1,372 research outputs found

    Reconfigurable nanoelectronics using graphene based spintronic logic gates

    Full text link
    This paper presents a novel design concept for spintronic nanoelectronics that emphasizes a seamless integration of spin-based memory and logic circuits. The building blocks are magneto-logic gates based on a hybrid graphene/ferromagnet material system. We use network search engines as a technology demonstration vehicle and present a spin-based circuit design with smaller area, faster speed, and lower energy consumption than the state-of-the-art CMOS counterparts. This design can also be applied in applications such as data compression, coding and image recognition. In the proposed scheme, over 100 spin-based logic operations are carried out before any need for a spin-charge conversion. Consequently, supporting CMOS electronics requires little power consumption. The spintronic-CMOS integrated system can be implemented on a single 3-D chip. These nonvolatile logic circuits hold potential for a paradigm shift in computing applications.Comment: 14 pages (single column), 6 figure

    On using content addressable memory for packet classification

    Get PDF
    Packet switched networks such as the Internet require packet classification at every hop in order to ap-ply services and security policies to traffic flows. The relentless increase in link speeds and traffic volume imposes astringent constraints on packet classification solutions. Ternary Content Addressable Memory (TCAM) devices are favored by most network component and equipment vendors due to the fast and de-terministic lookup performance afforded by their use of massive parallelism. While able to keep up with high speed links, TCAMs suffer from exorbitant power consumption, poor scalability to longer search keys and larger filter sets, and inefficient support of multiple matches. The research community has responded with algorithms that seek to meet the lookup rate constraint with greater efficiency through the use of com-modity Random Access Memory (RAM) technology. The most promising algorithms efficiently achieve high lookup rates by leveraging the statistical structure of real filter sets. Due to their dependence on filter set characteristics, it is difficult to provision processing and memory resources for implementations that support a wide variety of filter sets. We show how several algorithmic advances may be leveraged to im-prove the efficiency, scalability, incremental update and multiple match performance of CAM-based packet classification techniques without degrading the lookup performance. Our approach, Label Encoded Content Addressable Memory (LECAM), represents a hybrid technique that utilizes decomposition, label encoding, and a novel Content Addressable Memory (CAM) architecture. By reducing the number of implementation parameters, LECAM provides a vehicle to carry several of the recent algorithmic advances into practice. We provide a thorough overview of CAM technologies and packet classification algorithms, along with a detailed discussion of the scaling issues that arise with longer search keys and larger filter sets. We also provide a comparative analysis of LECAM and standard TCAM using a collection of real and synthetic filter sets of various sizes and compositions

    MULTI-GIGABIT PATTERN FOR DATA IN NETWORK SECURITY

    Get PDF
    In the current scenario network security is emerging the world. Matching large sets of patterns against an incoming stream of data is a fundamental task in several fields such as network security or computational biology. High-speed network intrusion detection systems (IDS) rely on efficient pattern matching techniques to analyze the packet payload and make decisions on the significance of the packet body. However, matching the streaming payload bytes against thousands of patterns at multi-gigabit rates is computationally intensive. Various techniques have been proposed in past but the performance of the system is reducing because of multi-gigabit rates.Pattern matching is a significant issue in intrusion detection systems, but by no means the only one. Handling multi-content rules, reordering, and reassembling incoming packets are also significant for system performance. We present two pattern matching techniques to compare incoming packets against intrusion detection search patterns. The first approach, decoded partial CAM (DpCAM), pre-decodes incoming characters, aligns the decoded data, and performs logical AND on them to produce the match signal for each pattern. The second approach, perfect hashing memory (PHmem), uses perfect hashing to determine a unique memory location that contains the search pattern and a comparison between incoming data and memory output to determine the match. The suggested methods have implemented in vhdl coding and we use Xilinx for synthesis

