570 research outputs found

    Reconfigurable Battery Techniques and Systems: A Survey

    Get PDF
    Battery packs with a large number of battery cells are becoming more and more widely adopted in electronic systems, such as robotics, renewable energy systems, energy storage in smart grids, and electronic vehicles. Therefore, a well-designed battery pack is essential for battery applications. In the literature, the majority of research in battery pack design focuses on battery management system, safety circuit, and cell-balancing strategies. Recently, the reconfigurable battery pack design has gained increasing attentions as a promising solution to solve the problems existing in the conventional battery packs and associated battery management systems, such as low energy efficiency, short pack lifespan, safety issues, and low reliability. One of the most prominent features of reconfigurable battery packs is that the battery cell topology can be dynamically reconfigured in the real-time fashion based on the current condition (in terms of the state of charge and the state of health) of battery cells. So far, there are several reconfigurable battery schemes having been proposed and validated in the literature, all sharing the advantage of cell topology reconfiguration that ensures balanced cell states during charging and discharging, meanwhile providing strong fault tolerance ability. This survey is undertaken with the intent of identifying the state-of-the-art technologies of reconfigurable battery as well as providing review on related technologies and insight on future research in this emerging area

    Next-Generation Battery Management Systems: Dynamic Reconfiguration

    Get PDF
    Batteries are widely applied to the energy storage and power supply in portable electronics, transportation, power systems, communication networks, etc. They are particularly demanded in the emerging technologies of vehicle electrification and renewable energy integration for a green and sustainable society. To meet various voltage, power, and energy requirements in large-scale applications, multiple battery cells have to be connected in series and/or parallel. While battery technology has advanced significantly in the past decade, existing battery management systems (BMSs) mainly focus on state monitoring and control of battery systems packed in fixed configurations. In fixed configurations, though, the battery system performance is in principle limited by the weakest cells, which can leave large parts severely underutilized. Allowing dynamic reconfiguration of battery cells, on the other hand, allows individual and flexible manipulation of the battery system at cell, module, and pack levels, which may open up a new paradigm for battery management. Following this trend, this paper provides an overview of next-generation BMSs featuring dynamic reconfiguration. Motivated by numerous potential benefits of reconfigurable battery systems (RBSs), the hardware designs, management principles, and optimization algorithms for RBSs are sequentially and systematically discussed. Theoretical and practical challenges during the design and implementation of RBSs are highlighted in the end to stimulate future research and development

    E-transportation: the role of embedded systems in electric energy transfer from grid to vehicle

    Get PDF
    Electric vehicles (EVs) are a promising solution to reduce the transportation dependency on oil, as well as the environmental concerns. Realization of E-transportation relies on providing electrical energy to the EVs in an effective way. Energy storage system (ESS) technologies, including batteries and ultra-capacitors, have been significantly improved in terms of stored energy and power. Beside technology advancements, a battery management system is necessary to enhance safety, reliability and efficiency of the battery. Moreover, charging infrastructure is crucial to transfer electrical energy from the grid to the EV in an effective and reliable way. Every aspect of E-transportation is permeated by the presence of an intelligent hardware platform, which is embedded in the vehicle components, provided with the proper interfaces to address the communication, control and sensing needs. This embedded system controls the power electronics devices, negotiates with the partners in multi-agent scenarios, and performs fundamental tasks such as power flow control and battery management. The aim of this paper is to give an overview of the open challenges in E-transportation and to show the fundamental role played by embedded systems. The conclusion is that transportation electrification cannot fully be realized without the inclusion of the recent advancements in embedded systems

    Ageing Mitigation and Loss Control Through Ripple Management in Dynamically Reconfigurable Batteries

    Full text link
    Dynamically reconfigurable batteries merge battery management with output formation in ac and dc batteries, increasing the available charge, power, and life time. However, the combined ripple generated by the load and the internal reconfiguration can degrade the battery. This paper introduces that the frequency range of the ripple matters for degradation and loss. It presents a novel control method that reduces the low-frequency ripple of dynamically reconfigurable battery technology to reduce cell ageing and loss. It furthermore shifts the residual ripple to higher frequencies where the lower impedance reduces heating and the dielectric capacitance of electrodes and electrolyte shunt the current around the electrochemical reactions.Comment: 8 pages, 8 figure

    Challenges and Opportunities for Second-life Batteries: A Review of Key Technologies and Economy

    Full text link
    Due to the increasing volume of Electric Vehicles in automotive markets and the limited lifetime of onboard lithium-ion batteries (LIBs), the large-scale retirement of LIBs is imminent. The battery packs retired from Electric Vehicles still own 70%-80% of the initial capacity, thus having the potential to be utilized in scenarios with lower energy and power requirements to maximize the value of LIBs. However, spent batteries are commonly less reliable than fresh batteries due to their degraded performance, thereby necessitating a comprehensive assessment from safety and economic perspectives before further utilization. To this end, this paper reviews the key technological and economic aspects of second-life batteries (SLBs). Firstly, we introduce various degradation models for first-life batteries and identify an opportunity to combine physics-based theories with data-driven methods to establish explainable models with physical laws that can be generalized. However, degradation models specifically tailored to SLBs are currently absent. Therefore, we analyze the applicability of existing battery degradation models developed for first-life batteries in SLB applications. Secondly, we investigate fast screening and regrouping techniques and discuss the regrouping standards for the first time to guide the classification procedure and enhance the performance and safety of SLBs. Thirdly, we scrutinize the economic analysis of SLBs and summarize the potentially profitable applications. Finally, we comprehensively examine and compare power electronics technologies that can substantially improve the performance of SLBs, including high-efficiency energy transformation technologies, active equalization technologies, and technologies to improve reliability and safety

    Ultra-fast charging in aluminum-ion batteries: electric double layers on active anode

    Get PDF
    With the rapid iteration of portable electronics and electric vehicles, developing high-capacity batteries with ultra-fast charging capability has become a holy grail. Here we report rechargeable aluminum-ion batteries capable of reaching a high specific capacity of 200 mAh g−1. When liquid metal is further used to lower the energy barrier from the anode, fastest charging rate of 104 C (duration of 0.35 s to reach a full capacity) and 500% more specific capacity under high-rate conditions are achieved. Phase boundaries from the active anode are believed to encourage a high-flux charge transfer through the electric double layers. As a result, cationic layers inside the electric double layers responded with a swift change in molecular conformation, but anionic layers adopted a polymer-like configuration to facilitate the change in composition

    Benign mobility? Electric bicycles, sustainable transport consumption behaviour and socio-technical transitions in Nanjing, China

    Get PDF
    In this paper, we ask whether electric bicycle (e-bike) use in urban China is a temporary phase or an embedded form of sustainable mobility. A survey was conducted in Nanjing in order to assess the characteristics and attitudes of electric bicycle users and other mode users (e.g. pedestrians; car drivers). Based on over 1000 responses a Logit Model was used to analyse current and future mode choice. The results show that electric bicycles are not necessarily displacing cars on a substantial scale, but are rather displacing the ‘benign’ modes of walking, traditional bicycling, and using the bus. We conclude that electric bicycles are helping to enable mobility-dependent lifestyles that may in the future be supported by cars, rather than offering a true departure from carbon-centred, motorized forms of transport
    • 

    corecore