6 research outputs found

    Recognizing Uncertainty in Speech

    Get PDF
    We address the problem of inferring a speaker's level of certainty based on prosodic information in the speech signal, which has application in speech-based dialogue systems. We show that using phrase-level prosodic features centered around the phrases causing uncertainty, in addition to utterance-level prosodic features, improves our model's level of certainty classification. In addition, our models can be used to predict which phrase a person is uncertain about. These results rely on a novel method for eliciting utterances of varying levels of certainty that allows us to compare the utility of contextually-based feature sets. We elicit level of certainty ratings from both the speakers themselves and a panel of listeners, finding that there is often a mismatch between speakers' internal states and their perceived states, and highlighting the importance of this distinction.Comment: 11 page

    Framework for Human Computer Interaction for Learning Dialogue Strategies using Controlled Natural Language in Information Systems

    Get PDF
    Spoken Language systems are going to have a tremendous impact in all the real world applications, be it healthcare enquiry, public transportation system or airline booking system maintaining the language ethnicity for interaction among users across the globe. These system have the capability of interacting with the user in di erent languages that the system supports. Normally when a person interacts with another person there are many non-verbal clues which guide the dialogue and all the utterances have a contextual relationship, which manage the dialogue as its mixed by the two speakers. Human Computer Interaction has a wide impact on the design of the applications and has become one of the emerging interest area of the researchers. All of us are witness to an explosive electronic revolution where lots of gadgets and gizmo's have surrounded us, advanced not only in power, design, applications but the ease of access or what we call user friendly interfaces are designed that we can easily use and control all the functionality of the devices. Since speech is one of the most intuitive form of interaction that humans use. It provides potential bene ts such as handfree access to machines, ergonomics and greater e ciency of interaction. Yet, speech-based interfaces design has been an expert job for a long time. Lot of research has been done in building real spoken Dialogue Systems which can interact with humans using voice interactions and help in performing various tasks as are done by humans. Last two decades have seen utmost advanced research in the automatic speech recognition, dialogue management, text to speech synthesis and Natural Language Processing for various applications which have shown positive results. This dissertation proposes to apply machine learning (ML) techniques to the problem of optimizing the dialogue management strategy selection in the Spoken Dialogue system prototype design. Although automatic speech recognition and system initiated dialogues where the system expects an answer in the form of `yes' or `no' have already been applied to Spoken Dialogue Systems( SDS), no real attempt to use those techniques in order to design a new system from scratch has been made. In this dissertation, we propose some novel ideas in order to achieve the goal of easing the design of Spoken Dialogue Systems and allow novices to have access to voice technologies. A framework for simulating and evaluating dialogues and learning optimal dialogue strategies in a controlled Natural Language is proposed. The simulation process is based on a probabilistic description of a dialogue and on the stochastic modelling of both arti cial NLP modules composing a SDS and the user. This probabilistic model is based on a set of parameters that can be tuned from the prior knowledge from the discourse or learned from data. The evaluation is part of the simulation process and is based on objective measures provided by each module. Finally, the simulation environment is connected to a learning agent using the supplied evaluation metrics as an objective function in order to generate an optimal behaviour for the SDS

    Simulations of language in individuals with and without Autism Spectrum Disorder (ASD)

    Get PDF
    The current thesis provides an exploration of mental simulations of language in individuals with and without Autism Spectrum Disorder (ASD). The experiential explanation of language proposes that language comprehension is facilitated through the construction of mental simulations of described events, which are embodied in cognition; grounded in action and perception. This high order cognitive process is thought to be underpinned by the mirror neuron system and other neural networks in the typically developed (TD) population. In a series of six experiments combining behavioural, EEG and eye-tracking measures with psycholinguistic paradigms, this thesis examines for the first time whether individuals with ASD activate mental simulations of language that are comparable to those of TD individuals. The main findings suggest that individuals with ASD are able to simulate written and spoken language, and do so in the same way as TD individuals; relying on the same neurological correlates. These simulations are activated in real-time as the described event unfolds and are constrained by the linguistic input. However, the findings point to a possible deficit or bias in interpreting prosodic content in ASD. Moreover, difficulties in simulating described events in ASD emerge when the temporal sequence of events are interrupted. Moreover, while individuals with ASD are able to simulate language online, subtle differences in processing compared to TD individuals may explain the social communication associated with the disorder. The findings offer support for a complex information processing explanation of ASD and are discussed in relation to existing cognitive theories of ASD and the impact of social skills and language ability on mental simulations

    Replication data for: Recognizing Uncertainty in Speech

    No full text
    We address the problem of inferring a speaker's level of certainty based on prosodic information in the speech signal, which has application in speech-based dialogue systems. We show that using phrase-level prosodic features centered around the phrases causing uncertainty, in addition to utterance-level prosodic features, improves our model's level of certainty classification. In addition, our models can be used to predict which phrase a person is uncertain about. These results rely on a novel method for eliciting utterances of varying levels of certainty that allows us to compare the utility of contextually-based feature sets. We elicit level of certainty ratings from both the speakers themselves and a panel of listeners, finding that there is often a mismatch between speakers' internal states and their perceived states, and highlighting the importance of this distinction
    corecore