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Abstract

Molecular phylogenetic techniques do not generally account for such common evolutionary events as site
insertions and deletions (known as indels). Instead tree building algorithms and ancestral state inference proce-
dures typically rely on substitution-only models of sequence evolution. In practice these methods are extended
beyond this simplified setting with the use of heuristics that produce global alignments of the input sequences—
an important problem which has no rigorous model-based solution. In this paper we open a new direction on
this topic by considering a version of the multiple sequencealignment in the context of stochastic indel models.
More precisely, we introduce the followingtrace reconstruction problem on a tree(TRPT): a binary sequence
is broadcast through a tree channel where we allow substitutions, deletions, and insertions; we seek to recon-
struct the original sequence from the sequences received atthe leaves of the tree. We give a recursive procedure
for this problem with strong reconstruction guarantees at low mutation rates, providing also an alignment of
the sequences at the leaves of the tree. The TRPT problem without indels has been studied in previous work
(Mossel 2004, Daskalakis et al. 2006) as a bootstrapping step towards obtaining information-theoretically opti-
mal phylogenetic reconstruction methods. The present worksets up a framework for extending these works to
evolutionary models with indels.

In the TRPT problem we begin with a random sequencex1, . . . , xk at the root of ad-ary tree. If vertex
v has the sequencey1, . . . ykv

, then each one of itsd children will have a sequence which is generated from
y1, . . . ykv

by flipping three biased coins for each bit. The first coin has probabilityps for Heads, and determines
whether this bit will be substituted or not. The second coin has probabilitypd, and determines whether this bit
will be deleted, and the third coin has probabilitypi and determines whether a new random bit will be inserted.
The input to the procedure is the sequences of then leaves of the tree, as well as the tree structure (but not
the sequences of the inner vertices) and the goal is to reconstruct an approximation to the sequence of the root
(the DNA of the ancestral father). For everyǫ > 0, we present a deterministic algorithm which outputs an
approximation ofx1, . . . , xk if pi + pd < O(1/k2/3 log n) and(1 − 2ps)

2 > O(d−1 log d).
To our knowledge, this is the first rigorous trace reconstruction result on a tree in the presence of indels.
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1 Introduction

Trace reconstruction on a star.In the “trace reconstruction problem” (TRP) [Lev01a, Lev01b, BKKM04, KM05,
HMPW08, VS08], a random binary stringX of lengthk generates an i.i.d. collection of tracesY1, . . . , Yn that are
identical toX except for randommutationswhich consist inindels, i.e., the deletion of an old site or the insertion
of a new site between existing sites, andsubstitutions, i.e., the flipping of the state at an existing site1. (In keeping
with biological terminology, we refer to the components or positions of a string assites.) The goal is to reconstruct
efficiently the original string with high probability from as few random traces as possible.

An important motivation for this problem is the reconstruction of ancestral DNA sequences in computation
biology [BKKM04, KM05]. One can think ofX as a gene in an (extinct) ancestor species0. Through speciation,
the ancestor0 gives rise to a large number of descendants1, . . . , n and geneX evolves independently through
the action of mutations into sequencesY1, . . . , Yn respectively. Inferring the sequenceX of an ancient gene from
extant descendant copiesY1, . . . , Yn is a standard problem in evolutionary biology [Tho04]. The inference of
X typically requires the solution of an auxiliary problem, the multiple sequence alignment problem(which is an
important problem in its own right in computational biology): siteti of sequenceYi and sitetj of sequenceYj are
said to behomologous(in this simplified TRP setting) if they descend from a commonsite t of X only through
substitutions; in the multiple sequence alignment problem, we seek roughly to uncover the homology relation
betweenY1, . . . , Yn. Once homologous sites have been identified, the original sequenceX can be estimated, for
instance, by site-wise majority.

The TRP as defined above is anidealizedversion of the ancestral sequence reconstruction problem in one
important aspect. It ignores the actual phylogenetic relationship between species1, . . . , n. A phylogenyis a
(typically, binary) tree relating a group of species. The leaves of the tree correspond to extant species. Internal
nodes can be thought of as extinct ancestors. In particular the root of the tree represents the most recent common
ancestor of all species in the tree. Following paths from theroot to the leaves, each bifurcation indicates a speciation
event whereby two new species are created from a parent. An excellent introduction to phylogenetics is [SS03].

A standard assumption in computational phylogenetics is that genetic information evolves from the root to the
leaves according to a Markov model on the tree. Hence, the stochastic model used in trace reconstruction can be
seen as a special case where the phylogeny isstar-shaped. (The substitution model used in trace reconstruction
is known in biology as the Cavender-Farris-Neyman (CFN) [Cav78, Far73, Ney71] model.) It may seem that a
star is a good first approximation for the evolution of DNA sequences. However extensive work on the so-called
“reconstruction problem” in theoretical computer scienceand statistical physics has highlighted the importance of
taking into account the full tree model in analyzing the reconstruction of ancestral sequences.
The “reconstruction problem.” In the “reconstruction problem” (RP), we have a single site which evolves through
substitutions only from the root to the leaves of a tree. In the most basic setup which we will consider here, the
tree isd-ary and each edge is an independent symmetric indel-free channel where the probability of a substitution
is a constantps > 0. The goal is to reconstruct the state at the root given the vector of states at the leaves. More
generally, one can consider a sequence of lengthk at the root where each site evolves independently accordingto
the Markov process above. Denote byn the number of leaves in the tree. The RP has attracted much attention in the
theoretical computer science literature due to its deep connections to computational phylogenetics [Mos03, Mos04,
DMR06, Roc08] and statistical physics [Mos98, EKPS00, Mos01, MP03, MSW04, JM04, BKMP05, BCMR06,
GM07, BVVD07, Sly09a, Sly09c]. See e.g. [Roc07, Sly09b] forbackground.

Unlike the star case, the RP on a tree exhibits an interestingthresholding effect: on the one hand, information is
lost at an exponential rate along each path from the root; on the other hand, the number of paths grows exponentially
with the number of levels. When the substitution probability is low, the latter “wins” and vice versa. This “phase
transition” has been thoroughly analyzed in the theoretical computer science and mathematical physics literature—
although much remains to be understood. More formally, we say that the RP issolvablewhen the correlation
between the root and the leaves persists no matter how large the tree is. Note that unlike the TRP we do not require

1One can also consider the case whereX is arbitrary rather than random. We will not discuss this problem here.
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high-probability reconstruction in this case as it is not information-theoretically achievable ford constant—simply
consider the information lost on the first level below the root. Moreover the “number of traces” is irrelevant here as
it is governed by the depth of the tree and the solvability notion implies nontrivial correlation for any depth. When
the RP is unsolvable, the correlation decays to0 for large trees. The results of [BRZ95, EKPS00, Iof96, BKMP05,
MSW04, BCMR06] show that for the CFN model, ifps < p∗, then the RP is solvable, whered(1−2p∗)2 = 1. This
is the so-calledKesten-Stigumbound [KS66]. If, on the other hand,ps > p∗, then the RP isunsolvable. Moreover
in this case, the correlation between the root state and any function of the character states at the leaves decays as
n−Ω(1). The positive result above is obtained by taking a majority vote over the leaf states.

