
International Journal of Computer and Communication International Journal of Computer and Communication

Technology Technology

Volume 4 Issue 4 Article 5

October 2013

MULTI-GIGABIT PATTERN FOR DATA IN NETWORK SECURITY MULTI-GIGABIT PATTERN FOR DATA IN NETWORK SECURITY

Praveen Kumar. Ch
AVN Institute of Engineering & Technology, Hyderabad (A.P), India, pravi457@gmail.com

Prof.P.Vijai Bhaskar
AVN Institute of Engineering & Technology, Hyderabad (A.P), India, pvijaibhaskar@gmail.com

Ravi. Ch
#AVN Institute of Engineering & Technology, Hyderabad (A.P), India, Chini_ravi439@yahoo.co.in

B.Rambhupal Reddy
AVN Institute of Engineering & Technology, Hyderabad (A.P), India, b.rambhupalreddy@gmail.com

Follow this and additional works at: https://www.interscience.in/ijcct

Recommended Citation Recommended Citation
Ch, Praveen Kumar.; Bhaskar, Prof.P.Vijai; Ch, Ravi.; and Reddy, B.Rambhupal (2013) "MULTI-GIGABIT
PATTERN FOR DATA IN NETWORK SECURITY," International Journal of Computer and Communication
Technology: Vol. 4 : Iss. 4 , Article 5.
DOI: 10.47893/IJCCT.2013.1204
Available at: https://www.interscience.in/ijcct/vol4/iss4/5

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Computer and Communication Technology
by an authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijcct
https://www.interscience.in/ijcct
https://www.interscience.in/ijcct/vol4
https://www.interscience.in/ijcct/vol4/iss4
https://www.interscience.in/ijcct/vol4/iss4/5
https://www.interscience.in/ijcct?utm_source=www.interscience.in%2Fijcct%2Fvol4%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijcct/vol4/iss4/5?utm_source=www.interscience.in%2Fijcct%2Fvol4%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

MULTI-GIGABIT PATTERN FOR DATA IN NETWORK SECURITY

MULTI-GIGABIT PATTERN FOR DATA IN NETWORK SECURITY

 Praveen Kumar.Ch1, Prof.P.Vijai Bhaskar2, Ravi.Ch3, B.RambhupalReddy4
#AVN Institute of Engineering & Technology, Hyderabad (A.P), India

 Email: pravi457@gmail.com1, Chini_ravi439@yahoo.co.in2,b.rambhupalreddy@gmail.com3,pvijaibhaskar@gmail.co m 4

Abstract:- In the current scenario network security
is emerging the world. Matching large sets of patterns against
an incoming stream of data is a fundamental task in several
fields such as network security or computational biology.
High-speed network intrusion detection systems (IDS) rely on
efficient pattern matching techniques to analyze the packet
payload and make decisions on the significance of the packet
body. However, matching the streaming payload bytes
against thousands of patterns at multi-gigabit rates is
computationally intensive. Various techniques have been
proposed in past but the performance of the system is
reducing because of multi-gigabit rates.Pattern matching is a
significant issue in intrusion detection systems, but by no
means the only one. Handling multi-content rules,
reordering, and reassembling incoming packets are also
significant for system performance. We present two pattern
matching techniques to compare incoming packets against
intrusion detection search patterns. The first approach,
decoded partial CAM (DpCAM), pre-decodes incoming
characters, aligns the decoded data, and performs logical
AND on them to produce the match signal for each pattern.
The second approach, perfect hashing memory (PHmem),
uses perfect hashing to determine a unique memory location
that contains the search pattern and a comparison between
incoming data and memory output to determine the match.
The suggested methods have implemented in vhdl coding and
we use Xilinx for synthesis.
 I. INTRODUCTION

