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Abstract

Automatic reconstruction of large-scale outdoor objects like house facades is an important component of mixed-
reality systems that model and visualise real world at different level of detail. The authors are involved in a project
that utilises a car-mounted LIDAR to acquire a sequence 3D point clouds representing facades in a street. No GPS
or IMU is used. Hundreds of point clouds need to be automatically aligned to obtain a realistic surface model of
facades. In this paper, we present and compare two solutions to this complex registration problem. Our methods are
based on two different, widely used techniques for registering two partially overlapping point clouds in presence
of outliers. The proposed algorithms are capable of automatically detecting occasional misalignments. We analyse
the operation of the algorithms paying special attention to the robustness, speed and optimal parameter setting.

1. Introduction

The Integrated 4D (i4D) project [1] by Institute for Com-
puter Science and Control (MTA SZTAKI) aims at recon-
structing, editing and visualising dynamic real-world scenes
at varying level of detail and by fusing different kinds of in-
put data. An important ingredient of such mixed-reality sys-
tems is the unit that builds 3D models of large-scale environ-
ments and scenes.

We contributed to the project by developing and testing
two methods for automatic alignment of a long sequence of
measured 3D point clouds acquired by a car-mounted LI-
DAR device carried along a street. (LIDAR stands for Laser
Imaging, Detection and Ranging.) The complete aligned
point set represents the street facades. Good alignment re-
sults in a high-quality surface model that can be efficiently
textured by facade images taken simultaneously or sepa-
rately.

Point cloud sequence alignment is a popular task in field
robotics, remote sensing, spatial information sciences and
computer vision. This problem is also addressed in urban
area reconstruction [9] when the input data is often pro-
vided by airborne or car-mounted LIDAR devices. Com-
pared to image-based reconstruction, reconstruction from
LIDAR measurements is more robust to changing illumina-
tion conditions and lack of surface texture.

Aerial LIDAR data is used to reconstruct complete res-

idential areas [15], while the car-mounted devices are usu-
ally applied to smaller scenes such as houses in streets and
squares. Depending on the conditions of measurement, aux-
iliary sensors such as GPS (Global Positioning System) or
IMU (Inertial Measurement Unit) can be used to support the
alignment.

Many algorithms have been developed to solve the prob-
lem of automatic registration of two point sets. Some of them
have been successfully used to align a long sequence of point
clouds. One of such algorithms is the Normal Distributions
Transform (NDT) registration algorithm [7]. Its efficiency
and accuracy were studied in [14]. Another popular tool for
registration of two point sets is the Iterative Closest Point
algorithm and its variants [2, 13] whose performance was in-
vestigated in [10].

The study [8] evaluates and compares ICP and NDT on
LIDAR data. Since the original version of ICP is not appli-
cable to partially overlapping point sets, the authors use a
robustified version of the algorithm. This version imposes
an upper limit on the distance between the points that can be
matched: larger distances are simply discarded. In practice,
such limit is hard to set, especially when there is a relatively
large rotation between scans, or when point density varies
significantly within a scan. In our LIDAR application, the
rotation is limited, but point density variation can be large,
which would make such ICP-variant impractical.

The Trimmed Iterative Closest Point (TrICP) registration
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Figure 1: A sample point cloud.

algorithm [2] is robust and free of such limitations. The
comparative study [10] tests it as the standard, most widely
applied robustification of ICP. TrICP has been successfully
used to register different kinds of measured spatial data.

The main motivation of our study was to compare the two
efficent point set registration techniques, NDT and TrICP, in
the context of our application. In this paper, we present a
point cloud sequence alignment method based on NDT and
a method based on TrICP. The major contributions of the
paper are the two methods and a discussion of our experience
gained while applying the methods to real LIDAR sequences
obtained for different streets and buildings.

The layout of the paper is as follows. In section 2, we de-
scribe the data acquisition procedure and introduce the align-
ment problem. Sections 3 and 4 are devoted to the proposed
methods. Test results are presented in section 5, followed by
discussion and conclusion in the final section 6.

2. Data Acquisition and the Alignment Problem

The 3D data is supplied by the Velodyne HDL-64E RMB-
LIDAR device mounted on a car travelling along a street.
The rotating multi-beam LIDAR device records 360°-view
angle range data sequences of irregular clouds of unoriented
points. Due to the intrinsic anisotropy of the data acquisition
process, point density decreases with altitude and distance,
which makes scanning and reconstruction of high or distant
structures problematic.