Like the TRP, the RP is only anidealizedversion of the ancestral sequence reconstruction problem:it ignores
the presence of indels. In other words, the RP assumes that the multiple sequence alignment problem has been
solved perfectly. This is in fact a long-standing assumption in evolutionary biology where one typically prepro-
cesses sequence data by running it through a multiple sequence alignment heuristic and then one only has to model
the substitution process. This simplification has come under attack in the biology literature, where it has been
argued that alignment procedures often create systematic biases that affect analysis [LG08, WSH08]. Much empir-
ical work has been devoted to the proper joint estimation of alignments and phylogenies [TKF91, TKF92, Met03,
MLH04, SR06, RE08, LG08, LRN+09].
Our results. We make progress in this recent new direction by analyzing the RP in the presence of indels—which
we also refer to as the TRP on a tree (TRPT). We consider ad-ary tree where each edge is an independent channel
with substitution probabilityps, deletion probabilitypd, and insertion probabilitypi (see Section 1.1 for a precise
statement of the model). The root sequence has lengthk and is assumed to be uniform in{0, 1}k . As in the standard
RP, we drop the requirement of high-probability reconstruction and seek instead a reconstructed sequence that has
correlation with the true root sequence uniformly bounded in the depth.

We give an efficient recursive procedure which solves the TRPT for ps > 0 a small enough constant (strictly
below, albeit close, to the Kesten-Stigum bound) andpd, pi = O(k−2/3 log−1 n). As a by-product of our analysis
we also obtain a partial global alignment of the sequences atthe leaves. Our method provides a framework for
separating the indel process from the substitution processby identifying well-preserved subsequences which then
serve as markers for alignment and reconstruction (see Section 1.2 for a high-level description of our techniques).
As far as we are aware, our results are the first rigorous results for this problem.

Results on the RP have been used in previous work to advance the state of the art in rigorous phylogenetic tree
reconstruction methods [Mos04, DMR06, MHR08, Roc08]. A central component in these methods is to solve the
RP on a partially reconstructed phylogeny to obtain sequence information that is “close” to the evolutionary past;
then this sequence information is used to obtain further structural information about the phylogeny. The whole
phylogeny is built by alternating these steps. Our method sets up a framework for extending these techniques
beyond substitution-only models. Partial results of this type will be given in the full version of the paper.
Related work. Much work has been devoted to the trace reconstruction problem on a star [Lev01a, Lev01b,
BKKM04, KM05, HMPW08, VS08]. In particular, in [HMPW08], itwas shown that, when there are only deletions,
it is possible to tolerate a small constant deletion rate using poly(k) traces. For a different range of parameters,
Viswanathan and Swaminathan [VS08] showed that, under constant substitution probability andO(1/ log k) indel
probability,O(log k) traces suffice. Both results assume that the root sequenceX is uniformly random.

The multiple sequence alignment problem as a combinatorialoptimization problem (finding the best alignment
under some pairwise scoring function) is known to be NP-hard[WJ94, Eli06]. Most heuristics used in practice,
such as CLUSTAL [HS88], T-Coffee [NHH00], MAFFT [KMKM02], and MUSCLE [Edg04], use the idea of a
guide tree, that is, they first construct a very rough phylogenetic tree from the data (using edit distance as a measure
of evolutionary distance), and then recursively constructlocal alignments produced by “aligning alignments.” Our
work can be thought of as the first attempt to analyze rigorously this type of procedure.

Finally, our work is tangentially related to the study of edit distance. Edit distance and pattern matching in
random environments has been studied, e.g., by [Nav01, NBYST, AK08].
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1.1 Definitions

We now define our basic model of sequence evolution.

Definition 1.1 (Model of sequence evolution)Let T (d)
H be thed-ary tree withH levels andn = dH leaves. For

simplicity, we assume throughout thatd is odd. We consider the following model of evolution onT
(d)
H . The sequence

at the root ofT (d)
H has lengthk and is drawn uniformly at random over{0, 1}k . Along each edge of the tree, each

site (or position) undergoes the following mutations independently of the other sites:

• Substitution. The site state is flipped with probabilityps > 0.

• Deletion. The site is deleted with probabilitypd > 0.

• Insertion. A new site is created to the right of the current site with probability pi > 0. The state of this new
site is uniform{0, 1}.

These operations occur independently of each other. The last two are calledindels. We letpid = pi + pd and
θs = 1 − 2ps. The parametersps, pd, pi may depend onk andn, wheren is the number of leaves.

Remark 1.2 For convenience, our model of insertion is intentionally simplistic. In the biology literature, related
continuous-time Markov models are instead used for this kind of process [TKF91, TKF92, Met03, MLH04, RE08,
DR09]. It should be possible to extend our results to such generalizations by proper modifications to the algorithm.

1.2 Results

Statement of results.Our main result is the following. Denote byX = x1, . . . , xk a binary uniform sequence of
lengthk. Run the evolutionary process onT

(d)
H with root sequenceX and letY1, . . . , Yn be the sequences obtained

at the leaves, whereYi = yi
1, . . . , y

i
ki

.

Theorem 1.3 (Main result) For all χ > 0 andβ = O(d−1 log d), there isΦ,Φ′,Φ′′ > 0 such that the following
holds ford large enough. There is a polynomial-time algorithmA with access toY1, . . . , Yn such that for all

(1 − 2ps)
2 >

Φ log d

d
, pi + pd <

Φ′

k2/3 log n
, Φ′′ log3 n < k < poly(n),

the algorithmA outputs a binary sequencêX which satisfies the following with probability at least1 − χ:

1. X̂ = x̂1, . . . , x̂k has lengthk.

2. For all j = 1, . . . , k, P[x̂j = xj ] > 1 − β.

Remark 1.4 Notice that we assume that the (leaf-labelled) tree and and the sequence length of the root are known.
The requirement that the sequence length is known is not crucial. We adopt it for simplicity in the presentation.

Remark 1.5 In fact, we prove a stronger result which allowsχ = o(1) and shows that the “agreement” between
X̂ andX “dominates” an i.i.d. sequence. See Lemma B.1 and Section 5.2.

Proof sketch. We give a brief proof sketch. As discussed previously, in thepresence of indels the reconstruction
of ancestral sequences requires the solution of themultiple sequence alignmentproblem. However, in addition to
being computationally intractable, global alignment through the optimization of a pairwise scoring function may
create biases and correlations that are hard to quantify. Therefore, we require a more probabilistic approach. From
a purely information-theoretic point of view the pairwise alignment of sequences that are far apart in the tree is
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difficult. A natural solution to this problem is instead to perform local alignments and ancestral reconstructions,
and recurse our way up the tree.

This recursiveapproach raises its own set of issues. Consider a parent nodeand itsd children. It may be easy to
perform a local alignment of the children’s sequences and derive a good approximation to the parent sequence (for
example, through site-wise majority). Note however that, to allow a recursion of this procedure all the way to the
root, we have to provide strong guarantees about the probabilistic behavior of our local ancestral reconstruction.
As is the case for global alignment, a careless alignment procedure creates biases and correlations that are hard to
control. For instance, it is tempting to treat misaligned sites as independent unbiased noise but this idea presents
difficulties:

Consider a sitej of the parent sequence and suppose that for this site we have succeeded in aligning
all but two of the children, say1 and2. Let xi

ji
denote the site in thei’th child which was used to

estimate thej’th site. By the independence assumption on the root sequence and the inserted sites,x1
j1

andx2
j2

are uniform and independent of(xi
ji
)di=3. However,x1

j1
andx2

j2
may originate from thesame

neighboring site of the parent sequence and therefore are themselves correlated.

