31,783 research outputs found

    Analyzing recommender systems for health promotion using a multidisciplinary taxonomy: A scoping review

    Get PDF
    Background: Recommender systems are information retrieval systems that provide users with relevant items (e.g., through messages). Despite their extensive use in the e-commerce and leisure domains, their application in healthcare is still in its infancy. These systems may be used to create tailored health interventions, thus reducing the cost of healthcare and fostering a healthier lifestyle in the population. Objective: This paper identifies, categorizes, and analyzes the existing knowledge in terms of the literature published over the past 10 years on the use of health recommender systems for patient interventions. The aim of this study is to understand the scientific evidence generated about health recommender systems, to identify any gaps in this field to achieve the United Nations Sustainable Development Goal 3 (SDG3) (namely, “Ensure healthy lives and promote well-being for all at all ages”), and to suggest possible reasons for these gaps as well as to propose some solutions. Methods: We conducted a scoping review, which consisted of a keyword search of the literature related to health recommender systems for patients in the following databases: ScienceDirect, PsycInfo, Association for Computing Machinery, IEEExplore, and Pubmed. Further, we limited our search to consider only English-lan-guage journal articles published in the last 10 years. The reviewing process comprised three researchers who filtered the results simultaneously. The quantitative synthesis was conducted in parallel by two researchers, who classified each paper in terms of four aspects—the domain, the methodological and procedural aspects, the health promotion theoretical factors and behavior change theories, and the technical aspects—using a new multidisciplinary taxonomy. Results: Nineteen papers met the inclusion criteria and were included in the data analysis, for which thirty-three features were assessed. The nine features associated with the health promotion theoretical factors and behavior change theories were not observed in any of the selected studies, did not use principles of tailoring, and did not assess (cost)-effectiveness. Discussion: Health recommender systems may be further improved by using relevant behavior change strategies and by implementing essential characteristics of tailored interventions. In addition, many of the features required to assess each of the domain aspects, the methodological and procedural aspects, and technical aspects were not reported in the studies. Conclusions: The studies analyzed presented few evidence in support of the positive effects of using health recommender systems in terms of cost-effectiveness and patient health outcomes. This is why future studies should ensure that all the proposed features are covered in our multidisciplinary taxonomy, including integration with electronic health records and the incorporation of health promotion theoretical factors and behavior change theories. This will render those studies more useful for policymakers since they will cover all aspects needed to determine their impact toward meeting SDG3.European Union's Horizon 2020 No 68112

    Addendum to Informatics for Health 2017: Advancing both science and practice

    Get PDF
    This article presents presentation and poster abstracts that were mistakenly omitted from the original publication

    A reliable trust-aware reinforcement learning based routing protocol for wireless medical sensor networks.

    Get PDF
    Interest in the Wireless Medical Sensor Network (WMSN) is rapidly gaining attention thanks to recent advances in semiconductors and wireless communication. However, by virtue of the sensitive medical applications and the stringent resource constraints, there is a need to develop a routing protocol to fulfill WMSN requirements in terms of delivery reliability, attack resiliency, computational overhead and energy efficiency. This doctoral research therefore aims to advance the state of the art in routing by proposing a lightweight, reliable routing protocol for WMSN. Ensuring a reliable path between the source and the destination requires making trustaware routing decisions to avoid untrustworthy paths. A lightweight and effective Trust Management System (TMS) has been developed to evaluate the trust relationship between the sensor nodes with a view to differentiating between trustworthy nodes and untrustworthy ones. Moreover, a resource-conservative Reinforcement Learning (RL) model has been proposed to reduce the computational overhead, along with two updating methods to speed up the algorithm convergence. The reward function is re-defined as a punishment, combining the proposed trust management system to defend against well-known dropping attacks. Furthermore, with a view to addressing the inborn overestimation problem in Q-learning-based routing protocols, we adopted double Q-learning to overcome the positive bias of using a single estimator. An energy model is integrated with the reward function to enhance the network lifetime and balance energy consumption across the network. The proposed energy model uses only local information to avoid the resource burdens and the security concerns of exchanging energy information. Finally, a realistic trust management testbed has been developed to overcome the limitations of using numerical analysis to evaluate proposed trust management schemes, particularly in the context of WMSN. The proposed testbed has been developed as an additional module to the NS-3 simulator to fulfill usability, generalisability, flexibility, scalability and high-performance requirements