When a wide facade or a short street is scanned, hundreds
of 3D point clouds are stored. Figure 1 gives an example
of point cloud. A cloud typically contains 30000—40000
points. The measurements are noisy, and they are always
spoiled by outliers that make the alignment more difficult.
These data are to be registered and aligned in a single point
set, as illustrated in figure 2. The complete aligned point
set is then triangulated to obtain a surface mesh. The mesh
makes much better visible the misalignments ‘hidden’ in the
final point set. The misalignments must be automatically de-
tected and corrected.

Currently, we do not use any auxiliary sensor (GPS, IMU)
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Figure 2: A part of complete aligned point cloud.

to support alignment. Before doing that, one has to carefully
analyse the precision of the sensor. If the precision is not suf-
ficiently high, adjusting point clouds according to the sensor
data may be counterproductive. For example, a small angu-
lar error may result in a significant position error at large
distance.

In the context of the car-mounted LIDAR data registra-
tion problem, the main sources of outliers are moving cars
and pedestrians, surfaces with unstable reflectance, interior
of buildings, as well as curtains and windows.

Data points resulting from moving objects deteriorate the
reconstruction of static environments. Their number depends
on the density of the traffic. Such objects can be detected
easily as their height and size vary in a limited, well-defined
range.

Outliers resulting from objects with unstable reflectance,
such as trees in the wind, are relatively rare. However, vege-
tation can occlude significant portions of buildings and gen-
erate unstable point clouds.

Interiors of buildings supply data whose character can
change suddenly. In one view the measurements may cover
a large area and be useful for alignment, while in the sub-
sequent scans the usable area may decrease or disappear en-
tirely. Curtains and windows pose a similar problem as the
laser beam may be reflected from them in one view and pen-
etrate it in the next view. Usually, these two categories of
outliers in LIDAR scans appear as remote points behind the
actual visible surface, and they can be detected based on this

property.

Pre-conditioning of the measured data is very desirable
since it improves the robustness of alignment and enhances
the quality of the resulting mesh. Both of our methods pre-
sented below try to detect and remove the outliers prior to
point cloud registration.

3. NDT-based Method

Our first point cloud sequence alignment method is based on
the 3D NDT registration algorithm [7]. Before registration,
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the acquired LIDAR data is pre-segmented by classitying
each point as belonging to ground, short field object (vehicle,
pedestrian), tall structure object (wall, roof, lamps post), or
clutter. To achieve this, we use statistical features in the grid-
based approach [4]. The procedure runs in real time as it uses
only a few simple features of each grid cell such as the height
difference between points within a particular cell.

The aim of the pre-segmentation is to select static, sta-
ble points that do not change their positions between scans.
Such regions are, i.e., walls that are visible from large dis-
tances and appear in several scans as the car passes them by.
The benefit of this is two-fold. First, the registration speeds
up since less points are processed once the irrelevant points
have been removed. Second, the preserved 3D data are the
most useful regions of the scans. The regions that are hard or
impossible to register, such as moving cars and pedestrians,
are discarded.

The 3D NDT registration algorithm [7] uses a 3D voxel-
based approach to match subsequent point clouds. We apply
the 3D NDT to find the optimal rigid transformation between
two neighbouring scans and validate the result since the reg-
istration may occasionally fail.

Since the 3D data is recorded in real-world environments,
we can set up constraints on the transformation matrices.
In typical urban traffic, the car carrying the LIDAR trav-
els about 40—80 centimeters between consecutive scans; its
speed cannot change drastically between scans. This limits
the translation vector. Also, rotation should be reasonably
small since the car stays on the road and turns only with a
limited speed.

The validation procedure checks the obtained transforma-
tion matrix. If either the translation vector or the rotation ma-
trix is unrealistic, the procedure rejects the result and skips
the processed scan.

4. TrICP-based Method

Our second point cloud sequence alignment method is based
on the TrICP registration algorithm [2]. Prior to point cloud
registration, the input data are filtered to remove outliers in
order to robustify and speed up the registration process. The
procedure also provides surface normals that are used when
a mesh is obtained from the point cloud sequence aligned by
any of the two methods. In this section we, briefly discuss
the main components of the TrICP-based method.