Quantifying the effect of this type of correlation appears to be nontrivial.
Instead, we use anadversarialapproach to local ancestral reconstruction. That is, we treat the misaligned

sites as being controlled by an adversary who seeks to flip thereconstructed value. This comes at a cost: it
produces an asymmetry in our ancestral reconstruction. Although the RP is well-studied in the symmetric noise
case, much remains to be understood in the asymmetric case. In particular, obtaining tight results in terms of
substitution probability here may not be possible as the critical threshold of the RP may be hard to identify. We do
however provide a tailored analysis of the particular instance of the RP by recursive majority obtained through this
adversarial approach and we obtain results that are close tothe known threshold for the symmetric case. Unlike
the standard RP, the reconstruction error is not i.i.d. but we show instead that it “dominates” an i.i.d. noise. (See
Section 4.2 for a definition.) This turns out to be enough for awell-controlled recursion. We first define a local
alignment procedure which has a fair success probability (independent ofn). However, applying this alignment
procedure multiple times in the tree is bound to fail sometimes. We therefore prove that the local reconstruction
procedure is somewhat robust in the sense that even if one of thed inputs to the reconstruction procedure is faulty,
it still has a good probability of success.

As for our local alignment procedure, we adopt ananchor approach. Anchors were also used by [KM05,
HMPW08]—although in a quite different way. We imagine a partition of every node’s sequence into islands of
lengthO(k1/3). (The precise choice of the island length comes from a trade-off between the length and the number
of islands in bounding the “bad” events below—see the proof of Lemma 3.3.) At the beginning of each island
we have an anchor of lengthO(log n). Through this partition of the sequences in islands and anchors we aim to
guarantee the following. Given a specific father nodev, with fair probability 1) all the anchors in the children
nodes are indel-free; and 2) for all parent islands, almost all of the corresponding children islands have no indel at
all and, moreover, at most one child island may have a single indel. The “bad” children islands—those that do not
satisfy these properties—are treated as controlled by an adversary. We show that Conditions 1) and 2) are sufficient
to guarantee that: the anchors of all islands can be aligned with high probability and single indel events between
anchors can be identified. This allows a local alignment of all islands with at most one “bad” child per island and is
enough to perform a successful adversarial recursive majority vote as described above. The bound on the maximum
indel probability sustained by our reconstruction algorithm comes from satisfying Conditions 1) and 2) above.
Notation. For a sequenceX = x1, . . . , xk, we let X[i : j] = xi, . . . , xj . We use the expression “with high
probability (w.h.p.)” to mean “with probability at least1 − 1/poly(n)” where the polynomial inn can be made
of arbitrarily high degree (by choosing the appropriate constants large enough). We denote byBin(n, p) a random
variable with binomial distribution of parametersn, p. For two random variablesX,Y we denote byX ∼ Y the
equality in distribution.
Organization. The rest of the paper is organized as follows. We describe thealgorithm in Section 2. The proof of
our main result is divided into two sections. In Section 3, weprove a series of high-probability claims about the
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evolutionary process. Then, conditioning on these claims,we provide a deterministic analysis of the correctness of
the algorithm in Section 5.2. All proofs are in the Appendix.

2 Description of the Algorithm

In this section we describe our algorithm for TRPT. Our algorithm is recursive, proceeding from the leaves of the
tree to the root. We describe the recursive step applied to a non-leaf node of the tree.
Recursive Setup—Our Goal.For our discussion in this section, let us consider a non-leaf nodev with d children,
denotedui for i ∈ [d]. For notational convenience, we drop the indexu and denote its children by1, . . . , d. Our
goal for the recursive step of the algorithm is to reconstruct the sequence at the nodev given the sequences of the
children. Denote the sites of the father byX0 = x0

1, . . . , x
0
k0

, and the sites of thei’th child by Xi = xi
1, . . . , x

i
ki

.
During the reconstruction process, we do not have access to the children’s sequences, but rather to reconstructed
sequences denoted bŷXi = x̂i

1, . . . x̂
i
k̂i

.
Let us consider the following partition of the sequence ofv into subsequences, calledislands. Of course our

algorithm doesn’t have access to the sequence atv during the recursive step of the algorithm. We define the partition
as a means to describe our algorithm: The sites ofv are partitioned intoislandsof lengthℓ = k1/3 (except for the
last one which is possibly shorter). Denote byN0 = ⌈k0/ℓ⌉ the number of islands inv. Each island starts with
an anchorof a bits. That is, the islands are the bitstringsX0[1 : ℓ], X0[ℓ + 1 : 2ℓ], . . . and the anchors are the
bitstringsX0[1 : a], X0[ℓ + 1 : ℓ + a], . . ..

Our algorithm tries to identify for each islandX0[(i − 1)ℓ + 1 : iℓ] the substrings of each of thed children
that correspond to this island (i.e., contain the sites of the island), called “child islands.” We do so iteratively for
i = 1 . . . N0. We use the islands that did not have indels for sequence reconstruction, using the substitution-only
model. Some islands will have indels however. This leads to two “modes of failure”: one invalidates the entire
(parent) node, and the other invalidates only an island of a child. More specifically, a node becomes invalidated
(i.e., useless) when indels are not evenly distributed, that is: when an indel occured in an anchor, or two (or more)
indels occured in a specific island over alld children. This is a rare event. Barring this event, we expectthat
each island suffers only at most one indel over all children.The island (of a child) that has exactly one indel is
invalidated (second mode of failure), and is thus deemed useless for reconstruction purposes. As long as the parent
node is not invalidated, each island will have at leastd − 2 non-invalidated children islands (one additional island
is potentially lost to a child node that may have been invalidated at an earlier stage).

Even when the algorithm identifies that a child island has an indel somewhere, the island is not ignored. The
algorithm still needs to compute the length of the island in order to know the start of the next island in this child.
For this purpose, we use the anchor of the next island and match it to the corresponding anchors of the other
(non-invalidated) child islands. In fact the same procedure lets us detect which of the child islands are invalidated.

More formally, we defined functionsfi : {1, . . . , k0} → {1, . . . , ki} ∪ {†}, wherefi takes the sites ofv to
the corresponding sites of thei’th child or to the special symbol† if the site was deleted. Note that for eachi, fi

is monotone, when ignoring sites which are mapped to†. For t = ℓr, let si(r) = fi(t + 1) − (t + 1) denote the
displacement of the site corresponding to the(t + 1)st site of the parent, in theith child. By convention, we take
si(0) = 0. If there is no indel betweent = ℓr andt′ = ℓr′ thensi(r) = si(r

′). Note that, in the specific case of
one indel operation in the island, we have that|si(r) − si(r

′)| = 1.
Algorithm. Our algorithm estimates the values ofsi(r) and uses these estimates to match the starting positions
of the islands in the children. The full algorithm is given inFigure 1 in the Appendix. We use the following
additional notation. Forx ∈ {0, 1} we let 〈x〉 = 2x − 1. Then, for two{0, 1}m-sequencesY = y1, . . . , ym and
Z = z1, . . . , zm, we define their (empirical) correlation as

Corr(Y,Z) =
1

m

m∑

j=1

〈yj〉〈zj〉.

Note thaty 7→ 〈y〉 maps1 to 1 and0 to −1. One can think ofCorr(Y,Z) as a form of normalized centered
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Hamming distance betweenY andZ. In particular, a large value ofCorr(Y,Z) implies thatY andZ tend to agree.
We will use the following threshold (which will be justified in Section 5.1)

γ = ((1 − δ)(1 − 2ps)
2 − 4β),

whereδ is chosen so that
(1 − δ)(1 − 2ps)

2 − 8β > δ + 8β,

where againβ = O(d−1 log d).