    Federated Embedded Systems – a review of the literature in related fields

    Get PDF
    This report is concerned with the vision of smart interconnected objects, a vision that has attracted much attention lately. In this paper, embedded, interconnected, open, and heterogeneous control systems are in focus, formally referred to as Federated Embedded Systems. To place FES into a context, a review of some related research directions is presented. This review includes such concepts as systems of systems, cyber-physical systems, ubiquitous computing, internet of things, and multi-agent systems. Interestingly, the reviewed fields seem to overlap with each other in an increasing number of ways

    Barriers to older adults’ uptake of mobile-based mental health interventions

    Get PDF
    Background To address increasing demand of mental healthcare treatments for older adults and the need to reduce delivery costs, healthcare providers are turning to mobile applications. The importance of psychological barriers have been highlighted in the uptake of mobile-based mental health interventions and efforts have been made to identify these barriers in order to facilitate initial uptake and acceptance. However, limited research has focused on older adults’ awareness of these applications and factors that might be hindering their use. Objective The purpose of this study was to explore the perceived barriers that older adults experience in the uptake of mobile-based mental health interventions. Methods Semi-structured interviews were conducted with a sample of 10 older adults, 50 years or older (female = 7, mean age = 68 years), who experienced periods of low mood. National Health Service applications were demonstrated to facilitate conversation and explore participants’ understanding of mental health and mobile-based mental health interventions. Thematic analysis was used to analyse the interview transcripts. Results The social ecological model was adopted as an organising framework for the thematic analysis which identified six distinct barriers to older adults’ uptake of mobile-based mental health interventions: mental electronic-health (e-health) awareness, interaction with technology, discontinuation, ‘seeing’ facilitates therapeutic alliance, incongruent role of the general practitioner and privacy and confidentiality. Conclusions Older adults experience a number of barriers to uptake ranging from the individual level to a macro, organisational level. The practical implications of these barriers are discussed such as the need for increased awareness of mobile-based mental health interventions among older adults

    Security and blockchain convergence with internet of multimedia things : current trends, research challenges and future directions

    Get PDF
    The Internet of Multimedia Things (IoMT) orchestration enables the integration of systems, software, cloud, and smart sensors into a single platform. The IoMT deals with scalar as well as multimedia data. In these networks, sensor-embedded devices and their data face numerous challenges when it comes to security. In this paper, a comprehensive review of the existing literature for IoMT is presented in the context of security and blockchain. The latest literature on all three aspects of security, i.e., authentication, privacy, and trust is provided to explore the challenges experienced by multimedia data. The convergence of blockchain and IoMT along with multimedia-enabled blockchain platforms are discussed for emerging applications. To highlight the significance of this survey, large-scale commercial projects focused on security and blockchain for multimedia applications are reviewed. The shortcomings of these projects are explored and suggestions for further improvement are provided. Based on the aforementioned discussion, we present our own case study for healthcare industry: a theoretical framework having security and blockchain as key enablers. The case study reflects the importance of security and blockchain in multimedia applications of healthcare sector. Finally, we discuss the convergence of emerging technologies with security, blockchain and IoMT to visualize the future of tomorrow's applications. © 2020 Elsevier Lt