 The proliferation of Internet and networking
applications, coupled with the widespread availability of system
hacks and viruses have increased the need for network
security. Firewalls have been used extensively to prevent access
to systems from all but a few, well defined access points (ports),
but they cannot eliminate all security threats, nor can they detect
attacks when they happen. Stateful inspection firewalls are able
to understand details of the protocol that are inspecting by
tracking the state of a connection. They actually establish and
monitor connections for when it is terminated. However, current
network security needs, require a much more efficient analysis
and understanding of the application data. Content-based security
threats and problems occur more frequently, in an every day
basis. Virus and worm inflections, SPAMs (unsolicited e-mails),
email spoofing, and dangerous or undesirable data, get more and
more annoying and cause innumerable problems. Therefore, next
generation firewalls should provide Deep Packet Inspection
capabilities, in order to provide protection from these attacks.
Such systems check packet header, rely on pattern matching
techniques to analyze packet payload, and make decisions on the
significance of the packet body, based on the content of the

payload. Since string matching is the most computationally
intensive part of an NIDS, our proposed architectures exploit the
benefits of FPGAs to design efficient string matching
systems. The proposed architectures can support between 3 to 10

Gbps throughput, storing an entire NIDS set of patterns
in a single device. In this thesis we suggest solutions to
maintain high performance and minimize area cost, show also
how pattern matching designs can be updated and partially or
entirely changed, and advocate that brute force solutions
can offer high performance, while require low area. Techniques
such as fine-grain pipelining, parallelism, partitioning, and pre-
decoding are described, analyzing how they affect performance
and resource consumption.

This thesis provides CAM-like architectures and
perfect hashing memory (PHmem) for efficient and high-speed
string matching. It also evaluates our solutions in terms of
performance and cost, discusses its advantages and drawbacks,
compares it with related architectures, and presents
possible improvements and alternative solutions. Developing
VHDL representation of large designs that store hundreds of
patterns is a time-consuming procedure. Therefore, it is
important to automatically generate the VHDL code of a design
that stores a particular set of patterns. This work describes an
automatic implementation methodology for the
proposed architecture, in order to generate the desired design
fast. Objective of this paper is Pattern matching is a significant
issue in intrusion detection systems, but by no means the only
one. Handling multi content rules, reordering, and reassembling
incoming packets are also significant for system performance. In
this work, we address the challenge of payload pattern matching
in intrusion detection systems. We present two efficient
pattern matching techniques to analyze packet payloads at multi
gigabit rates and detect hazardous contents. We expand on
two approaches and evaluate them targeting the Snort IDS
ruleset. The first one is Decoded CAM (DCAM) and uses pre-
decoding to exploit pattern similarities and reduce the area cost
of the designs. We improve DCAM and decrease the required
logic resources by partially matching long patterns. The
improved approach is denoted as decoded partial CAM
(DpCAM). The second approach perfect hashing memory
(PHmem), combines logic and memory for the matching.
PHmem utilizes a new perfect hashing technique to hash the
incoming data and determine a unique memory location of a
possible matching pattern. Subsequently, we read this pattern
from memory and compare it against the incoming data. We
extend the perfect hashing algorithm in order to guarantee that
for any given set a perfect hash function can be generated, and
present a theoretical proof of its correctness.

249
International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-4, Iss-4

MULTI-GIGABIT PATTERN FOR DATA IN NETWORK SECURITY

II. LITERATURE SURVEY:

Intrusion detection, in the general sense, identifies
anomalous, inappropriate, or incorrect access to a system. There
has been much work on dinning the types of intrusions,
distinguishing an intrusion from normal activity, and prototyping
various intrusion systems. A high-level view of the components
necessary to assemble an intrusion system is shown in Figure 2.1.
At the center of the system is a component that detects intrusions.
Four elements surround the detector that send and receive
information. First, the detector has to know what events are
classified as intrusions. When a new event occurs, the detector
uses information about the current settings of the system as well
as information about known intrusions to determine if this event
is suspect. If the detector determines that the event is an
intrusion, the event can be logged, a countermeasure can be
taken, and an alarm can be raised. The potential countermeasures
are represented as a database because multiple types of responses
are available. An alarm could be signaled or the system could be
modified to prevent similar events. When an alarm is triggered,
an authority decides what further steps to take.

Feedback from the detector to the database of known
intrusions indicates that the ideal detector can discover new
intrusions. The event may be an abnormal event or it may be
patterned after a similar known intrusion. An authority can be
consulted to determine whether the event is deemed an intrusion
or not. In the case of data networks, intrusion detection refers to
the transfer of unwanted, malicious, or dangerous content over a
network, and the system being monitored can be a web server, a
database, or a cluster of computers. The intrusion may be as
benign as spam or as harmful as a Trojan horse that infects a
computer system by reading, writing, or even deleting files.