3 Analyzing the Indel Process

We definea ≥ C log n andα ≤ ε/d < 1, for constantsC, ε to be determined later. We requirea < k1/3 <
poly(n).2 We assume that the indel probability per site satisfies

pid =
α

4dk2/3a
= O

(
1

k2/3 log n

)
.

Throughout, we denote the tree byT = (V,E).

3.1 Bound on the Sequence Length

As the indel probability is defined per site, longer sequences suffer more indel operations than shorter ones. We
begin by bounding the effect of this process. We show that with high probability the lengths of all sequences are
roughly equal.

Lemma 3.1 (Bound on sequence length)For all ζ > 0 (small), there existsC ′ > 0 (large) so that for allu in V ,
we have

kv ∈ [k, k̄] ≡ [(1 − ζ)k, (1 + ζ)k],

with high probability givenk ≥ C ′ log3 n. We denote this event byL.

3.2 Existence of a Dense Stable Subtree

In this section, we show that with probability close to1 there exists a dense subtree ofT with a “good indel
structure,” as defined below. Our algorithm will try to identify this subtree and perform reconstruction on it, as
described in Section 4.
Indel structure of a node. Recall thatℓ = k1/3.

Definition 3.2 (Indel structure) For a node (parent)v, we say thatv is radioactive if one of the following events
happen:

1. EventB1: Nodev has a childu such that when evolving fromv to u an indel operation occurred in at least
one of the sites which are located in an anchor.

2. EventB2: There is an islandI and two childrenu, u′, such that an indel occurred inI in the transition from
v to u and in the transition fromv to u′.

3. EventB3: There is an islandI and a childu, such that two indel operations (or more) happened inI in the
transition fromv to u.

2A variant of the algorithm where the anchors have lengthO(log k) also works whenk ≫ n.
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Otherwise the nodev is stable. By definition, the leaves ofT are stable. A subtree ofT is stable if all of its nodes
are stable.

Lemma 3.3 (Bound on radioactivity) For all α > 0, there exists a choice ofζ > 0 small enough in Lemma 3.1
such that conditioning on the eventL occuring: any vertexv is radioactive with probability at mostα.

As a corollary we obtain the following.

Lemma 3.4 (Existence of a dense stable subtree)For all χ > 0, there is ofζ > 0 small enough in Lemma 3.1
such that, conditioning on the eventL occuring, with probability at least1 − χ, the root ofT is the father of a
(d − 1)-ary stable subtree ofT . We denote this event byS.

4 A Stylized Reconstruction Process

In this subsection, we lay out the basic lemmas that we need toanalyze our ancestral reconstruction method. We
do this by way of describing a hypothetical sequence reconstruction process performed on the stable tree defined
by the indel process (see Lemma 3.4). We analyze this reconstruction process (assuming that the radioactive
nodes and the islands with indels are controlled by an adversary) and show in Lemma 4.5 that the process gives
strong reconstruction guarantees. Then we argue in Section5 that our algorithm performs at least as well as the
reconstruction process against the adversary described inthis section. Throughout this section we suppose that a
stable tree exists and is given to us, together with the “orbit” of every site of the sequence at the root of the tree (see
functionF below). However, we are given no information about the substitution process.

Let v ∈ V and assumev is the root of a(d − 1)-ary stable subtreeT ∗ = (V ∗, E∗) of T . (We make the stable
subtree belowv into a(d−1)-ary tree by potentially removing arbitrary nodes from it, at random.) Letu ∈ V ∗. For
each islandI in u, at most one childu′ of u in T ∗ contains an indel in which case it contains exactly one indel. We
say that such anI is a corrupted island ofu′. The basic intuition behind our analysis is that, provided the alignment
on T ∗ is performed correctly (which we defer to Section 5.2), the ancestral reconstruction step of our algorithm is
a recursive majority procedure against an adversary which controls the corrupted islands and the radioactive nodes
(as well as all their descendants). Below we analyze this adversarial process.
Recursive majority. We begin with a formal definition of recursive majority. LetMaj : {0, 1, ♯}d → {0, 1} be the
function that returns the majority value over non-♯ values, and flips an unbiased coin in case of a tie (including the
all-♯ vector). Letn0 = dH0 be the number of leaves inT below v. Consider the following recursive function of
z = (z1, z2, . . . , zn0) ∈ {0, 1, ♯}: Maj0(z1) = z1, and

Majj(z1, . . . , zdj ) = Maj(Majj−1(z1, . . . , zd(j−1)), . . . ,Majj−1(zdj−d(j−1)+1, . . . , zdj )),

for all j = 1, . . . ,H0. Then,MajH0(z) is thed-wise recursive majority ofz.
Let X0 = x0

1, . . . , x
0
k0

be the sequence atv. Foru ∈ V ∗ andt = 1, . . . , k0, we denote byFu(t) the position of
sitex0

t in u or † if the site has been deleted on the path tou. We say thatCu,t holds ifFu(t) is in a corrupted island
of u. Let Path(u, v) be the set of nodes on the path betweenu andv.

Definition 4.1 (Gateway node)A nodeu is agatewayfor sitet if:

1. Fu(t) 6= †; and

2. For all u′ ∈ Path(u, v) − {v}, Cu′,t does not hold.

We letT ∗∗
t = (V ∗∗

t , E∗∗
t ) be the subtree ofT ∗ containing all gateway nodes fort. By construction,T ∗∗

t is at least
(d− 2)-ary and for convenience we remove arbitrary nodes, at random, to make it exactly(d− 2)-ary. Notice that,
for t, t′ ∈ [1 : k0], the subtreesT ∗∗

t andT ∗∗
t′ are random and correlated. However, they are independent ofthe

substitution process.
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We will show in Section 5.2 that the reconstructed sequence produced by our method atv “dominates” (see
below) the following reconstruction process. LetLv = u1, . . . , un0 be the leaves belowv ordered according to a
planar realization of the subtree belowv. Denote byXi = xi

1, . . . , x
i
ki

the sequence atui. For t = 1, . . . , k0, let
L∗∗

t be the leaves ofT ∗∗
t . We define the following auxiliary sequences: forui ∈ Lv, we letΞi = ξi

1, . . . , ξ
i
ki

where
for t = 1, . . . , k0

ξi
t =

{
xi

Fui
(t) if ui ∈ L∗∗

t

1 − x0
t o.w.

In words,ξi
t is the descendant ofx0

t if ui is a gateway tot and is the opposite of the valuex0
t otherwise. Because

of the monotonicity of recursive majority, the latter choice is in some sense the “worst adversary” (ignoring cor-
relations between sites—we will come back to this point later). We then define a reconstructed sequence atv as
Ξ̂0 = ξ̂0

1 , . . . , ξ̂
0
k0

where fort = 1, . . . , k0

ξ̂0
t = MajH0(ξ1

t , . . . , ξn0
t ).

We now analyze the accuracy of this (hypothetical) estimator—which we refer to as theadversarial reconstruction
of X0. We show in Section 5.2 that our actual estimator is at least as good aŝΞ0 w.h.p.

4.1 Recursive Majority Against an Adversary

To analyze the performance of the adversarial reconstuction Ξ̂0, we consider the following stylized process.

Definition 4.2 (Recursive Majority Against an Adversary) We consider the following process:

1. Run the evolutionary process onT
(d−2)
H0

at one position only starting with root state0 without indels, that is,
takingpid = 0.

