1,812 research outputs found

    Reconstructing Extended Perfect Binary One-Error-Correcting Codes from Their Minimum Distance Graphs

    Full text link
    The minimum distance graph of a code has the codewords as vertices and edges exactly when the Hamming distance between two codewords equals the minimum distance of the code. A constructive proof for reconstructibility of an extended perfect binary one-error-correcting code from its minimum distance graph is presented. Consequently, inequivalent such codes have nonisomorphic minimum distance graphs. Moreover, it is shown that the automorphism group of a minimum distance graph is isomorphic to that of the corresponding code.Comment: 4 pages. Accepted for publication in IEEE Transactions on Information Theor

    The Perfect Binary One-Error-Correcting Codes of Length 15: Part II--Properties

    Full text link
    A complete classification of the perfect binary one-error-correcting codes of length 15 as well as their extensions of length 16 was recently carried out in [P. R. J. \"Osterg{\aa}rd and O. Pottonen, "The perfect binary one-error-correcting codes of length 15: Part I--Classification," IEEE Trans. Inform. Theory vol. 55, pp. 4657--4660, 2009]. In the current accompanying work, the classified codes are studied in great detail, and their main properties are tabulated. The results include the fact that 33 of the 80 Steiner triple systems of order 15 occur in such codes. Further understanding is gained on full-rank codes via switching, as it turns out that all but two full-rank codes can be obtained through a series of such transformations from the Hamming code. Other topics studied include (non)systematic codes, embedded one-error-correcting codes, and defining sets of codes. A classification of certain mixed perfect codes is also obtained.Comment: v2: fixed two errors (extension of nonsystematic codes, table of coordinates fixed by symmetries of codes), added and extended many other result

    Perfect binary codes: classification and properties

    Get PDF
    An r-perfect binary code is a subset of ℤ2n such that for any word, there is a unique codeword at Hamming distance at most r. Such a code is r-error-correcting. Two codes are equivalent if one can be obtained from the other by permuting the coordinates and adding a constant vector. The main result of this thesis is a computer-aided classification, up to equivalence, of the 1-perfect binary codes of length 15. In an extended 1-perfect code, the neighborhood of a codeword corresponds to a Steiner quadruple system. To utilize this connection, we start with a computational classification of Steiner quadruple systems of order 16. This classification is also used to establish the nonexistence of Steiner quintuple systems S(4, 5, 17). The classification of the codes is used for computational examination of their properties. These properties include occurrences of Steiner triple and quadruple systems, automorphisms, ranks, structure of i-components and connections to orthogonal arrays and mixed perfect codes. It is also proved that extended 1-perfect binary codes are equivalent if and only if their minimum distance graphs are isomorphic

    The Perfect Binary One-Error-Correcting Codes of Length 15: Part I--Classification

    Full text link
    A complete classification of the perfect binary one-error-correcting codes of length 15 as well as their extensions of length 16 is presented. There are 5983 such inequivalent perfect codes and 2165 extended perfect codes. Efficient generation of these codes relies on the recent classification of Steiner quadruple systems of order 16. Utilizing a result of Blackmore, the optimal binary one-error-correcting codes of length 14 and the (15, 1024, 4) codes are also classified; there are 38408 and 5983 such codes, respectively.Comment: 6 pages. v3: made the codes available in the source of this pape

    Computational complexity of reconstruction and isomorphism testing for designs and line graphs

    Get PDF
    Graphs with high symmetry or regularity are the main source for experimentally hard instances of the notoriously difficult graph isomorphism problem. In this paper, we study the computational complexity of isomorphism testing for line graphs of tt-(v,k,λ)(v,k,\lambda) designs. For this class of highly regular graphs, we obtain a worst-case running time of O(vlogv+O(1))O(v^{\log v + O(1)}) for bounded parameters t,k,λt,k,\lambda. In a first step, our approach makes use of the Babai--Luks algorithm to compute canonical forms of tt-designs. In a second step, we show that tt-designs can be reconstructed from their line graphs in polynomial-time. The first is algebraic in nature, the second purely combinatorial. For both, profound structural knowledge in design theory is required. Our results extend earlier complexity results about isomorphism testing of graphs generated from Steiner triple systems and block designs.Comment: 12 pages; to appear in: "Journal of Combinatorial Theory, Series A

    Rank Minimization over Finite Fields: Fundamental Limits and Coding-Theoretic Interpretations

    Full text link
    This paper establishes information-theoretic limits in estimating a finite field low-rank matrix given random linear measurements of it. These linear measurements are obtained by taking inner products of the low-rank matrix with random sensing matrices. Necessary and sufficient conditions on the number of measurements required are provided. It is shown that these conditions are sharp and the minimum-rank decoder is asymptotically optimal. The reliability function of this decoder is also derived by appealing to de Caen's lower bound on the probability of a union. The sufficient condition also holds when the sensing matrices are sparse - a scenario that may be amenable to efficient decoding. More precisely, it is shown that if the n\times n-sensing matrices contain, on average, \Omega(nlog n) entries, the number of measurements required is the same as that when the sensing matrices are dense and contain entries drawn uniformly at random from the field. Analogies are drawn between the above results and rank-metric codes in the coding theory literature. In fact, we are also strongly motivated by understanding when minimum rank distance decoding of random rank-metric codes succeeds. To this end, we derive distance properties of equiprobable and sparse rank-metric codes. These distance properties provide a precise geometric interpretation of the fact that the sparse ensemble requires as few measurements as the dense one. Finally, we provide a non-exhaustive procedure to search for the unknown low-rank matrix.Comment: Accepted to the IEEE Transactions on Information Theory; Presented at IEEE International Symposium on Information Theory (ISIT) 201
    corecore