Figure 2.1: An intrusion system

III.THE NEED FOR INTRUSION DETECTION:

According to a recent study by the Computer Security
Institute (CSI) and the Federal Bureau of Investigation (FBI), a
staggering 70 percent of organizations surveyed reported a
security incident. This figure is up from 42 percent reported in
1996. Taking into account organizations’ reluctance to admit to
incidents or their inability to detect them, the true figure is likely
to be higher. E-business has driven organizations to open their
networks to wider audiences over the Internet—home and mobile
workers, business partners, suppliers, and customers—in order to

stay competitive. But such open networks expose the
organizations to intrusions—attempts to compromise, the
confidentiality, integrity, or availability, or to bypass the security
mechanisms of a computer system or network. Intrusion
detection is the process of monitoring the events occurring in a
computer system or network and analyzing them for signs of
intrusion. But why is intrusion detection necessary? Is it not
enough for an organization to use a firewall to control access to
its network and maybe a virtual private network (VPN) to secure
communications? Deploying firewalls and VPNs is a good thing.
A robust firewall policy can minimize the exposure of many
networks. Nevertheless, such countermeasures alone are not
enough. 1 Attackers Are Getting Smarter
 2 Vulnerabilities Are Proliferating
 3 “Hacker” Tools Make Attacks Easier
 4 Insider Attacks Are Still Predominant
IV.TECHNOLOGY ANALYSIS:

Intrusion detection allows organizations to protect their
systems from the threats that come with increasing network
connectivity and reliance on information systems. Given the level
and nature of modern network security threats, the question for
security professionals should not be whether to use intrusion
detection, but which intrusion detection features and capabilities
to use. IDSs have gained acceptance as a necessary addition to
every organization’s security infrastructure. When used
conscientiously and knowledgeably, IDS products can provide
worthwhile indications of malicious activity and spotlight
security vulnerabilities, thus providing an additional layer of
protection. Without them, network administrators have little
chance of knowing about, much less assessing and responding to,
malicious and invalid activity. Properly configured, IDSs are
especially useful for monitoring the network perimeter for
attacks originating from outside and for monitoring host systems
for unacceptable insider activity.
 2.4.2 Technology Leaders:

The IDS research field is still comparatively young,
with most research dating from the 1980s and 1990s, and wide-
scale commercial use from the mid-1990s. However, the
intrusion-detection market has grown into a significant
commercial presence. Gartner Research reported a 73 percent
growth in the $153 million IDS software market in 2000. The
leader by market share is Internet Security Systems (ISS) with 47
percent. The second largest is Computer Associates with 29
percent. Symantec and Network Associates also have IDS
offerings, although they currently have little share and are seeing
low growth.

Table 2.1 Leading IDS products

250
International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-4, Iss-4

MULTI-GIGABIT PATTERN FOR DATA IN NETWORK SECURITY

IV.A.NETWORK INTRUSION DETECTION SYSTEMS
(NIDS):

In recent years, Network Intrusion Detection/
Prevention Systems (NIDSs/NIPSs) are more and more necessary
for network security. Normally, traditional firewalls only
examine packet headers to determine whether to block or pass
the packets. Due to busy network traffic and smart attacking
schemes, firewalls are not as effective as they used to be.
NIDSs/NIPSs are designed to examine not only the headers but
also the payload of the packets to match and identify intrusions.
Intrusion detection systems can run in one of several modes:
intrusion detection or inline NIDS. In intrusion detection mode,
the NIDSs monitor the traffic offline and draw the attention of
network administrator to suspicious activities by sending alerts.
Inline intrusion detection system or Intrusion Prevention System
(IPS) actively filters exploits from traffic in real time. It can
forge resets, drop packets, or modify the packets in transit to
defeat an attack. IPSs have to be extremely fast and reliable to
process packets in real-time and should be completely
transparent, so there is no need to change the network
configuration.