2. Then completeT (d−2)
H0

into T
(d)
H0

and associate to each additional node the state1.

3. LetR(d)
H0

be the random variable in{0, 1} obtained by running recursive majority on the leaf states obtained
above.

We call this process therecursive majority against an adversary onT
(d)
H0

. We show the following.

Lemma 4.3 (Accuracy of recursive majority) For all β > 0, there exists a constantC ′′ > 0 such that taking

θ2
s >

C ′′ log d

d
,

andd large enough, then the probability that the recursive majority against an adversary onT (d)
H0

correctly recon-
structs root state0 is at least1 − β uniformly inH0. In comparison, note that the Kesten-Stigum bound for binary
symmetric channels ond-ary trees isθ2 > d−1 [KS66, Hig77].

As a corollary of Lemma 4.3, we have the following.

Definition 4.4 (Bernoulli sequence)For q > 0 and m ∈ N, the (q,m)-Bernoulli sequence is the product dis-
tribution on {0, 1}m such that each position is1 independently with probability1 − q. We denote byBq,m the
corresponding random variable.

Lemma 4.5 (Subsequence reconstruction)Assumev is the root of a(d − 1)-ary stable subtree. For allβ > 0,
choosingC ′′ > 0 as in Lemma 4.3 is such that the following holds ford large enough. Fort,m ∈ {1, . . . , k0}, let
Λ = (λ1, . . . , λm) be theagreement vectorbetween thêΞ0[t + 1 : t + m] andX0[t + 1 : t + m], that is,λi = 1 if
recursive majority correctly reconstructs positioni. Then there is0 ≤ β′ ≤ β such thatΛ ∼ Bβ′,m. (Here,β′ may
depend onH0 butβ does not.)
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4.2 Stochastic Domination and Correlation

In our discussion so far we have assumed that a stable tree exists and is given to us, together with the the function
F . This allowed us to define the stylized recursive majority process against an adversary (Definition 4.2), for which
we established strong reconstruction guarantees (Lemmas 4.3 and 4.5). In reality, we have no access to the stable
tree. We are going to construct it recursively from the leaves towards the root. At the same time we will align
sequences, discover corrupted islands, and reconstruct sequences of internal nodes. The stylized recursive majority
process will be used to provide a “lower bound” on the actual reconstruction process. The notion of “lower bound”
that is of interest to us is captured bystochastic domination, which we proceed to define formally.

Definition 4.6 (Stochastic domination) Let X,Y be two random variables in{0, 1}m. We say thatY stochasti-
cally dominatesX, denotedX � Y , if there is a joint random variable(X̃, Ỹ ) such that the marginals satisfy
X ∼ X̃ andY ∼ Ỹ and moreoverP[X̃ ≤ Ỹ ] = 1.

Note that in the definition aboveX andY may (typically) live in different probability spaces. Then, the joint
variable(X̃, Ỹ ) is a coupled version ofX andY . In our case,X is the adversarial recursive process whereasY
is the actual reconstruction performed by the algorithm. Wenow show how to use this property for correlation
estimation.

Correlation. The analysis of the previous section guarantees that the sequences output by the adversarial recon-
struction process are well correlated with the true sequences. But if we are only going to use the adversarial
process as a lower bound for the true reconstruction process, it is important to establish that stochastic domina-
tion preserves correlation. In preparing the ground for such a claim let us establish an important property of the
adversarial process. LetTu andTv be the two disjoint copies ofT (d)

h rooted at the nodesu andv respectively,
and letX = x1, x2, . . . , xm ∈ {0, 1}m andY = y1, y2, . . . , ym ∈ {0, 1}m be sequences at the nodesu and
v. Assume thatu andv are the roots of(d − 1)-ary stable subtrees. Let̂X ′ = x̂′

1, x̂
′
2, . . . , x̂

′
m ∈ {0, 1}m and

Ŷ ′ = ŷ′1, ŷ
′
2, . . . , ŷ

′
m ∈ {0, 1}m be the reconstructions ofX andY obtained by the adversarial reconstruction

process. LetΛ = λ1, . . . , λm andΘ = θ1, . . . , θm be the resulting agreement vectors. We show the following:

Lemma 4.7 (Concentration of bias) Let β′, β be as in Lemma 4.5. Then, with probability at least1 − e−Ω(mβ2)

the following are satisfied ∣∣∣∣∣
1

m

m∑

i=1

〈λi〉〈θi〉 − (1 − 2β′)2

∣∣∣∣∣ ≤
1

2
β;

∣∣∣∣∣
1

m

m∑

i=1

1〈λi〉=−1 − β′

∣∣∣∣∣ ≤
1

2
β;

∣∣∣∣∣
1

m

m∑

i=1

1〈θi〉=−1 − β′

∣∣∣∣∣ ≤
1

2
β.

We use the previous lemma to argue that stochastic domination does not affect our correlation computations.

Lemma 4.8 (Correlation bound) Let X̂, Ŷ ∈ {0, 1}m be random strings defined on the same probability space
asX̂ ′ andŶ ′. Denote byZ (resp.W ) the agreement vectors of̂X (resp.Ŷ ) with X (resp.Y ). Assume thatΛ ≤ Z
andΘ ≤ W with probability1, whereΛ andΘ are the agreement vectors of̂X ′ andŶ ′ with X andY as explained
above. Then,

|Corr(X,Y ) − Corr(X̂, Ŷ )| ≤ 1 − 1

m

m∑

i=1

(〈λi〉〈θi〉 − 1〈λi〉=−1 − 1〈θi〉=−1),

with probability1. Furthermore, conditioned on the conclusions of Lemma 4.7,we have, with probability1:

|Corr(X,Y ) − Corr(X̂, Ŷ )| ≤ 8β.
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5 Analyzing the True Reconstruction Process

We provide the proof of Theorem 1.3. In Section 5.1, we show that, if a stable subtree exists, the adversarial
reconstructions of aligned anchors exhibit strong correlation signal, while misaligned anchors exhibit weak signal.
This holds true for sequences that stochastically dominatethe adversarial reconstructions. We use this property to
complete the analysis of our reconstruction method in Section 5.2.

5.1 Anchor Alignment

Consider a parentv that is stable. Leti, j be two children with sequencesXi = xi
1, . . . , x

i
ki

andXj = xj
1, . . . , x

j
kj

.
Let t = ℓr and consider the following subsequences (of lengtha) at i andj

A
i
r = xi[t + si(r) + 1 : t + si(r) + a], and A

j
r = xj[t + sj(r) + 1 : t + sj(r) + a].

These are related (but not identical) to the definition of anchors in the algorithm of Section 2. In particular, note
that by definitionA i

r andA
j
r are always aligned, in the sense that they correspond to the same subsequence ofv.

Consider also the following subsequences

D
j
r = xj[t + sj(r) : t + sj(r) + a − 1] and I

j
r = xj[t + sj(r) + 2 : t + sj(r) + a + 1].

These are the one-site shifted subsequences forj. The following lemma bounds the correlation between these
strings. More precisely, we show thatA i

r is always significantly more correlated to its aligned brother A
j
r than

to the misaligned onesD j
r and I

j
r . This follows from the fact that the misaligned subsequences are sitewise

independent.

Lemma 5.1 (Anchor correlations) For all δ > 0 such that(1− δ)(1−2ps)
2 −8β > δ +8β, there isC > 0 large

enough so that witha = C log n, the following hold:

1. Aligned anchors. P

[
Corr(A i

r ,A j
r ) > (1 − δ)(1 − 2ps)

2
]

> 1 − exp (−Ω(a)) = 1 − 1/poly(n).