    Living Innovation Laboratory Model Design and Implementation

    Full text link
    Living Innovation Laboratory (LIL) is an open and recyclable way for multidisciplinary researchers to remote control resources and co-develop user centered projects. In the past few years, there were several papers about LIL published and trying to discuss and define the model and architecture of LIL. People all acknowledge about the three characteristics of LIL: user centered, co-creation, and context aware, which make it distinguished from test platform and other innovation approaches. Its existing model consists of five phases: initialization, preparation, formation, development, and evaluation. Goal Net is a goal-oriented methodology to formularize a progress. In this thesis, Goal Net is adopted to subtract a detailed and systemic methodology for LIL. LIL Goal Net Model breaks the five phases of LIL into more detailed steps. Big data, crowd sourcing, crowd funding and crowd testing take place in suitable steps to realize UUI, MCC and PCA throughout the innovation process in LIL 2.0. It would become a guideline for any company or organization to develop a project in the form of an LIL 2.0 project. To prove the feasibility of LIL Goal Net Model, it was applied to two real cases. One project is a Kinect game and the other one is an Internet product. They were both transformed to LIL 2.0 successfully, based on LIL goal net based methodology. The two projects were evaluated by phenomenography, which was a qualitative research method to study human experiences and their relations in hope of finding the better way to improve human experiences. Through phenomenographic study, the positive evaluation results showed that the new generation of LIL had more advantages in terms of effectiveness and efficiency.Comment: This is a book draf

    A patient agent controlled customized blockchain based framework for internet of things

    Get PDF
    Although Blockchain implementations have emerged as revolutionary technologies for various industrial applications including cryptocurrencies, they have not been widely deployed to store data streaming from sensors to remote servers in architectures known as Internet of Things. New Blockchain for the Internet of Things models promise secure solutions for eHealth, smart cities, and other applications. These models pave the way for continuous monitoring of patient’s physiological signs with wearable sensors to augment traditional medical practice without recourse to storing data with a trusted authority. However, existing Blockchain algorithms cannot accommodate the huge volumes, security, and privacy requirements of health data. In this thesis, our first contribution is an End-to-End secure eHealth architecture that introduces an intelligent Patient Centric Agent. The Patient Centric Agent executing on dedicated hardware manages the storage and access of streams of sensors generated health data, into a customized Blockchain and other less secure repositories. As IoT devices cannot host Blockchain technology due to their limited memory, power, and computational resources, the Patient Centric Agent coordinates and communicates with a private customized Blockchain on behalf of the wearable devices. While the adoption of a Patient Centric Agent offers solutions for addressing continuous monitoring of patients’ health, dealing with storage, data privacy and network security issues, the architecture is vulnerable to Denial of Services(DoS) and single point of failure attacks. To address this issue, we advance a second contribution; a decentralised eHealth system in which the Patient Centric Agent is replicated at three levels: Sensing Layer, NEAR Processing Layer and FAR Processing Layer. The functionalities of the Patient Centric Agent are customized to manage the tasks of the three levels. Simulations confirm protection of the architecture against DoS attacks. Few patients require all their health data to be stored in Blockchain repositories but instead need to select an appropriate storage medium for each chunk of data by matching their personal needs and preferences with features of candidate storage mediums. Motivated by this context, we advance third contribution; a recommendation model for health data storage that can accommodate patient preferences and make storage decisions rapidly, in real-time, even with streamed data. The mapping between health data features and characteristics of each repository is learned using machine learning. The Blockchain’s capacity to make transactions and store records without central oversight enables its application for IoT networks outside health such as underwater IoT networks where the unattended nature of the nodes threatens their security and privacy. However, underwater IoT differs from ground IoT as acoustics signals are the communication media leading to high propagation delays, high error rates exacerbated by turbulent water currents. Our fourth contribution is a customized Blockchain leveraged framework with the model of Patient-Centric Agent renamed as Smart Agent for securely monitoring underwater IoT. Finally, the smart Agent has been investigated in developing an IoT smart home or cities monitoring framework. The key algorithms underpinning to each contribution have been implemented and analysed using simulators.Doctor of Philosoph
    corecore