The NIDSs can be further segmented into one of two
techniques: anomaly detection or misuse detection (signature
based). Anomaly detection is based on searching for
discrepancies from the models of normal behavior. These models
are obtained by performing a statistical analysis on the history of
system calls or by using rule 9 based approaches to specify
behavior patterns. Signature based detection is based on
searching packets for attack signatures. It is much faster than
anomaly detection, but can detect only those attacks that already
have signatures. On the other hand, anomaly detection have the
advantage of being able to detect previously unknown attacks,
however it suffers from a large number of false positives.
There are many signature based NIDSs that require deep packet
inspections such as SNORT, Bro. These systems are all open
source systems, which allow us to perform a detailed analysis
and show their abilities and constraints. Most modern
NIDS/NIPSs apply a set of rules that lead to a decision regarding
whether an activity is suspicious. They have well over a thousand
rules. As the number of known attacks grows, the patterns for
these attacks are made into signatures (pattern set). The simple
rule structure allows flexibility and convenience in configuring
NIDS. However, checking thousands of patterns to see whether it
matches becomes a computationally intensive task as the highest
network speed increases to several gigabits per second (Gbps).
Current high-performance systems can barely process that many
rules on a 100 Mbps moderately loaded network. To handle fully
loaded gigabit networks, an NIDS must either drop some of the
rules or drop some of the packets it analyzes. Neither solution is
desirable since they both compromise security

IV.B. SNORT NIDS:

Snort is an open source NIDS that uses a portable
library called libcap. Libcap allows the program to examine the
network packet for its length, content, and header. Snort can
perform traffic analysis, IP packet logging, protocol analysis, and
payload content search. Furthermore, Snort can be configured to
detect a variety of abnormal packet behaviors, such as buffer

overflows, stealth port scans, CGI attacks, SMB probes, and OS
fingerprinting attempts.

Figure 2.2 illustrates the Snort architecture.

It consists of the following components. When a network packet
goes into the system, it is passed to the decoder component. Here
the link level information, such as the Ethernet packet header, is
removed. Then, the packet enters the pre-processor block, which
performs a couple of functions such as packet defragmentation
and reassembles the TCP stream, manipulate or examine packets
prior to forwarding them to the detection engine. Finally and
most importantly, the detection engine performs tests on the
packet data forwarded by the preprocessors, using the Snort rules
and signatures as a baseline. If suspicious activity is identified by
the detection engine, output plug-ins are called to generate
administrative alerts, e.g., “drop this packet”, or “log this
packet”.
IV.C.PATTERN MATCHING IN SOFTWARE NIDS
SOLUTIONS:

At the core of every intrusion detection system is a
pattern matching algorithm. From a stream of packets, the
algorithm identifies those packets that contain data matching the
signatures of a known attack. The intrusion detection system then
takes action that could vary from alerting the system
administrator to dropping the packet in 12 the case of inline
NIDS. The problem of pattern matching is well researched, many
algorithms exist and they can be classified into either single
pattern string matching or multiple pattern string matching. In
single pattern string matching the packet is searched for a single
pattern at a time. On the other hand, in multiple pattern string
matching the algorithm searches the packet for the set of patterns
all at once. Several string pattern matching algorithms have been
recently proposed in NIDS especially for SNORT’s open source
NIDS. Recently, new pattern matching algorithms are proposed
to boost the pattern matching speed of SNORT. For example, the
Aho-Corasick-Boyer-Moore (AC_BM) algorithm proposed by
Silicon Defense combines the Boyer-Moore and Aho- Corasick
algorithms. Another algorithm named Wu-Mander multi-pattern
matching (MWM) algorithm. The MWM algorithm improves the
Boyer-Moore algorithm by performing a hash on 2-character
prefix of the input data, to index into a group of patterns. The
MWM algorithm is the default engine of the Snort when the
search-set size exceeds 10. When the Snort uses the MWM
algorithm, the matching speed becomes much faster than when
using the AC and other Boyer-Moore like algorithms.