2. Misaligned anchors. P

[
Corr(A i

r ,D j
r ) < δ

]
> 1 − exp (−Ω(a)) = 1 − 1/poly(n), and similarly forI j

r .

We denote byAi,j,r the above events and their symmetric counterparts underi ↔ j.

Lemma 5.2 (Anchor correlations: Reconstructed version)Let X̂i = (x̂i
ι)

ki

ι=1 and X̂j = (x̂j
ι )

kj

ι=1 dominate the
adversarial reconstructionŝX ′

i and X̂ ′
j of Xi and Xj, as defined in Lemma 4.8. Let̂A i

r = x̂i[t + si(r) + 1 :

t + si(r) + a] and similarly for all other possibilitiesÂ ↔ D̂ , Î and/ori ↔ j. Denote byBi,j,r the event that the
conclusions of Lemma 4.7 hold for̂X ′

i andX̂ ′
j over all pairs of intervals involving[t + si(r) : t + si(r) + a − 1],

[t + si(r) + 1 : t + si(r) + a], and[t + si(r) + 2 : t + si(r) + a + 1], with i ↔ j as necessary. Then, conditioned
onBi,j,r andAi,j,r we have

Corr(Â i
r , Â j

r ) > (1 − δ)(1 − 2ps)
2 − 8β,

Corr(Â i
r , D̂ j

r ) < δ + 8β, Corr(Â i
r , Î j

r ) < δ + 8β,

as well as their symmetric counterparts underi ↔ j.

5.2 Proof of Correctness

We show that our recursive procedure reconstructs the desired sequence at the root of the tree whenever a collection
of good events occurs. Recall the definitions of the eventsL, S, Bi,j,r, Ai,j,r from Lemmas 3.1, 3.4, 5.1 and 5.2.3

3EventL guarantees that there is no big variance in the nodes’ sequence lengths; eventS guarantees that a stable(d − 1)-ary subtree
exists; the eventsBi,j,r guarantee that the adversarial reconstruction process is successful, also in preserving correlations between sequences
of nodes; and the eventsAi,j,r guarantee that aligned anchors (across sequences of a node’s children) exhibit strong correlation signal, while
misaligned anchors give weak correlation signal.
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Conditioning onL andS, denote byT ∗ = (V ∗, E∗) the stable(d − 1)-ary subtree ofT . Then, for allv ∈ V ∗,
all pairs of childreni, j of v in T ∗, and allr = 1, . . . , k̄/ℓ, we condition on the eventsBi,j,r andAi,j,r. Note that
having conditioned onL there is only a polynomial number of such events, since all sequence lengths are bounded
by k̄. (If r · ℓ is larger than a node’s sequence length we assume that the corresponding events are vacuously
satisfied.) Finally recall that, conditioning onL, the eventS occurs with probability1 − χ and all other events
occur with high probability. We denote the collection of events byE .

Conditioning onE , the proof of correctness of the algorithm follows from a bottom-up induction. The gist of
the argument is the following. Suppose that at a recursive step of the algorithm we have reconstructed sequences
for all children of a nodev, which are strongly correlated with the true sequences (in the sense of dominating the
corresponding adversarial reconstructions). Having conditioned on the eventsAi,j,r andBi,j,r, it follows then that
the correct alignments of anchors exhibit strong correlation signal while the incorrect alignments weak correlation
signal. Hence, our correlation tests between anchors discover the corrupted islands and do the anchor alignments
correctly (at least for all nodes lying inside the stable tree). Hence the shift functionŝsi’s are correctly inferred,
and the reconstruction ofv’s sequence can be shown to dominate the corresponding adversarial reconstruction. The
complete proof details are given in App endix D.
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A Algorithm

1. Input. Children sequenceŝx1, . . . , x̂d.

2. Initialization. Setŝi(0) := 0, ∀i, ℓ = k1/3, r = 1, andt = ℓ.

3. Main loop. While x̂i[t + ŝi(r − 1) + 1 : t + ŝi(r − 1) + a] is non-empty for alli,

(a) Current position. Sett = ℓr.

(b) Anchor definition. For eachi, setÂi
r = x̂i[t + ŝi(r − 1) + 1 : t + ŝi(r − 1) + a].

We say thatÂi
r is ther’th anchor of thei’th child. (If the remaining sequences are not

long enough to produce an anchor of lengtha, we repeat the previous step with the full
remaining sequences.)

(c) Alignment. For each anchor, we define the set of anchors which agree with it. Formally,

Gi
r = {j ∈ [d],Corr(Âi

r, Â
j
r) ≥ γ}.

(d) Update. We define the set of aligned childrenGr = {i : |Gi
r| ≥ d − 2}.

i. Aligned anchors.For eachi ∈ Gr, setŝi(r) = ŝi(r − 1).

ii. Misaligned anchors.For eachi 6∈ Gr define two stringŝDi
r = x̂i[t + ŝi(r − 1) :

t + ŝi(r − 1) + a − 1] andÎi
r = x̂i[t + ŝi(r − 1) + 2 : t + ŝi(r − 1) + a + 1]. If

|{j ∈ [d] − {i} : Corr(D̂i
r, Â

j
r) ≥ γ}| ≥ d − 2,

setŝi(r) = ŝi(r − 1) − 1. If

|{j ∈ [d] − {i} : Corr(Îi
r, Â

j
r) ≥ γ}| ≥ d − 2,

setŝi(r) = ŝi(r − 1) + 1.

(e) Ancestral sequence.Computex̂0
t−ℓ+1, . . . x̂

0
t by performing a sitewise majority on the

children inGr. (If the remaining children sequences are too short to produce a full
island, we use whatever is left which should all have equal length by our proof.)

(f) Increment. Setr := r + 1.

4. Output. Outputx̂0 and set̂k0 to its length.

Figure 1: This is the basic recursive step of our reconstruction algorithm. It takes as input thed inferred sequences
of the childrenx̂1, . . . , x̂d and computes a sequence for the parentx̂0. If any of the steps above cannot be accom-
plished, we abort the reconstruction of the parent and declare it radioactive.

B Further Lemmas

Forα going to0, we have more precisely:

Lemma B.1 (Limit α → 0) Condition onL. Let

α =
1

h(n)
,
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for h(n) = ω(1). Then, forn large enough, the root is the father of a(d− 1)-ary stable subtree with probability at
least

1 − χ = 1 − 1√
h(n)

.

Proof of Lemma B.1: Pluggingα = 1/h(n) andν = 1 − 1/
√

h(n) into the recursion derived in the proof of
Lemma 3.4, we get

(1 − α)g(ν) =

(
1 − 1

h(n)

)(
1 − d√

h(n)
+ O

(
1

h(n)

)

+d

(
1 − d − 1√

h(n)
+ O

(
1

h(n)

))
1√
h(n)

)

=

(
1 − 1

h(n)

)(
1 − O

(
1

h(n)

))

≥ 1 − 1/
√

h(n),

for n → +∞. �

C Proofs

Proof of Lemma 3.1: We prove the upper bound by assuming there is no deletion. Thelower bound can be proved
similarly. The proof goes by induction. Letv be a node at graph distancei from the root. We show that there is
C ′′ > 0 independent ofi such that

kv ≤ k + i
√

C ′′k log n.