    FPGA-based acceleration of the RMAP short read mapping tool

    Get PDF
    Bioinformatics is a quickly emerging field. Next generation sequencing technologies are producing data up to several gigabytes per day, making bioinformatics applications increasingly computationally intensive. In order to achieve greater speeds for processing this data, various techniques have been developed. These techniques involve parallelizing algorithms and/or spreading data across many computing nodes composed of devices such as Microprocessors, Graphics Processing Units (GPUs), and Field Programmable Gate Arrays (FPGAs). In this thesis, an FPGA is used to accelerate a bioinformatics application called RMAP, which is used for Short-Read Mapping. The most computationally intensive function in RMAP, the read mapping function, is implemented on the FPGA\u27s reconfigurable hardware fabric. This is a first step in a larger effort to develop a more optimal hardware/software co-design for RMAP. The Convey HC-1 Hybrid Computing System was used as the platform for development. The short-read mapping functionality of RMAP was implemented on one of the four Xilinx Virtex 5 FPGAs available in the HC-1 system. The RMAP 2.0 software was rewritten to separate the read mapping function to facilitate its porting over to hardware. The implemented design was evaluated by varying input parameters such as genome size and number of reads. In addition, the hardware design was analyzed to find potential bottlenecks. The implementation results showed a speedup of ~5x using datasets with varying number of reads and a fixed reference genome, and ~2x using datasets with varying genome size and a fixed number of reads, for the hardware-implemented short-read mapping function of RMAP

    Analysis and acceleration of data mining algorithms on high performance reconfigurable computing platforms

    Get PDF
    With the continued development of computation and communication technologies, we are overwhelmed with electronic data. Ubiquitous data in governments, commercial enterprises, universities and various organizations records our decisions, transactions and thoughts. The data collection rate is undergoing tremendous increase. And there is no end in sight. On one hand, as the volume of data explodes, the gap between the human being\u27s understanding of the data and the knowledge hidden in the data will be enlarged. The algorithms and techniques, collectively known as data mining, are emerged to bridge the gap. The data mining algorithms are usually data-compute intensive. On the other hand, the overall computing system performance is not increasing at an equal rate. Consequently, there is strong requirement to design special computing systems to accelerate data mining applications. FPGAs based High Performance Reconfigurable Computing(HPRC) system is to design optimized hardware architecture for a given problem. The increased gate count, arithmetic capability, and other features of modern FPGAs now allow researcher to implement highly complicated reconfigurable computational architecture. In contrast with ASICs, FPGAs have the advantages of low power, low nonrecurring engineering costs, high design flexibility and the ability to update functionality after shipping. In this thesis, we first design the architectures for data intensive and data-compute intensive applications respectively. Then we present a general HPRC framework for data mining applications: Frequent Pattern Mining(FPM) is a data-compute intensive application which is to find commonly occurring itemsets in databases. We use systolic tree architecture in FPGA hardware to mimic the internal memory layout of FP-growth algorithm while achieving higher throughput. The experimental results demonstrate that the proposed hardware architecture is faster than the software approach. Sparse Matrix-Vector Multiplication(SMVM) is a data-intensive application which is an important computing core in many applications. We present a scalable and efficient FPGA-based SMVM architecture which can handle arbitrary matrix sizes without preprocessing or zero padding and can be dynamically expanded based on the available I/O bandwidth. The experimental results using a commercial FPGA-based acceleration system demonstrate that our reconfigurable SMVM engine is more efficient than existing state-of-the-art, with speedups over a highly optimized software implementation of 2.5X to 6.5X, depending on the sparsity of the input benchmark. Accelerating Text Classification Using SMVM is performed in Convey HC-1 HPRC platform. The SMVM engines are deployed into multiple FPGA chips. Text documents are represented as large sparse matrices using Vector Space Model(VSM). The k-nearest neighbor algorithm uses SMVM to perform classification simultaneously on multiple FPGAs. Our experiment shows that the classification in Convey HC-1 is several times faster compared with the traditional computing architecture. MapReduce Reconfigurable Framework for Data Mining Applications is a pipelined and high performance framework for FPGA design based on the MapReduce model. Our goal is to lessen the FPGA programmer burden while minimizing performance degradation. The designer only need focus on the mapper and reducer modules design. We redesigned the SMVM architecture using the MapReduce Framework. The manual VHDL code is only 15 percent of that used in the customized architecture

    Techniques for Processing TCP/IP Flow Content in Network Switches at Gigabit Line Rates

    Get PDF
    The growth of the Internet has enabled it to become a critical component used by businesses, governments and individuals. While most of the traffic on the Internet is legitimate, a proportion of the traffic includes worms, computer viruses, network intrusions, computer espionage, security breaches and illegal behavior. This rogue traffic causes computer and network outages, reduces network throughput, and costs governments and companies billions of dollars each year. This dissertation investigates the problems associated with TCP stream processing in high-speed networks. It describes an architecture that simplifies the processing of TCP data streams in these environments and presents a hardware circuit capable of TCP stream processing on multi-gigabit networks for millions of simultaneous network connections. Live Internet traffic is analyzed using this new TCP processing circuit
    corecore