Finally, Markatos et al. proposed E2xB algorithm,
which provides quick negatives when the search pattern does not
exist in the incoming data. Compared to Fisk et al., E2xB is

251
International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-4, Iss-4

MULTI-GIGABIT PATTERN FOR DATA IN NETWORK SECURITY

faster, while for large incoming packets and less than 1k-2k rules
it outperforms MWM. These algorithms greatly improve
SNORT’s pattern matching speed to a few hundred Mbps at
most, e.g., 50Mbps with the Pentium IV, 250Mbps with the SUN
SDA. However, it is still below the line rate needed for network
deployment.

Figure 2.3: Abstract illustration of performance
and area efficiency for various hardware
pattern matching techniques

IV.D.HARDWARE-BASED PATTERN MATCHING
ARCHITECTURES IN NIDS:
Given the processing bandwidth limitations of General

purpose processors (GPP), which can serve only a few hundred
Mbps throughput, Hardware-based NIDS (Multicore Processors,
ASIC or FPGA) as illustrated in Fig. 2.3 is an attractive
alternative solution.
 ASIC Technique:

Many ASIC intrusion detection systems have been
commercially developed. Such systems usually store their rules
using large memory blocks, and examine incoming packets in
integrated processing engines. In academic research, there are
several pattern matching solutions designed for ASIC.
 Multi-core processors Technique:

Recently, multi-core processors’ implementations are
becoming popular for designing NIDS due to flexibility.
Different from the traditional single core processors, multi-core
processes combine two or more independent processors into a
single package. These independent processors can run in parallel
hence can provide higher computation power. IBM cell processor
has 8 synergistic processor elements, each with 128 KB local
memory.
 FPGA Technique:

On the other hand, FPGAs are more suitable, because
they are reconfigurable; they provide hardware speed and exploit
parallelism. An FPGA-based system can be entirely changed
with only the reconfiguration overhead, by just keeping the
interface constant. Next subsections present some main
approaches for hardware based systems in academic researches.
Most of them are implemented on FPGA platform.
 CAMs & Shift-and-compare:

An easy approach for pattern matching is to use
Content Addressable Memories (CAMs) or shift-and-compare.
They apply parallel comparators and deep pipelining on different,
partially overlapping, positions in the incoming packet. Current
FPGAs give designers the opportunity to use integrated block
RAMs for constructing regular CAM. Other researchers
preferred to use shift-and compare, which leads to designs that
operate at higher frequency. Shift-and-compare architecture uses
one or more comparators for every matching pattern. Generally,
this approach uses FPGA logic cells to store each pattern. Every
LUT can store a half-byte (4-bit) of a pattern, and the flip-flops

that already exist in logic cells can be used to create a pipeline,
without any overhead. The simplicity of the parallel architecture
can achieve high throughput when compared to software
approaches. The drawback of these methods is the high area cost.
To decrease the area cost and achieve a high clock rate, many
improvements are proposed.
 Nondeterministic/Deterministic Finite Automata:

An alternative approach exploits state machines. The
state machines can be implemented on hardware platform to
work all together in parallel. There are two main options for
implementations of state machines. The first one is using
Nondeterministic Finite Automata (NFAs), having multiple
active states at a single cycle, while the second is Deterministic
Finite automata (DFAs) which allow one active state at a time
and result in a potentially larger number of states compared to
NFAs. State machines produce designs with low cost, but at a
modest throughput. Theoretically, DFA can be exponentially
larger than NFA, but in practice often DFAs have, as compared
to NFAs, a similar number of states. Sidhu and Prassanna
introduced regular expressions and Nondeterministic Finite
Automata (NFAs) for finding matches to a given regular
expression. Their automata matched one text character per clock
cycle. In general, finite automata machines suffer scalability
problems. They are complex and hard to implement. Too many
states consume too many hardware resources. Every time a new
attack is characterized and a signature is added to the database
the FA have to be rebuilt again and it requires long
reconfiguration time.

V.DECODED CAMs

In the past few years, numerous hardware-based pattern matching
solutions have been proposed, most of them using FPGAs, finite

automata or hashing approaches. Next, we describe some
significant steps forward in IDS pattern matching over the past

few years. Simple CAM or discrete comparators structures offer
high performance, at high area cost. Using regular expressions

(NFAs and DFAs) for pattern matching slightly reduces the area
requirements, however, results in significantly lower

performance. A technique to substantially increase sharing of
character comparators and reduce the design cost is predecoding,
applicable to both regular expression and CAM-like approaches.