Since the depth ofT is O(log n), this implies the main claim as long as
√

C ′′k log n log n ≤ ζk,

which follows from our assumption forC ′ > 0 large enough.
The base case of the induction is satisfied trivially. Assumethe induction claim holds forv, the parent ofu. It

suffices to show that the number of new insertions is at most
√

C ′′k log n. By our induction hypothesis, the number
of insertions is bounded above by a binomialZ with parametersk + (i− 1)

√
C ′′k log n ≤ (1 + ζ)k andpid w.h.p.

By Hoeffding’s inequality, taking

η =

√
C ′′′ log n

(1 + ζ)k
,

we have

P[Z > (1 + ζ)kpid + (1 + ζ)kη] < exp(−2((1 + ζ)kη)2/[(1 + ζ)k])

= 1/poly(n).

By our assumption onpid, we have

(1 + ζ)kpid = O

(
αk1/3

log n

)
,

so that choosingC ′′ large enough gives

(1 + ζ)kpid + (1 + ζ)kη ≤
√

C ′′k log n.
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This proves the claim.�

Proof of Lemma 3.3: According to Lemma 3.1, the length of the sequence atv is in [k, k̄] w.h.p. We denote that
event byLv. We bound the probability of eventsB1,B2,B3 separately.

Let N = k̄/ℓ = (1 + ζ)k2/3. Conditioned onLv, there are at mostN anchors, each of lengtha. By a union
bound, the probability that at least one of the sites in the anchors has an indel operation in any child is upper
bounded by

P[B1] = P[B1 | Lv]P[Lv] + P[B1 | Lc
v]P[Lc

v]

≤ Nadpid + 1/poly(n)

=
αadN

4k2/3ad
+ 1/poly(n)

=
(1 + ζ)k2/3

k2/3
· α

4
+ 1/poly(n)

< α(1/3 − 1/poly(n)),

where we chooseζ small enough. The quantity we want to estimate is in factP[B1 | L] (which is not the same as
conditioning onLv only). But notice that

P[B1] = P[B1 | L]P[L] + P[B1 | Lc]P[Lc] ≥ P[B1 | L]P[L],

which implies

P[B1 | L] ≤ α(1/3 − 1/poly(n))

1 − 1/poly(n)
< α/3.

(This argument shows that it suffices to condition onLv. We apply the same trick below.)
To bound the probability of the second event, consider an islandI and a sonu. The probability that there is an

indel when evolving fromv to u is at most

pidℓ =
α

4k2/3ad
k1/3 =

α

4k1/3ad
.

Thus, the probability that more than one child ofv experiences an indel inI is at most

d∑

i=2

(
d

i

)( α

4k1/3ad

)i
≤

d∑

i=2

di

i!

( α

4k1/3ad

)i

≤
d∑

i=2

1

i!

( α

4k1/3a

)i

≤ e
( α

4k1/3a

)2

=
eα2

16k2/3a2
,

where we used that the expression in parenthesis on the second line is< 1. Taking a union bound over all islands,
the probability that at least two children experience an indel in the same island is at most

P[B2 | L] ≤ N · eα2

16k2/3a2

=
(1 + ζ)eα2

16a2

<
α

3
,
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where we used thatα < 1.
For the third event, consider again an islandI and a childu. The probability for at least two indel operations in

I when evolving fromv to u is at most

2ℓ∑

i=2

(
2ℓ

i

)( α

4adk2/3

)i
≤

2ℓ∑

i=2

1

i!

(
2ℓα

4adk2/3

)i

≤
2ℓ∑

i=2

1

i!

( α

2adk1/3

)i

≤ e
( α

2adk1/3

)2

≤ eα2

4a2d2k2/3
.

(We use2ℓ to account for insertionsand deletions.) Taking a union bound over all islands and children, the
probability that there are two indel operations in the same child in the same island is bounded by

P[B3 | L] ≤ dN
eα2

4a2d2k2/3

≤ (1 + ζ)eα2

4a2d
< α/3.

Taking a union bound over the three ways in which a site can become radioactive proves the lemma.�

Proof of Lemma 3.4: We follow a proof of [Mos01]. Letv be a node at distancer from the leaves. We letνr be
the probability thatv is the root of a(d − 1)-ary stable subtree. Let

g(ν) = νd + dνd−1(1 − ν).

Then, from Lemma 3.3,
νr ≥ (1 − α)g(νr−1).

Note that
g′(ν) = d(d − 2)νd−2(1 − ν).

In particular,g is monotone,g(1) = 1, andg′(1) = 0. Hence, there is1 − χ < ν∗ < 1 such that

g(ν∗) > ν∗.

Then, taking
1 − α > ν∗/g(ν∗),

we have

νr ≥ (1 − α)g(νr−1) ≥
ν∗

g(ν∗)
g(νr−1) ≥ ν∗ > 1 − χ,

by the induction hypothesis thatνr−1 ≥ ν∗. Note in particular thatν0 = 1 ≥ ν∗. �

Proof of Lemma 4.3: Recall that we assume the root state is0 and all adversarial nodes are1. Because of the
bias towards1, we cannot apply standard results about recursive majorityfor symmetric channels [Mos98, Mos04].
Instead, we perform a tailored analysis of this particular channel.
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We take asymptotics asd → +∞ and we show that the probability of reconstruction can be taken to be

1 − β = 1 − 1

d
,

for C ′′ large enough. Letv be the root ofT (d)
H0

. We denote byZv the number of non-adversarial children ofv in state
0 and byZ ′

v the number of nodes among them that return0 upon applying recursive majority to their respective
subtree. Letq0

H0
be the probability of incorrect reconstruction atv (given that the state atv is 0). Then

1 − q0
H0

≥ P

[
Z ′

v ≥ d + 1

2

]

≥
d−2∑

i=0

P

[
Z ′

v ≥ d + 1

2
|Zv = i

]
P[Zv = i], (1)

where we simply ignored the contribution of the children whoflipped to1.
We proveq0

H0
≤ 1/d by induction on the height. Letu be a non-adversarial node inT (d)

H0
at heighth from the

leaves to which we associate as above the variablesZu, Z ′
u and the quantityq0

h. Note thatq0
0 = 0. We assume the

induction hypothesis holds forh − 1. Note that conditioned on the state atu being0 Zu is Bin(d − 2, (1 − ps))
where

1 − ps =
1 + θs

2
=

1

2
+ Θ

(√
log d

d

)
,

asd → +∞. Similarly, givenZu = i, the variableZ ′
u is Bin(i, 1 − q0

h−1). In particular, the quantity

P

[
Z ′

u ≥ d + 1

2
|Zu = i

]
,

is monotone ini. We use Chernoff’s bound onZ ′
u to truncate the lower bound (1). Indeed, let

µ = (1 − ps)(d − 2) =
d

2
+ Υ(d),

with
Υ(d) = Θ(

√
d log d),

and

µ(1 − η) =
d

2
+

Υ(d)

2
,

where in particular

η = Θ

(√
log d

d

)
.

Then, we have
P[Zu < µ(1 − η)] < exp

(
−µη2/2

)
= d−Ω(1),

for C ′′ large enough. Applying to (1) leads to the lower bound

1 − q0
h ≥ (1 − d−Ω(1))P

[
Bin

(
d

2
+

Υ(d)

2
, 1 − q0

h−1

)
≥ d + 1

2

]
.