4.1. Data filtering and normal calculation

Similarly to the NDT-based method, the TrICP-based algo-
rithm needs pre-processing to condition the input data, as
discussed in section 2. The alignment block receives data
processed by the pre-segmentation algorithm presented in
section 3. In addition, we have developed a relatively simple
but robust filtering procedure that removes other unreliable
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Figure 3: Problematic areas and resulting mesh errors.

data such as occasionally measured interior structures of the
buildings.

The filtering procedure also assigns normal vectors to the
remaining points in a consistent way, alleviating the problem
of the ‘flipped’ normals typical for many normal calculation
algorithms. The Poisson surface reconstruction algorithm [6]
we use assumes consistent normals. In the flipped areas, the
normals point in the opposite direction which results in mesh
errors, as illustrated in figure 3. In the figure, flipped normal
areas are shown in dark, unmeasured areas in light.

The data filtering method is based on the Hidden Point
Removal (HPR) operator [5] that provides a theoretical ba-
sis for testing visibility on unordered, unoriented point sets.
Although the name reminds the hidden surface removal, the
HPR does not use surfaces or surface reconstruction. Instead,
the operator applies a view-based point set inversion method
and a convex hull calculation algorithm on the inverted point
set. The triangle connectivity of the convex hull transferred
to the original point set provides consistent surface normals.
In our solution, we selected the ‘spherical flipping’ [5] as
the inversion method. Figure 4 illustrates the operation of
our filtering and normal calculation method.

4.2. Data alignment

In a long sequence of point clouds, we select each K-th cloud
and apply TrICP to register each selected cloud to the next
one in the subsequence. The typical values of the temporal
step K are 2—4. Each partial registration is characterised by
a Mean Square Error (MSE) value, the mean square distance
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input point set

output set with normals

Figure 4: Removing an outlier internal structure by the HPR
operator.

between the corresponding points in the two registered sets.
Although the point-to-surface distance is often preferred to
the point-to-point distance, in this particular application we
still use the latter. The reason is that our data is dominated
by flat surfaces of facades. As discussed in [11], the point-
to-point metric is preferable for data with predominantly low
or constant curvature.

A key parameter of the algorithm is the expected over-
lap of the two point sets. TrICP can search for the optimal
value of this parameter and set it automatically, which needs
additional computation. This makes sense when the overlap
varies across the sequence. In the car-mounted LIDAR data,
the overlap is sufficiently stable and easy to set. For this rea-
son, we use a fixed overlap for each value of the parameter
K.

The series of registrations results in a series of MSE val-
ues. We analyse these values and detect poor registrations
as large outliers in the MSE array. A standard robust out-
lier detection rule [12] is used which is based on the median
absolute deviation from the median value.

Each poor registration is discarded and substituted by a
short sequence of registrations with the unit temporal step
K = 1. In other words, a gap in the registration chain is
bridged by aligning all clouds within the gap. The chance
that this will repair the chain is high as we observed that
misregistrations for different values of K do not correlate and
appear in different places. At the same time, using K =1 for
the whole sequence is not a good solution as it is slower and
often results in an even larger number of errors than with
K=2or3.

Finally, the transformation matrices of the complete re-
paired registration chain are multiplied, and each initial point
cloud is registered to the reference cloud which is the last
cloud of the sequence. In principle, it would be possible
to ‘dissipate’ the registration errors in the chain [11] and
smooth the overall alignment. However, given the large size
of the data, this would require excessive computation, so we
decided to omit this step. Currently, typical execution time
of the algorithm is 20—30 minutes for a sequence of 300
point clouds.
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Figure 6: Detail of Market Hall reconstruction.

5. Test Results

In this section, we demonstrate and compare sample re-
sults of reconstruction from car-mounted LIDAR data. The
aligned point sets are converted to triangular meshes using
the Poisson Surface Reconstruction algorithm [3, 6] which
works on oriented point sets. As discussed in section 4.1,
the normals are assigned to points by our data filtering al-
gorithm. Alternatively, we could use the normal calculation
algorithm provided by the Meshlab package [3]. However,
we have experienced that this algorithm is slower and less
robust; in particular, it can produce flipped normals.