The main idea is that incoming characters are predecoded
resulting in each unique character being represented by a single
wire. This way, an –character comparator is reduced to an -input
AND gate. Yusuf and Luk presented a tree-based CAM structure,

representing multiple patterns as a Boolean expression in the
form of a binary decision diagram (BDD). In doing so, the area

cost is lower than other CAM and NFA approaches.

V.1 BASIC DISCRETE COMPARATOR & COMMON
CHARACTER COMPARATOR:
Simple CAM or discrete comparators may provide high

performance; however, they are not scalable due to their high
area cost. We assumed the simple organization depicted in
Figure 3.1(a). The input stream is inserted in a shift register, and
the individual entries are fanned out to the pattern comparators.
There is one comparator for each pattern, fed from the shift
register. This design is simple and regular, and with proper use of
pipelining, the circuit can be fast. Its drawback, however, is the

252
International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-4, Iss-4

MULTI-GIGABIT PATTERN FOR DATA IN NETWORK SECURITY

high area cost. To remedy this cost, we suggested sharing the
character comparators exploiting similarities between patterns

V.2 DECODED CAM:

The Decoded CAM architecture illustrated in Figure
3.2, builds on this idea extending it further by the following
observation: instead of keeping a window of input characters in
the shift register each of which is compared against multiple
search patterns, we can first test for equality of the input for the
desired characters, and then delay the partial matching signals.
This approach both shares the equality logic for character
comparators and replaces the 8-bit wide shift registers used in
our initial approach with single bit shift registers for the equality
result(s).

•

Figure 3.1. Basic discrete comparator structure and its optimized
version which shares common character comparators.

Figure3.2. Decoded CAM: Three comparators provide the
equality signals for characters A, B, and C (“A” is shared). To
match pattern “ABCA” we have to remember (using shift
registers) the matching of character A, B, C, for 3, 2, and 1
cycles, respectively, until the final character is matched.

3.3 DPCAM:

Figure 3.3. DpCAM: Partial matching of long patterns. In this
example, a 31-byte pattern is matched. The first 16 bytes are
partially matched and the result is properly delayed to feed the
second substring comparator. Both substring comparators are fed
from the same pool of shifted decoded characters (SRL16s) and
therefore sharing of decoded characters is higher.

Long patterns are partially matched in substrings of
maximally 16 characters long. The reason is that the AND-tree of
a 16 character substring needs only five LUTs, while only a
single SRL16 shift register is required to delay each decoded
input character. Consequently, a pattern longer than 16 characters
is partitioned in smaller substrings which are matched separately.
The partial match of each substring is properly delayed and
provides input to the AND-tree of the next substring. This way
all the substring comparators need decoded characters delayed
for no more than 15 cycles.

VI.PERFECT HASHING MEMORY (PHMEM):The
alternative pattern matching approach proposed in this paper is
the PHmem. Instead of matching each pattern separately, it is

more efficient to utilize a hash module to determine which
pattern is a possible match, read this pattern from a memory and

compare it against the incoming data. Hardware hashing for
pattern matching is a technique known for decades.

VI.2 PERFECT HASHING TREE:

The proposed scheme requires the hash function to
generate a different address for each pattern, in other words,
requires a perfect hash function which has no collisions for a
given set of patterns. Furthermore, the address space would
preferably be minimal and equal to the number of patterns.
Instead of matching unique pattern prefixes as in, we hash unique
substrings in order to distinguish the patterns. To do so, we
introduce a perfect hashing method to guarantee that no
collisions will occur for a given set.

Generating such a perfect hash function may be
difficult and time consuming. In our approach, instead of
searching for a single hash function, we search for multiple
simpler sub hashes that when put together in a tree-like structure
will construct a perfect hash function. The perfect hash tree is
created based on the idea of “divide and conquer.” Let A be a set
of unique\ substrings = {a1, a2….an} and H (A) a perfect hash
function of A, then the perfect hash tree is created according to
the following equations:

253
International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-4, Iss-4

MULTI-GIGABIT PATTERN FOR DATA IN NETWORK SECURITY

 H (A) = h0(H1(1st half of A),H2(2ndhalfof A))
(1)

 H1 (1st half of A) = h1 (H1.1(1st quarter of A), H1.2(2nd quarter
of A)) (2)

and so on for the smaller subsets of the set A (until each subset
contains a single element). The h0, h1 etc., are functions that
combine subhashes. The H1, H2, H1.1, H1.2 etc., are perfect
hashes of subsets (subhashes).

