquisition and pre-processing, 3D heterogeneous registration and integrated multi-sensor based segmentation modules. The first module provides robust and accurate homogeneous registrations of 3D environmental models based on sensors' measurements acquired from the ground (UGV) and aerial (UAV) robots. For 3D UGV registration, we proposed a novel local minima escape ICP (LME-ICP) method, which is based on the well known iterative closest point (ICP) algorithm extending it by the introduction of our local minima estimation and local minima escape mechanisms. It did not require any prior known pose estimation information acquired from sensing systems like odometry, global positioning system (GPS), or inertial measurement units (IMU). The 3D UAV registration has been performed using the Structure from Motion (SfM) approach. In order to improve and speed up the process of outliers removal for large-scale outdoor environments, we introduced the Fast Cluster Statistical Outlier Removal (FCSOR) method. This method was used to filter out the noise and to downsample the input data, which will spare computational and memory resources for further processing steps. Then, we co-registered a point cloud acquired from a laser ranger (UGV) and a point cloud generated from images (UAV) generated by the SfM method. The 3D heterogeneous module consists of a semi-automated 3D scan registration system, developed with the aim to overcome the shortcomings of the existing fully automated 3D registration approaches. This semi-automated registration system is based on the novel Scale Invariant Registration Method (SIRM). The SIRM provides the initial scaling between two heterogenous point clouds and provides an adaptive mechanism for tuning the mean scale, based on the difference between two consecutive estimated point clouds' alignment error values. Once aligned, the resulting homogeneous ground-aerial point cloud is further processed by a segmentation module. For this purpose, we have proposed a system for integrated multi-sensor based segmentation of 3D point clouds. This system followed a two steps sequence: ground-object segmentation and color-based region-growing segmentation. The experimental validation of the proposed 3D heterogeneous registration and integrated segmentation framework was performed on large-scale datasets representing unstructured outdoor environments, demonstrating the potential and benefits of the proposed semi-automated 3D registration system in real-world environments
    corecore