The test results form two distinct groups. Section 5.1
is devoted to the Market Hall data acquired along a fa-
cade of the Central Market Hall of Budapest (in Hungarian,
Kozponti Vasarcsarnok). This building features a number of
characteristic architectural elements, which can facilitate the
alignment but makes the potential reconstruction errors more
visible. The Kende Street data discussed in section 5.2 rep-
resents most of this short street and includes 7—8 buildings
on each side. Most of the buildings have simple, featureless
facades that are significantly higher than those of the Market
Hall.

5.1. Market Hall

Figure 5 shows the front facade of the Market Hall recon-
structed by the two methods. Both textureless and textured
versions are presented. The TrICP-based alignment algo-
rithm processed each third of the original 300 point clouds
(K = 3) with the overlap value of 85%. Five bad registra-
tions were detected and successfully repaired using K = 1
and overlap 95%. The overall quality of the reconstruction is
good as the global geometry and the fine details are correct.

For the Market Hall data, the NDT-based alignment
method yields worse results. In addition to the global bend-
ings and visible surface roughness, some structural elements
and details appear distorted and blurred, as illustrated in fig-
ure 6 where a vicinity of a market entrance is shown en-
larged. The TrICP alignment better preserves the geometry
and the details.
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NDT result

TrICP result

Figure 5: Reconstruction of Market Hall front facade.

NDT result

TrICP result

Figure 8: Reconstruction of the entrance of MTA SZTAKI.

5.2. Kende Street

For the Kende Street data, the outcome of the test is just the
opposite. Here, the Trimmed ICP often fails to cope with
featureless and sparse pieces of data, while NDT yields sat-
isfactory results demonstrated in figure 7. The overall quality
is nevertheless much lower than for the Market Hall data.

When the 3D data contains distinct features and is suffi-
ciently dense (e.g., at low altitudes), TrICP can still produce
reasonable output. Figure 8 compares the two results at the
vicinity of the entrance of the main building of MTA SZ-
TAKI situated in the street. There is no big difference in the
quality.

However, in several other areas of the street the perfor-
mance of TrICP is poor. Figure 9 gives an example when the
reconstruction by TrICP exhibits severe global and local dis-
tortions, while the result by NDT is visibly better, although
not perfect.

TrICP result

Figure 9: Part of Kende Street reconstruction.

6. Discussion and Conclusion

We have presented two methods for aligning long sequences
of point clouds acquired by a car-mounted LIDAR device
measuring facades in a street. Our current experience with
the methods can be summarised as follows.

Due to nature of the LIDAR scans and the fact that the
NDT algorithm works in discrete space, this registration
method is sensitive to the discretisation parameter. For chal-
lenging scenes such as facades with repeating patterns (i.e.,
rows of similar windows), this parameter may need to be
increased to 50—70 centimeters which can result in dis-
torted registrations. Fine details can be blurred. Otherwise,
the method is suitable for reconstructing single facades as
well as sequences of facades. It is less sensitive to feature-
less and sparse areas than the TrICP-based method.

The execution times of the two algorithms are compara-
ble. However, the speed of NDT decreases drastically as the
spatial resolution increases. The speed of TrICP is less sen-
sitive to the setting of its parameters.
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Figure 7: NDT reconstruction of Kende Street facades. Top: East side. Bottom: West side.

TrICP is applicable to, and produces superior results for,
surfaces containing characteristic features. It can cope with
larger rotations between scans then NDT. However, when
featureless or sparse areas dominate, TrICP works at the
limit of its capabilities and produces multiple misalignments
that cannot be corrected by the proposed procedure.

In future, we plan to investigate the role of LIDAR sam-
pling, in general, and its influence on the systematic registra-
tion errors, in particular. We have observed that both meth-
ods are sensitive to the order in which the point clouds are
processed. This may result from the asymmetry of their cost
functions w.r.t. the two clouds, as well as from the anisotropy
of data sampling by LIDAR.

The possibility and efficiency of using auxiliary sensors
in our street scenario will also be studied. If the answer is
positive, such sensors will be applied. However, the preci-
sion of today’s sensors does not seem to be sufficient for our
purposes.

The TrICP-based method may profit from the prior knowl-
edge of limited rotation and shift, which currently is not
utilised. The NDT-based method can be enhanced by the fil-
tering procedure introduced in section 4.1.

Both methods will be applied to the reconstruction of
complete models of buildings and quarters. Such reconstruc-
tion will need fast and efficient algorithms for alignment er-
ror dissipation within a circular data sequence, to avoid error
accumulation and global misalignment when the registration
loop terminates.
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