To prove that our method generates perfect hash functions, we
need to prove the following.

• For any given set A of n items that can be encoded in
log2(n) bits, our method generates a function
h:A→{0,1} to split the set in two subsets that can be
encoded in log2(n/2) bits (that is log2(n) – 1 bits).

• Based on the first proof, the proposed scheme outputs a
perfect hash function for the initial set of patterns.

Proof: By definition, a hash function H|A of set A = {a1, a2….an}
which outputs a different value for each element ai is perfect

 H |a1 ≠ H |a2 ≠ …. H |ax .
(3)

Also, if h|S , where S = A U B U …. U N and A ∩ B ∩ …. ∩ N
= V is a hash function that separates the n subsets A,B,…N
having a different output for elements of different subsets is also
perfect, that is

 h |A ≠ h |B ≠ …. h |N .
(4)

We construct our hash trees based on two facts. First,
the “selects” of the multiplexers h separate perfectly the subsets
of the node. Second, that the inputs of the leaf nodes are perfect
hash functions; this is given by the fact that each element differs
to any other element at least one bit, therefore, there exists a
single bit that separates (perfectly) any pair of elements in the
set. Consequently, it must be proven that a node which combines
the outputs of perfect hash functions HA,HB,…..HN of the subsets
A,B,…..N using a perfect hash function h |S which separates

these subsets, outputs also a perfect hash function Hnode for the
entire set S.

VII.Experimental RESULTs & ANALYSIS

Several different architectures are simulated by active-
HDL and synthesized in Xilinx. Implementation of simulated
and synthesis results of BDC, CCC, DCAM, DpCAM and
PHmem structures are shown below.

This simulated result screen is for the BDC structure.

This simulated result screen is for the DPCAM structure

254
International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-4, Iss-4

MULTI-GIGABIT PATTERN FOR DATA IN NETWORK SECURITY

FPGA module of PHMEM:The below screen is how

the structure of PHMEM will be in the FPGA module.

REFERENCES:[1] I. Sourdis and D. Pnevmatikatos,

“Fast, large-scale string match for a 10 Gbps FPGA-based

network intrusion detection system,” in Proc. Int. Conf. Field

Program. Logic Appl,2003.

[2] I. Sourdis and D. Pnevmatikatos, “Pre-decoded CAMs for
efficient and high-speed NIDS pattern matching,” in Proc. IEEE
Symp. Field-Program. Custom Comput. Mach., 2004.

 [3] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole,
and V. Hogsett, “Granidt: Towards gigabit rate network intrusion
detection technology,” in Proc. Int. Conf. Field Program. Logic
Appl., 2002.

 [4] Z. K. Baker and V. K. Prasanna, “A methodology for
synthesis of efficient intrusion detection systems on FPGAs,” in
Proc. IEEE Symp. Field-Program. Custom Comput. Mach., 2004,
pp. 135–144.

[5] C. R. Clark and D. E. Schimmel, “Scalable parallel pattern-
matching on high-speed networks,” in Proc. IEEE Symp. Field-
Program. Custom Comput. Mach., 2004, pp. 249–257.

[6]Y. H. Cho, S. Navab, and W. Mangione-Smith, “Specialized
hardware for deep network packet filtering,” in Proc. 12th Int.
Conf. Field Program.Logic Appl., 2002, pp. 452–461.

[7] Y. H. Cho and W. H. Mangione-Smith, “Deep packet filter
with dedicated logic and read only memories,” in Proc. IEEE
Symp. Field-Program. Custom Comput. Mach., 2004.

 [8] Z. K. Baker and V. K. Prasanna, “Automatic synthesis of
efficient intrusion detection systems on FPGAs,” in Proc. 14th
Int. Conf. Field Program. Logic Appl., 2004, pp. 311–321.

