43 research outputs found

    On the Purity of the free boundary condition Potts measure on random trees

    Get PDF
    We consider the free boundary condition Gibbs measure of the Potts model on a random tree. We provide an explicit temperature interval below the ferromagnetic transition temperature for which this measure is extremal, improving older bounds of Mossel and Peres. In information theoretic language extremality of the Gibbs measure corresponds to non-reconstructability for symmetric q-ary channels. The bounds are optimal for the Ising model and appear to be close to what we conjecture to be the true values up to a factor of 0.0150 in the case q = 3 and 0.0365 for q = 4. Our proof uses an iteration of random boundary entropies from the outside of the tree to the inside, along with a symmetrization argument.Comment: 14 page

    Criticality in diluted ferromagnet

    Full text link
    We perform a detailed study of the critical behavior of the mean field diluted Ising ferromagnet by analytical and numerical tools. We obtain self-averaging for the magnetization and write down an expansion for the free energy close to the critical line. The scaling of the magnetization is also rigorously obtained and compared with extensive Monte Carlo simulations. We explain the transition from an ergodic region to a non trivial phase by commutativity breaking of the infinite volume limit and a suitable vanishing field. We find full agreement among theory, simulations and previous results.Comment: 23 pages, 3 figure

    The Tightness of the Kesten-Stigum Reconstruction Bound of Symmetric Model with Multiple Mutations

    Full text link
    It is well known that reconstruction problems, as the interdisciplinary subject, have been studied in numerous contexts including statistical physics, information theory and computational biology, to name a few. We consider a 2q2q-state symmetric model, with two categories of qq states in each category, and 3 transition probabilities: the probability to remain in the same state, the probability to change states but remain in the same category, and the probability to change categories. We construct a nonlinear second order dynamical system based on this model and show that the Kesten-Stigum reconstruction bound is not tight when q4q \geq 4.Comment: Accepted, to appear Journal of Statistical Physic

    Rapid Mixing of Gibbs Sampling on Graphs that are Sparse on Average

    Get PDF
    In this work we show that for every d<d < \infty and the Ising model defined on G(n,d/n)G(n,d/n), there exists a βd>0\beta_d > 0, such that for all β<βd\beta < \beta_d with probability going to 1 as nn \to \infty, the mixing time of the dynamics on G(n,d/n)G(n,d/n) is polynomial in nn. Our results are the first polynomial time mixing results proven for a natural model on G(n,d/n)G(n,d/n) for d>1d > 1 where the parameters of the model do not depend on nn. They also provide a rare example where one can prove a polynomial time mixing of Gibbs sampler in a situation where the actual mixing time is slower than n \polylog(n). Our proof exploits in novel ways the local treelike structure of Erd\H{o}s-R\'enyi random graphs, comparison and block dynamics arguments and a recent result of Weitz. Our results extend to much more general families of graphs which are sparse in some average sense and to much more general interactions. In particular, they apply to any graph for which every vertex vv of the graph has a neighborhood N(v)N(v) of radius O(logn)O(\log n) in which the induced sub-graph is a tree union at most O(logn)O(\log n) edges and where for each simple path in N(v)N(v) the sum of the vertex degrees along the path is O(logn)O(\log n). Moreover, our result apply also in the case of arbitrary external fields and provide the first FPRAS for sampling the Ising distribution in this case. We finally present a non Markov Chain algorithm for sampling the distribution which is effective for a wider range of parameters. In particular, for G(n,d/n)G(n,d/n) it applies for all external fields and β<βd\beta < \beta_d, where dtanh(βd)=1d \tanh(\beta_d) = 1 is the critical point for decay of correlation for the Ising model on G(n,d/n)G(n,d/n).Comment: Corrected proof of Lemma 2.

    Phase Transition for Glauber Dynamics for Independent Sets on Regular Trees

    Full text link
    We study the effect of boundary conditions on the relaxation time of the Glauber dynamics for the hard-core model on the tree. The hard-core model is defined on the set of independent sets weighted by a parameter λ\lambda, called the activity. The Glauber dynamics is the Markov chain that updates a randomly chosen vertex in each step. On the infinite tree with branching factor bb, the hard-core model can be equivalently defined as a broadcasting process with a parameter ω\omega which is the positive solution to λ=ω(1+ω)b\lambda=\omega(1+\omega)^b, and vertices are occupied with probability ω/(1+ω)\omega/(1+\omega) when their parent is unoccupied. This broadcasting process undergoes a phase transition between the so-called reconstruction and non-reconstruction regions at ωrlnb/b\omega_r\approx \ln{b}/b. Reconstruction has been of considerable interest recently since it appears to be intimately connected to the efficiency of local algorithms on locally tree-like graphs, such as sparse random graphs. In this paper we show that the relaxation time of the Glauber dynamics on regular bb-ary trees ThT_h of height hh and nn vertices, undergoes a phase transition around the reconstruction threshold. In particular, we construct a boundary condition for which the relaxation time slows down at the reconstruction threshold. More precisely, for any ωlnb/b\omega \le \ln{b}/b, for ThT_h with any boundary condition, the relaxation time is Ω(n)\Omega(n) and O(n1+ob(1))O(n^{1+o_b(1)}). In contrast, above the reconstruction threshold we show that for every δ>0\delta>0, for ω=(1+δ)lnb/b\omega=(1+\delta)\ln{b}/b, the relaxation time on ThT_h with any boundary condition is O(n1+δ+ob(1))O(n^{1+\delta + o_b(1)}), and we construct a boundary condition where the relaxation time is Ω(n1+δ/2ob(1))\Omega(n^{1+\delta/2 - o_b(1)})

    Global Alignment of Molecular Sequences via Ancestral State Reconstruction

    Get PDF
    Molecular phylogenetic techniques do not generally account for such common evolutionary events as site insertions and deletions (known as indels). Instead tree building algorithms and ancestral state inference procedures typically rely on substitution-only models of sequence evolution. In practice these methods are extended beyond this simplified setting with the use of heuristics that produce global alignments of the input sequences--an important problem which has no rigorous model-based solution. In this paper we consider a new version of the multiple sequence alignment in the context of stochastic indel models. More precisely, we introduce the following {\em trace reconstruction problem on a tree} (TRPT): a binary sequence is broadcast through a tree channel where we allow substitutions, deletions, and insertions; we seek to reconstruct the original sequence from the sequences received at the leaves of the tree. We give a recursive procedure for this problem with strong reconstruction guarantees at low mutation rates, providing also an alignment of the sequences at the leaves of the tree. The TRPT problem without indels has been studied in previous work (Mossel 2004, Daskalakis et al. 2006) as a bootstrapping step towards obtaining optimal phylogenetic reconstruction methods. The present work sets up a framework for extending these works to evolutionary models with indels

    Estimating Random Variables from Random Sparse Observations

    Full text link
    Let X_1,...., X_n be a collection of iid discrete random variables, and Y_1,..., Y_m a set of noisy observations of such variables. Assume each observation Y_a to be a random function of some a random subset of the X_i's, and consider the conditional distribution of X_i given the observations, namely \mu_i(x_i)\equiv\prob\{X_i=x_i|Y\} (a posteriori probability). We establish a general relation between the distribution of \mu_i, and the fixed points of the associated density evolution operator. Such relation holds asymptotically in the large system limit, provided the average number of variables an observation depends on is bounded. We discuss the relevance of our result to a number of applications, ranging from sparse graph codes, to multi-user detection, to group testing.Comment: 22 pages, 1 eps figures, invited paper for European Transactions on Telecommunication
    corecore