By the induction hypothesis,q0
h−1 ≤ 1/d. By applying Chernoff’s bound again we get

P

[
Bin

(
d

2
+

Υ(d)

2
, 1 − q0

h−1

)
≥ d + 1

2

]
> 1 − d−Ω(1),
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and thereforeq0
h ≤ 1/d. This proves the claim.�

Proof of Lemma 4.5: As we pointed out earlier, although the subtrees(T ∗∗
t′ )t+m

t′=t+1 are correlated by the construc-
tion of the islands, they are independent of the substitution process. By forcing (randomly) the subtrees(T ∗∗

t′ )t+m
t′=t+1

to be(d− 2)-ary and fixing the adversarial nodes to1, we restore the i.i.d. nature of the sites, from which the result
follows. �

Proof of Lemma 4.7: This follows from Lemma 4.5, the independence ofΛ andΘ, and three applications of
Hoeffding’s lemma.�

Proof of Lemma 4.8: Note that

Corr(X̂, Ŷ ) =
1

m

m∑

i=1

〈x̂i〉〈ŷi〉 =
1

m

m∑

i=1

〈xi〉〈yi〉〈zi〉〈wi〉.

Hence,

|Corr(X,Y ) − Corr(X̂, Ŷ )| ≤ 1

m

m∑

i=1

(1 − 〈zi〉〈wi〉) = 1 − 1

m

m∑

i=1

〈zi〉〈wi〉.

Now notice by case analysis that

〈zi〉〈wi〉 ≥ 〈λi〉〈θi〉 − 1〈λi〉=−1 − 1〈θi〉=−1.

This proves the first claim. The second claim follows from thebounds in Lemma 4.7.�

Proof of Lemma 5.1: For the first claim, note that

E[Corr(A i
r ,A j

r )] = θ2
s = (1 − 2ps)

2,

where we used that 1) there is no indel in the sites[t + 1 : t + a] betweenv andi, j; 2) that the sites are perfectly
aligned; and 3) that the substitution process is independent of the indel process. We also used the well-known fact
that theθs’s are multiplicative along a path under our model of substitution [SS03]. The result then follows from
Hoeffding’s inequality.

For the second claim, because the anchors are now misalignedthet′-th term inCorr(A i
r ,D j

r ) for t′ ∈ [t + 1 :
t + a] is the variable〈xi

t′+si(r)
〉〈xj

t′+sj(r)−1〉 which is uniform in{−1,+1}. In particular, we now have

E[Corr(A i
r ,D j

r )] = 0.

The result follows from the method of bounded differences with respect to the independent vectors

{(xi
t′+si(r)

, xj
t′+sj(r)

)}t+a
t′=t.

�

Proof of Lemma 5.2: This follows from Lemmas 4.8 and 5.1 and the triangle inequality. �

D Completing the Proof of the Main Theorem

Having conditioned on the eventE , we justify the correctness of our reconstruction method via the following
induction. The top level of the induction establishes Theorem 1.3.
Induction hypothesis.Consider a parentv in T ∗; in particular,v is stable. We assume that the following conditions,
denoted by(⋆), are satisfied: For all childreni ∈ [d] of v belonging toT ∗

20



1. Alignment. For all childreni′ of i with i′ ∈ T ∗ and allr = 1, . . . , k̄/ℓ − 1,

ŝi′(r) = si′(r). (2)

(This condition is trivially satisfied for values ofrℓ that are larger than the sequence length ofi′.)

2. Reconstruction.Moreover, we havêki = ki and for allt = 1, . . . , ki, the following holds:

Let Li be the leaves belowi with ni = |Li|. Let H be the level ofv. Let L∗∗
t be the gateway

leaves for sitet. Foru ∈ L∗∗
t let Fu(t) be the position of sitet in u. Note thatx̂i

t can be written
as x̂i

t = MajH−1(z1, . . . , zni
), wherezj is either♯ or xj

♭j
for an appropriate function♭j . Our

hypothesis is that
∀u ∈ L∗∗

t , ♭u = Fu(t). (3)

In particular, the ancestral reconstruction̂Xi dominates the adversarial reconstructionX̂ ′
i.

The base case wherev is a leaf is trivially satisfied.

Alignment. We begin with the correctness of the alignment.

Lemma D.1 (Induction: Alignment) AssumingE and(⋆), the algorithm inferssi correctly for all childreni ∈ [d]
which are also inT ∗, that is, (2) holds forv.

Proof of Lemma D.1: Let Π denote the set of children ofv in T ∗. The proof follows by induction onr. The base
caser = 0 is trivial. Assume correctness forr − 1.

If there is no indel in any of the childreni ∈ Π between the sites(r − 1)ℓ andrℓ of v, then underE , (⋆) and
Lemma 5.2 we haveΠ ⊆ Gr. In that case, for alli ∈ Π we havêsi(r) = ŝi(r − 1) = si(r − 1) = si(r), where the
second equality is from(⋆).

If there is an indel operation in islandr, then sincev is stable only one indel operation occurred in one child.
Denote the child with an indel byj. Assume the indel is a deletion. (The case of the insertion ishandled similarly.)
If j is not inT ∗ we are back to the previous case. So assumej is in T ∗. Again, fromE , (⋆) and Lemma 5.2 the
other children inT ∗ are added to the setGr, and the shift value will be computed correctly for them. Moreover by
(⋆), for everyi ∈ Π − {j},

fi(rℓ + 1) = rℓ + 1 + si(r)

= rℓ + 1 + ŝi(r)

= rℓ + 1 + ŝi(r − 1),

which is the starting point of̂Ai
r. Also,

fj(rℓ + 1) = rℓ + 1 + sj(r)

= rℓ + 1 + sj(r − 1) − 1

= rℓ + 1 + ŝj(r − 1) − 1

= rℓ + ŝj(r − 1),

which is the starting point of̂Dj
r. Thus according to Lemma 5.2̂Dj

r matchesÂi
r for all i ∈ Π ∩ Gr. As there are

d − 2 children inΠ ∩ Gr, we get that the algorithm sets

ŝj(r) = ŝj(r − 1) − 1 = sj(r − 1) − 1 = sj(r),

as required. Note also that in this case, according to Lemma 5.2 again,Âj
r does not have high correlation witĥAi

r

for anyi ∈ Π ∩ Gr, and thus we will consider̂Ij
r andD̂j

r. Similarly, Îj
r does not have high correlation witĥAi

r for
anyi ∈ Π ∩ Gr, and thus we will not try to set̂sj(r) twice. �
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Ancestral reconstruction. We use Lemma D.1 to prove that the ancestral reconstruction dominates the adversarial
reconstruction. In the algorithm, we perform a sitewise majority vote over the children ofv in Gr (these are the
aligned children—see the description of the algorithm in Figure 1). For notational convenience, we assume that in
fact we perform a majority vote overall children but we replace the states of the children outsideGr with ♯.

Lemma D.2 (Induction: Reconstruction) AssumingE , (⋆) and the conclusion of Lemma D.1, (3) holds forv. In
particular, the ancestral reconstruction̂Xv dominates the adversarial reconstruction̂X ′

v.

Proof of Lemma D.2: The second claim follows from the first one together with the construction of the adversarial
process and the monotonicity of majority.

As for the first claim, by Lemma D.1 for each site ofv there ared − 2 uncorrupted children islands containing
this site such that the children are also inT ∗. In particular, thed−2 corresponding sites in the children are correctly
aligned. Moreover, by the induction hypothesis, each corresponding site in the children satisfy (3). By taking a
majority vote over these sites we get (3) forv as well.

A small technical detail is handling the case where the last island has less thana sites, and thus does not contain
an anchor. However, in this case, if the father is stable thenthere are no indel operations at all in the last island, and
therefore aligning it according to the previous one gives the right result.�
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