[9] M. Attig, S. Dharmapurikar, and J. Lockwood,
“Implementation results of bloom filters for string matching,” in
Proc. IEEE Symp. Field-Program. Custom Comput. Mach., 2004.

[10] Y. H. Cho and W. H. Mangione-Smith, “Programmable
hardware for deep packet filtering on a large signature set,” in
Proc. Conf. Interaction Between Arch., Circuits, Compilers,
2004.

[11] L. Tan and T. Sherwood, “A high throughput string
matching architecture for intrusion detection and prevention,” in
Proc. 32nd Int. Symp. Comput. Arch. (ISCA), 2005, pp. 112–
122.

[12] P. Krishnamurthy, J. Buhler, R. D. Chamberlain, M. A.
Franklin, K. Gyang, and J. Lancaster, “Biosequence similarity
search on the mercury system,” in Proc. 15th IEEE Int. Conf.
Appl.-Specific Syst., Arch., Processors (ASAP), 2004, pp. 365–
375.

[13] E. Sotiriadis, C. Kozanitis, and A. Dollas, “FPGA based
architecture for DNA sequence comparison and database search,”
presented at the 13th Reconfigurable Arch. Workshop (RAW),
Rodos, Greece, 2006.

[14] SNORT, “SNORT official website,” 2007. [Online].
Available: http:// www.snort.org

[15] M. Fisk and G. Varghese, “An analysis of fast string
matching applied to content-based forwarding and intrusion
detection,” Univ. California, Tech. Rep. CS2001-0670, 2002.

[16] Z. K. Baker and V. K. Prasanna, “Automatic synthesis of
efficient intrusion detection systems on FPGAs,” IEEE Trans.
Dependable Sec. Comput., vol. 3, no. 4, Oct. 2006.

[17] J. Singaraju, L. Bu, and J. A. Chandy, “A signature match
processor architecture for network intrusion detection,” in Proc.
IEEE Symp. Field- Program. Mach., 2005, pp. 235–242.

[18] J. Moscola, J. Lockwood, R. P. Loui, and M. Pachos,
“Implementation of a content-scanning module for an internet
firewall,” in Proc. IEEE Symp. Field-Program. Mach., 2003.

[19] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull, and J.
W. Lockwood, “Deep packet inspection using parallel Bloom
filters,” IEEE Micro, vol. 24, no. 1, Jan. 2004, pp. 52–61.

[20] G. Papadopoulos and D. Pnevmatikatos, “Hashing +
Memory = Low Cost, exact pattern matching,” in Proc. Int. Conf.
Field Program. Logic Appl., 2005, pp. 39–44.

255
International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-4, Iss-4

MULTI-GIGABIT PATTERN FOR DATA IN NETWORK SECURITY

[21] S. Yusuf and W. Luk, “Bitwise optimized CAM for network
intrusion detection systems,” in Proc. Int. Conf. Field Program.
Logic Appl., 2005, pp. 444–449.

[22] H.-J. Jung, Z. K. Baker, and V. K. Prasanna, “Performance
of FPGA implementation of bit-split architecture for intrusion
detection systems,” presented at the Reconfigurable Arch.
Workshop IPDPS (RAW), Rodos, Greece, 2006.

[23] Xilinx, San Jose, CA, “VirtexE, Virtex2, Virtex2Pro, and
Spartan3 datasheets,” 2006. [Online]. Available:
http://www.xilinx.com

[24] F. J. Burkowski, “A hardware hashing scheme in the design
of a multiterm string comparator,” IEEE Trans. Comput., vol. 31,
no. 9, Sep.1982, pp.825–834.

[25] R. C. Merkle, “Protocols for public key cryptosystems,” in
Proc. IEEE Symp. Security Privacy, 1980, pp. 122–134.

[26] T. Sproull, G. Brebner, and C. Neely, “Mutable codesign for
embedded protocol processing,” in Proc. Int. Conf. Field
Program. Logic Appl., 2005, pp. 51–56.

256

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-4, Iss-4

	MULTI-GIGABIT PATTERN FOR DATA IN NETWORK SECURITY
	Recommended Citation

	MULTI-GIGABIT PATTERN FOR DATA IN NETWORK SECURITY

